
Unsupervised Duplicate Detection (U D D)

Of Query Results from Multiple Web Databases

A T h e s i s P r e s e n t e d to

T h e Facul ty of the Computer Sc ience P rog ram

California S ta te Universi ty Channel Islands

In (Partial) Fulfillment

Of the Requ i rements for the Degree

M a s t e r s of Sc ience in Computer Sc ience

By

Bhanupree t i Daggupati

D e c e m b e r 2011

2

© 2011

Bhanupreeti Daggupati

ALL RIGHTS RESERVED

3

APPROVED FOR THE COMPUTER SCIENCE PROGRAM

Advisor: Doctor Andrzej Bieszczad Date

12/15/2011

Advisor: Doctor Peter Smith Date

12/15/2011

Advisor: Doctor Richard Wasniowski Date

12/15/2011

APPROVED FOR THE UNIVERSITY

Doctor Gary A. Berg Date

12/16/2011

4

Unsupervised Duplicate Detection (U D D)

Of Query Results from Multiple Web

Databases
By

Bhanupreeti Daggupati

Computer Science Program

California State University Channel Islands

Abstract
There has been an exponential growth of data in the last decade both in public and private domain.
This thesis presents an unsupervised mechanism to identify duplicates that refer to the same real-
world entity. With an unsupervised algorithm, there is no need for manual labeling of training data.
This thesis builds on this idea by introducing an additional classifier, known as the blocking
classifier. Various experiments are conducted on a dataset to verify the effectiveness of the
unsupervised algorithm in general and the additional blocking classifier in particular.

Acknowledgements
I would like to thank Doctor Andrzej Bieszczad for his guidance and support pointing me in the right
direction. I would also like to thank my husband for his endless support and hours of proofreading.
Finally, I would like to thank my friends and family for putting up with my long hours and lack of
availability.

5

Table of Contents

Abstract 4
Acknowledgements 4
Table of Contents 5
Table of Equations 7
Table of Figures 7
Table of Tables 9
Chapter 1 - Introduction 10

1.1 Introduction 10
1.2 Problem definition 10
1.3 Need for Unsupervised Duplicate Detection algorithm 11
1.4 Proposed system 12
1.5 Possible applications 14
1.6 Remaining Chapters 14
1.7 Key Terms 15

Chapter 2 - Field Overview 18
2.1 Record Matching Techniques 18

2.1.1Character-based similarity metrics 18
2.1.1.1 Edit Distance 19
2.1.1.2 Smith-Waterman distance 23
2.1.1.3 Affine Distance 25
2.1.1.4 Jaro-Winkler distance Metric 26

2.1.2 Token-based similarity metrics 28
2.1.2.1 Jaccard Coefficient 29
2.1.2.2 Cosine Similarity 29
2.1.2.3 q-grams 31

2.1.3 Phonetic similarity metrics 31
2.1.3.1 Soundex 31

2.1.4 Numeric Similarity Metrics 32
2.2 Detecting Duplicate Records 32

2.2.1 Probabilistic Matching Models 33
2.2.2 Supervised Learning 34
2.2.3 Active-Learning-Based Techniques 35
2.2.4 Distance-Based Techniques 36
2.2.5 Rule-based Approaches 36
2.2.6 Unsupervised Learning 37

Chapter 3: Technical details 38
3.1 Architecture of the system 38

3.1.1 Data Retrieval 39
3.1.2 Pre-Processing and Blocking 39
3.1.3 U D D Algorithm 39
3.1.4 Data Presentation 40

3.2 Loading of Data/Data Collection 40
3.3 Blocking 42
3.4 Similarity Vector Calculation 45

3.4.1 Text Transformations 46
3.4.2 Computing Attribute Similarity Scores 48

6

3.5 Classifier 1: Weighted Component Similarity Summing (W C S S) Classifier 49
3.5.1 Attribute Weight Assignment 50
3.5.2 Duplicate Identification 52

3.6 Classifier 2: Linear S V M 53
3.6.1 Why choose S V M classifier 53
3.6.2 Training/Learning 54
3.6.3 Classification 54

Chapter 4: Experiments/ Analysis of Results 55

4.1 Tool introduction 55
4.1.1 Microsoft Visual Studio 55
4.1.2 Microsoft Access Database 55
4.1.3 Microsoft Jet 4.0 OLE D B Provider 55
4.1.4 Other components 55

4.2 Introduction to system 56
4.3 Evaluation Metric 58
4.4 Experiments 59

4.4.1 Random query experiments 59
4.4.2 Complete Dataset 69

4.5 Comparisons with Other Works 71

Chapter 5: Conclusion and Future Work 73

5.1 Conclusion 73
5.2 Future Work 74

7

Table of Equations
Equation 2.1: Formula Edit Distance Calculation 19

Equation 2.2: Smith-Waterman Distance Calculation 24

Equation 2.3: Jaro-Winkler Distance 27

Equation 2.4: Jaccard coefficient similarity 29

Equation 2.5: The cosine angle between A and B 30

Equation 3.1: Similarity of two attribute values A, B 48

Equation 3.2: Weight calculation for all the fields using duplicate vectors 51

Equation 3.3: Weight calculation for all the fields using duplicate vectors 51

Equation 3.4: Weight of all the fields combining duplicate weight and non duplicate weight 52

Equation 3.5: W C S S similarity for records r 1 and r 2 52

Table of Figures
Figure 1.1: A use case diagram of the proposed system for un-supervised duplicate detection 13

Figure 2.1: Calculating Edit distance 19

Figure 2.2: example to calculate the distance/score under regular gap penalty system 25

Figure 2.3: Modified alignment. Equivalent under regular gap penalty system 25

Figure 2.4: Alignment from Figure 2.2 re-scored using affine gap penalties 26

Figure 2.5: The alignment from Figure 2.3 re-scored using affine gap penalties 26

Figure 2.6: Example of Jaccard Coefficient 29

Figure 2.7: Representing the A and B strings tokenized 30

Figure 2.8: S V M example 35

Figure 3.1: System architecture 38

Figure 3.2: Technical architecture 41

Figure 3.3: Example of Similarity vector calculation 45

Figure 3.4: Example of a transformation 47

Figure 3.5: Weighted Component Similarity Summing (W C S S) Classifier 50

Figure 4.1: Application User Interface with output details for search query 'los angeles' 56

Figure 4.2: Non-duplicate(Unique) records for search query 'los angeles' 57

Figure 4.3: Duplicate Records tab showing the similarity vector values of duplicate records 58

8

Figure 4.4: Experiment 1 for search query 'new york' output details of all algorithms 59

Figure 4.5: Graph showing the evaluation metric details for all three algorithms 60

Figure 4.6: Experiment 2 for search query 'america' output details of all algorithms 61

Figure 4.7: Graph showing the evaluation metric details for all three algorithms 62

Figure 4.8: Experiment 3 for search query 'los angeles' output details of all algorithms 62

Figure 4.9: Graph showing the evaluation metric details for all three algorithms 63

Figure 4.10: Experiment 4 for search query 'cafe' output details of all algorithms 64

Figure 4.11: Graph showing the evaluation metric details for all three algorithms 65

Figure 4.12: Experiment 5 for search query 'san francisco' output details of all algorithms 65

Figure 4.13: Graph showing the evaluation metric details for all three algorithms 66

Figure 4.14: Experiment 6 for search query 'french' output details of all algorithms 67

Figure 4.15: Graph showing the evaluation metric details for all three algorithms 68

Figure 4.16: Graph showing the f-measure comparison for all the experiments with random queries.69

Figure 4.17: Experiment showing details for the complete dataset 70

Figure 4.18: Evaluation metrics for the complete restaurant dataset 71

9

Table of Tables
Table 1.1: Sample dataset showing records from two databases FODORS and ZAGAT for a list of

restaurants in Los Angeles 11

Table 2.1: List of Edit Operations along with their costs 19

Table 2.2: Edit Distance Matrix 20

Table 2.3: First step in Distance matrix 20

Table 2.4: Distance matrix calculation - derive value for D sub 01 21

Table 2.5: Distance matrix calculation - derive value for D sub 10 22

Table 2.6: Distance matrix calculation - derive value for D sub 11 22

Table 2.7: Distance matrix for 'GUMBO' and 'GAMBO L' 23

Table 2.8: Smith-Waterman Distance matrix 24

Table 2.9: Jaro-Winkler Distance 27

Table 2.10: Example of q-Grams when q equals 2 31

Table 2.11: Sample training data used for supervised learning 34

Table 3.1: Sample data from Restaurant Dataset 40

Table 3.2: Sample data for a query of "Los Angeles" from FODORS and ZAGAT databases 43

Table 3.3: Sample data for a query of "Los Angeles" with Soundex value calculated for Name field 43

Table 3.4: Sample data for a query of "Los Angeles" sorted on Soundex value 44

Table 3.5: Sample data for a query of "Los Angeles" grouped into potential duplicates 44

Table 3.6: Sample data grouped into non-duplicates based on the Soundex value 44

Table 3.7: Similarity vector of potential duplicates for records in table 3.5 49

Table 3.8: Similarity vector of non-duplicates for records in table 3.6 49

Table 3.9: Training data for S V M classifier combing entries from table 3.6 and table 3.7 54

Table 4.1: Precision, Recall and f-measure for search query 'new york' 60

Table 4.2: Precision, Recall and f-measure for search query 'america' 61

Table 4.3: Precision, Recall and f-measure for search query 'los angeles' 63

Table 4.4: Precision, Recall and f-measure for search query 'cafe' 64

Table 4.5: Precision, Recall and f-measure for search query 'san francisco' 66

Table 4.6: Precision, Recall and f-measure for search query 'french' 67

Table 4.7: Precision, Recall and f-measure for the complete restaurant dataset 71

10

Chapter 1 - Introduction
1.1 Introduction

These days we have to agree to the statement "A search engine is the window to the
Internet". The basic premise of a search engine is to provide search results based on query from the
user. A dynamic web page is displayed to show the results as well as other relevant advertisements
that seem relevant to the query. This forms the basic monetization technique used by many popular
search engines. The search engine contains a database that stores these links to the web pages and a
framework to decide the sequence/order these results are displayed.

With the exponential growth of the web pages and end users demand for optimal search
results, there has been a huge push in using data mining techniques [1] to perfect the process of
understanding the data as well as pre-processing and data preparation.

When dealing with large amount of data, it 's important that there be a well defined and
tested mechanism to filter out duplicate results. This keeps the end results relevant to the queries.
Duplicate records exist in the query results of many Web databases, especially when the duplicates
are defined based on only some of the fields in a record. Using exact matching technique as part of
preprocessing, records that are exactly the same in all relevant matching fields can be merged.

The techniques that deal with duplicate detection can be broadly classified as those
requiring training data (supervised learning method [2]) and those that can function without a
predefined training data (un-supervised learning method [3]). As part of my thesis, I plan to explore
un-supervised techniques and develop/propose a mechanism that can function with minimal
supervision.

The premise of using web search engine example is to highlight the need for an algorithm
that can handle large amounts of data and be able to derive a unique set that is most relevant to the
user query.

1.2 Problem Definition
The end user has no control over the results returned by a search engine, nor can he

guarantee that there will be no duplicates from the query result. The problem of duplicate records
existing in a query result referring to the same real-world entity can occur when search engine uses
multiple web databases. Our focus is on Web databases from the same domain, i.e., Web databases
that provide the same type of records in response to user queries.

Suppose there are s records in data source A and there are t records in data source B, with
each record having a set of fields/attributes. Each of the t records in data source B can potentially be
a duplicate of each of the s records in data source A. The goal of duplicate detection is to determine
the matching status, i.e., duplicate or non-duplicate, of these s asterisk t record pairs.

11

In order to simulate real world data, we are going to work with restaurant dataset [59] which
has two databases FODORS and ZAGAT containing information on restaurants.

Below is an example of sample data from this dataset for a search of 'Los Angeles '.

Table 1.1: Sample dataset showing records from two databases FODORS and ZAGAT for a list of
restaurants in Los Angeles.

Restaurant Name Address City Phone Cuisine Database

1 Arnie morton's of Chicago 435 south la cienega

boulevard

Los Angeles 310-246-1501 steakhouses FODORS

2 Arnie morton's of Chicago 4 3 5 south l a c i e n e g a boulevard Los Angeles 310-246-1501 American ZAGAT

3 Locanda veneta 8638 west third street Los Angeles 310-274-1893 Italian FODORS

4 Locanda veneta 3rd street Los Angeles 310-274-1893 Italian ZAGAT

When compared, the record pairs (1,2) and (3,4) of Table 1.1 are duplicates and refer to the
same real-world entity even though some of the fields have different values. This is because of how
the data is classified and stored in a particular database varies from database to database. For
example records 1 and 2 from Table 1.1 the only differentiating attribute is the cuisine value which
is stored as "steakhouses" in FODORS database and "American" in ZAGAT database.

The problem now is that the search engine needs to identify records that refer to the same
entity and display a unique set. If only exact matching algorithm is used it wrongly identifies all the
four records from Table 1.1 as unique. The goal of this thesis is to develop a mechanism that can
identify duplicate record pairs in the query results that refer to the same real-world entity using un-
supervised algorithm.

1.3 Need for a Unsupervised Duplicate Detection algorithm
Duplicate detection is used interchangeably with record linkage [4] [5] [6]. The problem of

duplicate detection has attracted attention from research fields including Databases [7], Data
Mining [8] [9], Artificial Intelligence [10] [11], and Natural Language Processing [12] [13]. There
have been many efforts in finding solution to the problem of identifying duplicates records.

As we had discussed earlier in this chapter most of the research [14] [24] for identifying
duplicate records is based on predefined matching rules hand-coded by domain experts or matching
rules learned offline by some learning method from a set of training examples. Such approaches
work well in a traditional database environment, where all instances of the target databases can be
readily accessed. In a Web database scenario, the records to match are highly query-dependent and
they can only be obtained through online queries. When using a traditional database the data to be
retrieved is known before hand which can be used to train and identify duplicates beforehand. This

12

is in contrast to Web databases where results from multiple sources have to be combined with no
pre-determined training data.

The main reason to develop an alternate solution for Web database scenario are the
following disadvantages of using hand-coding or offline-learning approaches.

First, offline-learning approaches rely on pre-determined training data. It uses training data
to classify records as either duplicate or as unique. The training data constitutes all the possible
queries on the dataset to ensure no duplicates are retrieved. Domain experts manually identify
training data for all possible queries. In Web database scenario, as the records are retrieved
dynamically from multiple databases, it 's not possible to have pre-determined training data that can
cover various queries from the end user.

Second, even though we have a training data representing the full dataset, duplicate
detection may not work well for partial data retrieval. For example using pre-determined training
data, if we had trained the system by giving equal weights (numerical value representing
importance - lower value means the field is less important in influencing the result and vice versa)
to all the fields, when we are try to retrieve data from this dataset for a search of 'Los Angeles', the
records 1 and 2 from the above Table 1.1 are displayed as unique because the value of cuisine field
is different for two records. As these two records refer to the same real-world entity, the system
should have ignored or given a less weight to the cuisine field. To reduce the influence of such
fields in determining which records pairs are duplicates, their weighting should be adjusted to be
much lower than the weighting of other fields or even be zero. For some query results, for example
the cuisine field itself can be an important field for determining which records should matched. In
the case of Web databases scenario where results are retrieved after a query is entered, the weights
of the fields should change based on the query. This is a shortcoming in the supervised-learning
based methods, where training and weight assignment happen before hand.

1.4 Proposed System
The inspiration for this thesis was the IEEE paper "Record Matching over Query Results

from Multiple Web Databases [15]" which proposes the use of Unsupervised Duplicate Detection
(U D D)[16] algorithm to detect duplicate records. This thesis builds up on the idea of U D D and is an
attempt to enhance the algorithm by introducing an additional classifier known as "Blocking
Classifier" to improve the accuracy rate. The proponents of U D D [15] assumed that there will be no
duplicates within a database and only considered the result set from multiple databases for potential
duplicates. The introduction of the blocking classifier solves this issue by looking at all the data and
considering the possibility that duplicates can exist within the same database.

In the proposed system the plan was to develop an unsupervised algorithm that uses three
classifiers for duplicate detection which are examined in detail in Chapter 3.

13

The first classifier is called the Weighted Component Similarity Summing (W C S S)
Classifier where the importance of the fields is determined and duplicates are identified without any
training. The idea for this classifier is to calculate the similarity between pair of records by doing a
field to filed comparison.

This serves as input to the second classifier which is the Support Vector Machine (S V M)
Classifier which makes use of the duplicates and non duplicates identified from the W C S S
classifiers as training dataset. The S V M classifier then uses the training data and processes each
record to identify/classify a record as being a duplicate or otherwise.

The focus of this thesis was on developing a third classifier called the Blocking Classifier
and integrating this with the current U D D process to better identify duplicates and enhance the
process. This is explained in detail in the 3rd chapter. The other major enhancement would be to add
functions to the W C S S classifier which deal with string comparison that can aid in identifying
duplicates.

An ideal system would be one that presents the most relevant results from multiple web
databases. This thesis was an attempt to explore using alternative methodologies for record
duplicate detection. By developing additional classifiers, this thesis tried to prove that an un-
supervised learning system is more suitable for duplicate detection with the flexibility of learning
on the fly and adapting to the queries. To measure the effectiveness of the proposed system, we
compare results of experiments with the original U D D system [15]. Chapter 4 contains results and
analysis of such tests.

Below is the use case diagram detailing the steps in the proposed system.

Fig 1.1: A use case diagram of the proposed system for un-supervised duplicate detection.

14

1. User enters a query
This is normally done using a user interface either web or application that accesses the
underlying database. As with any application a database or multiple databases store the
information from which records are extracted for display.

2. Get all the records that match the query from multiple databases
In a normalized database there is less possibility of duplicates existing. But in the case of
Web databases this may not be the case. Also when we have multiple databases there is
always a chance that the same or similar records exist that refers to the same real-world
entity. This step involves in identifying all the records that match the query. There might
be a challenge in streamlining the data i.e. each database might have different structure
and layout. A standardized structure is used to store the records from these multiple
databases.

3. Algorithm is used to identify duplicate records
We will be using the U D D algorithm that was developed for this thesis by enhancing the
original U D D algorithm.

4. Present to the user only unique records for the query
Finally results of the algorithm are presented to the users.

1.5 Possible applications
One of the possible applications of duplicate detection would be data mining [66][67] whose

aim is to collect data from various sources and present the same in easy to understand reports to end
users. The challenge of such systems is to be able to identify duplicate data that is being processed
and not including the same in the output.

The other major area and very relevant is the Master Data Management (M D M) [17]
applications. These applications are to serve as a central repository of master data in an organization
and the main task is to filter duplicate records that refer to the same real-world entity. M D M is used
to manage non-transactional data in an organization for example customer or material master
information. When there is a need to create for example a new customer, M D M system verifies if
an account already exists with the given attributes and only then allow for new customer to be
created. This process streamlines information and will avoid multiple accounts being created which
refer to the same entity.

1.6 Remaining Chapters
In the second chapter, we will analyze some of the different techniques being used for

duplicate detection today. We will look at various techniques for field matching that are used
including character and token based similarity metrics. An overview of phonetic and numeric

15

similarity metrics and their relevance to duplicate detection is discussed. This chapter will also
introduce the various categories of duplicate detection including the probabilistic and generic
distance metrics.

In the third chapter, we will look at the custom algorithm that was developed for this thesis
and the technical architecture of the system. We also look into each of the three classifiers in detail
and explain their role along with technical details. This chapter has details about how the processes
flows from classifier to classifier and understand the role each of them plays in the system.

In the fourth chapter, we describe the application that was built using the custom algorithm.
Then we look at various experiments that were conducted. Finally we look at the results from the
experiments and how they compare with expected results. We get introduced to precision, recall
and f-measure.

In the fifth chapter, we discuss the conclusions arrived for this thesis. We will look at results
from the experiments and will conclude if the new algorithm is superior to other algorithms. Finally
we will look at future work and also highlight areas where further research can be done to
complement this thesis.

1.7 Key Terms
Blocking Classifier - A classification algorithm to group data into potential duplicates and non-
duplicates.

Data Mining - It is the process of discovering new patterns from large input data using
computers.

Datasets - is a collection of data, usually presented in tabular form.

Duplicate Dataset - A collection of duplicate records (records that refer to the same real-world
entity)

Duplicate Detection - is the process of identifying records that refer to the same real-world
entity.

Duplicate Vector - An array containing the numerical equality value of two records.

Element Identification - Process of matching two datasets at field level so that matched fields
refer to the same information.

16

Exact Matching - Matching a pair of records on the values of all the attributes

Field/Attributes - Refer to the components of a table in a database.

False positives - Records wrongly classified by the classifier as duplilcates.

Master Data Management (M D M) - comprises a set of processes and tools that consistently
defines and manages the non-transactional data entities of an organization.

Non-Duplicate dataset - A collection of non-duplicate records

Potential Duplicates - A collection of records that might be referring to the same real-word
entity identified by a duplicate detection process.

Record linkage - Process of linking records that refer to the same real-world entity from across
multiple data sources.

Record Matching - Process of matching records that are similar

Restaurant Dataset - A collection of records/data from ZAGAT and FODORS sites about
restaurant names.

Search Engine - A program used to search for information on the World Wide Web
Similarity - A numerical representation of string comparison

Similarity Vector - An array of similarity values of two records

Supervised Machine Learning - is the machine learning task of inferring a function from
supervised training data.

Support Vector Machine Classifier - An algorithm used for data classification

tf-idf - (term frequency-inverse document frequency) is a weight often used in information
retrieval and text mining. This weight is a statistical measure used to evaluate how important a
word is to a document in a collection or corpus.

Training Dataset - Refers to set subset of records that are identified as a representation of the
remaining records.

Unique Records - Each record uniquely represents one real-world entity.

17

Unsupervised duplicate Detection (U D D) -Algorithm that uses no pre-determined training data
to identify duplicates that refer to the same real-world entity

Unsupervised Machine Learning - refers to the problem of trying to find hidden structure in
unlabeled data with no pre-defined training data.

Web Databases - Databases that are store information accessible only through submission of
online query.

W C S S - Weighted Component Similarity Summing

Weights - A numerical representation of importance

18

Chapter 2 - Field Overview

In this chapter we will look at the common techniques and algorithms that are used in the
field of duplicate detection. There are numerous research papers [14] being presented with the same
objective of finding a better algorithm that can handle all the scenarios that come with any dataset.
The most common sources of mismatches in database entries are the typographical variations of
string data. Therefore, duplicate detection typically relies on string comparison techniques to deal
with typographical variations.

In this section, we describe techniques that have been applied for matching fields with string
data, in the duplicate record detection context. We also review briefly some common approaches
for dealing with errors in numeric data. In the second part of this chapter we explore various
algorithms that use these techniques.

2.1 Record Matching Techniques

Primarily record matching techniques can be broadly classified into the following
Character or string based
Token based
Phonetic based
Numeric similarity

2.1.1 Character or String based similarity metrics

These set of techniques deal with various ways in comparing strings and finding a
similarity metric that can be used to group as well as identify potential duplicates. There are
many papers [14] [18] published and algorithms that were developed in analyzing the
correct technique for comparing strings and arriving at a differentiating factor in order to
measure their similarity. The character-based similarity metrics are designed to handle
common typographical errors. String based similarity metrics measure how similar (or
dissimilar) two strings are, two strings are deemed identical if they have same characters in
the same order.

The following are the commonly used string based similarity metrics:
Edit distance
Smith-Waterman distance
Affine gap distance
Jaro-Winkler distance metric

19

2.1.1.1 Edit distance:

This is the most commonly used technique that is based on the number of edit
operations that are required to transform one string A to another string B. There are mainly
three operations that constitute the edit distance.

Table 2.1: List of Edit Operations along with their costs

Edit Operation Cost
Copy(C) a character from A to B 0
Delete(D) a character in A 1
Insert(I) a character in B 1
Substitute(S) one character for another 1

For example let's calculate the edit distance/cost between two strings "GUMBO" and
"GAMBOL".

Figure 2.1: Calculating Edit distance

The total cost for A to transform into B is 2. Which means that by performing 2 operations
on ' G U M B O ' (i.e., first operation is to substitute ' U with 'A' and the second operation is to
insert 'L' at the end) it can be transformed into 'GAMBOL ' . Here the gap is nothing but an
insertion operation whose cost is 1. As the strings get complex there is a need for
developing an algorithm to calculate the edit distance. This calculation can be done by
dynamic programming [19]. The following scoring method is used to calculate distance
matrix (D):

Equation 2.1: Formula Edit Distance Calculation

20

Where D(i,j)=score of matrix element i, j;
C o s t (A sub i, B sub j) equals c o s t o f m a t c h i n g A sub i w i t h B sub j forward slash forward slash i f A sub i equals B sub j t h e n C equals 0 e l s e C equals 1.

Using the formula let's calculate the distance matrix for the above example.

Table 2.2: Edit Distance Matrix

As we can see from the above table 2.2 the minimum of all three values i.e., delete (D sub 22),
insert (D sub 31) and substitute (D sub 21) is selected for D sub 32 value.

Now let's look at the actual values of this example:

Step 1: First we initialize the rows and columns and set to D sub 00 equals 0. Rows are initialized 0 to
n and columns 0 to m, where n is the length of string A and m is the length of string B.

Table 2.3: First step in Distance matrix- initialize to D sub 00 equals 0

21

Step 2: Calculate for D sub 01 cell using the equation 2.1.

As this is the first row there are no delete or substitute operations and the only available cell
is the D sub 00. Minimum value is derived from it.

Table 2.4: Distance matrix calculation - derive value for D sub 01

Step 3: Now let's look at calculation for cell D sub 10.

As this is the first column there are no insert or substitute operations and the only available
cell is the D sub 00. Minimum value is derived from it.

22

Table 2.5: Distance matrix calculation - derive value for D sub 10

Step 4: Let's look at calculation of cell D sub 11

Cost (A sub 1,B sub 1) equals 0 because A sub 1 equals B sub 1

Table 2.6: Distance matrix calculation - derive value for D sub 11

As we can see from the above calculation we derive a value of 0 for cell D sub 11.

23

Step 5: Then the values for the rest of the cells is calculated by using the above formula/
equation 2.1.

Table 2.7: Distance matrix for 'GUMBO' and 'GAMBOL'

The edit distance/cost of the two strings is in the lower right hand corner of the matrix, i.e. 2
(circled above). This distance is used for calculating the similarity between the two strings.
If the calculated edit distance is greater than the threshold value then similarity between
them is low and vice versa. The threshold value is set by the user and is based on the
algorithm being used for duplicate detection. Edit distance is popularly known as
Levenshtein distance [20]. The biggest advantage of using this method is that it is very
effective in catching typical typographical errors. Common applications that use this method
are the file revision, spelling correction and speech recognition.

2.1.1.2 Smith-Waterman distance:

This is further extension of edit distance metric which was proposed by Smith and
Waterman [21][22]. In this method two strings are compared with a view to identifying
highly similar sections within them. This approach assumes that mismatches at the
beginning and the end of strings have lower costs than mismatches in the middle. For
example this method correctly identifies "Stanford U" as being similar to "Stanford
University". This is because when the two strings are compared, a common substring
"tanford U" is extracted and the algorithm assumes charters at the start and end have a low
cost. If the cost is less than threshold value it classifies these as being similar or vice versa.
The threshold value is user configurable and is based on the algorithm being used for
duplicate detection.

These similar sections are identified by calculating alignment matrix (D) using the following
scoring method:

24

Equation 2.2: Smith-Waterman Distance Calculation

The calculation of alignment matrix in Smith-Waterman algorithm is slightly different from
Edit distance.
1. The first step of Smith-Waterman algorithm is to set first row and column to zero.
2. The cost of each of the operation is also different. For example the cost for insertion or

deletion is -2 which is represented by "Gap" in the above formula.

The rest of calculation in the matrix is the same as in edit distance.

Table 2.8: Smith-Waterman Distance matrix

The alignment matrix in Smith-Waterman is used to find the similarity section between the
two strings. So once the alignment matrix is obtained we need to trace back from the
element in the matrix with the maximum score until a cell with a score of zero is reached.

W e h a d s e e n e a r l i e r h o w t h e c e l l v a l u e s a r e c a l c u l a t e d , l e t ' s c o n s i d e r t h e e x a m p l e f r o m t a b l e

2 . 8 , h e r e t h e h i g h e s t s c o r e i s 3 (D sub 55) i n t h e e n t i r e m a t r i x . S t a r t i n g f r o m t h i s c e l l i n t h e m a t r i x

b y d o i n g a t r a c e b a c k w e o b t a i n D sub 44 (t h i s i s f r o m w h e r e t h e D sub 55 v a l u e w a s i n i t i a l l y c a l c u l a t e d

i . e . , D sub 55 equals D parenthesis i minus 1,j minus 1 parenthesis plus Cost parenthesis A sub i, B sub j

parenthesis equals 2 plus 1 equals 3 parenthesis a n d f r o m D sub 44 w e o b t a i n D sub 33 a n d s o o n

u n t i l w e r e a c h a z e r o v a l u e . T h i s p r o c e s s g i v e s u s t h e s i m i l a r s e c t i o n b e t w e e n t h e t w o s t r i n g s :

A l i g n m e n t : G U M B O

G A M B O L

25

Once we get the alignment matrix, cost are given to the strings. Lower costs are assigned to
mismatches at the beginning and ending of the strings and higher cost to mismatches in
middle of the strings. If cost is less than threshold value it classifies these as being similar or
vice versa. The cost and threshold values are user configurable and are based on the
particular algorithm being used for duplicate detection.

2.1.1.3 Affine gap distance:

The Affine gap distance [23] methodology differs slightly from the Smith-Waterman metric.
Smith-Waterman fails on some pairs that seem quite similar: For example

William W. Cohen
William W. 'Some String' Cohen

This is because it gives higher weights to mismatches in the middle of the strings. Affine
gap algorithm works well for string comparisons that have continuous insertions or deletions
of characters/words. Intuitively, single long insertions are "cheaper" than a lot of short
insertions. A regular gap extension method would assign a fixed cost per gap. An affine gap
penalty encourages the extension of gaps rather than the introduction of new gaps.

For example let's consider two strings "W I L LL I A A M", "W A L I M" and compare the
score for them using regular gap penalty and affine gap penalty.

The scores/cost for regular gap penalty (edit distance algorithm) are:
Match equals 0
Substitution (mismatch) equals 1
Insertion/deletion of a Gap equals 1

Figure 2.2: Example to calculate the distance/score under regular gap penalty system

Now let's calculate the score by making a slight change to the alignment. For this new
alignment, the 'L' has been shifted one position to the right.

Figure 2.3: Modified alignment. Equivalent under regular gap penalty system

26

This modification does not change the score, thus the two alignments are equivalent under
this scoring system.

Now let's look at these two alignments using affine gap penalties.
Match equals 0
Substitution (mismatch) equals 1
Gap open score equals 1. forward slash forward slash It can be for insertion or deletion
Gap extension score equals 0. forward slash forwards slash It can be for insertion or deletion.

Figure 2.4: Alignment from Figure 2.2 re-scored using affine gap penalties.

For the first alignment this results in a new score of 4 (Figure 2.4) as now when a gap is
extended (there is more than one underscore in a row) the score is 0, whereas previously each gap
received a score of 1 whether it was a new gap or an extension.

Figure 2.5: The alignment from Figure 2.3 re-scored using affine gap penalties.

When re-scoring the second alignment using affine gap penalties, the new alignment score is
3 (Figure 2.5). This score is lower than the score achieved by the first alignment, and as
such is the preferred alignment. Normally this is implemented using dynamic programming
[69].

This example above demonstrates the difference using affine gap penalties rather than
regular gap penalties. Instead of inserting small gaps, affine gap penalties provide incentive
for the alignment algorithm to keep sequence together where possible. Such a behavior is
more desirable, and so most alignment algorithms [68] make use of affine gap penalties.

2.1.1.4 Jaro-Winkler distance metric:

The Jaro-Winkler distance measure was developed for comparing names gathered in the
U.S. Census and was proposed by Jaro [25]. It is specifically designed to look and compare
surnames to surnames and given names to given names. This method couldn't be used to
compare the whole name.

Given two strings S sub 1 and S sub 2, calculating the Jaro-Winkler distance includes the following
steps:

i . C o m p u t e t h e s t r i n g l e n g t h s parenthesis vertical line S sub 1 vertical line, vertical line S sub 2 vertical line parenthesis.

27

i i . F i n d t h e n u m b e r o f c o m m o n c h a r a c t e r s i n t h e t w o s t r i n g s , c o m m o n a r e a l l t h e c h a r a c t e r s i n S sub 1 square bracket i square bracket a n d S sub 2 square bracket j square bracket

f o r w h i c h S sub 1 square bracket i square bracket equals S sub 2 square bracket j square bracket a n d vertical line i minus j vertical line less than sign equals one-half m i n

parenthesis vertical line S sub 1 vertical line, vertical line S sub 2 vertical line parenthesis.

i i i . F i n d t h e n u m b e r o f t r a n s p o s i t i o n s . H e r e t r a n s p o s i t i o n r e f e r s t o t h o s e c h a r a c t e r s f r o m

o n e s t r i n g t h a t i s o u t o f o r d e r w i t h r e s p e c t t o t h e i r c o r r e s p o n d i n g c o m m o n c h a r a c t e r s f r o m t h e o t h e r s t r i n g .

The formula for calculating the Jaro-Winkler distance is:

Equation 2.3: Jaro-Winkler Distance

Where m is the number of matching characters.

t is half the number of transpositions.

To better understand the intuition behind this metric, consider the matrix M in (Figure 2.6),
w h i c h c o m p a r e s t h e s t r i n g s S sub 1 equals WILLLAIM a n d S sub 2 equals WILLIAM. T h e e n t r i e s h a v e M parenthesis i, j parenthesis equals

1 i f a n d o n l y i f t h e i superscript th c h a r a c t e r o f S sub 1 equals t h e j superscript th c h a r a c t e r o f S sub 2. T h e J a r o m e t r i c i s b a s e d

on the number of characters in S sub 1 that are in common with S sub 2.

Table 2.9: Jaro-Winkler Distance

I n c o m p a r i n g t h e t w o s t r i n g t h e r e a r e 6 m a t c h i n g c h a r a c t e r s , i . e . , m equals 6. E v e n t h o u g h ' M ' a n d ' I ' a r e n o t i n s e q u e n c e t h e y a r e c o n s i d e r e d a s m a t c h i n g c h a r a c t e r s . T h i s i s b e c a u s e t h e y

a p p e a r i n b o t h s t r i n g s w h i c h s a t i s f i e s t h e f i r s t c o n d i t i o n S sub 1 square bracket i square bracket equals S sub 2 square bracket j square bracket (i.e., S sub 1 square bracket 7 square

bracket equals S sub 2 square bracket 5 square bracket & S sub 1 square bracket 8 square bracket equals S square bracket 7 square bracket parenthesis a n d

28

The number of matching (but different sequence order) characters divided by the numeric
value '2' defines the number of transpositions (t). There are 2 mismatched characters I and M
leading to t equals 2 divided by 2 equals 1.

We calculate a Jaro score of:

T h e m a i n a d v a n t a g e o f u s i n g t h i s m e t h o d i s t h a t i t c a n a d j u s t w e i g h t s w h e n t w o s t r i n g s d o

n o t a g r e e o n a c h a r a c t e r a n d i s a n e f f i c i e n t m e t h o d i n m a t c h i n g p e r s o n n a m e s w h e n t h e r e i s

a p o s s i b i l i t y o f t y p o g r a p h i c a l e r r o r s i n a l a r g e d a t a s e t .

2.1.2 Token-based similarity metrics

As we have seen character based comparison work effectively in catching typographical
errors, but they sometime fall short when comparing a rearranged string that has the same
meaning. For example when comparing "Jane Doe" to "Doe, Jane", characters based
metrics fail and wrongly classify the two strings being different even though they refer to
the same person name. In order to avoid such error token based similarity measures are
used, where comparison of two strings is done first by dividing them into a set of tokens (a
token is a single word). A common practice is to split the string at white space and form the
tokens. Thus in our example the string """Jane Doe" becomes a token array ["Jane", "doe"].

A s w e w i l l s e e f u r t h e r i n t h i s s e c t i o n , o n e o f t h e m a i n a d v a n t a g e s o f u s i n g s u c h a n a p p r o a c h i s t h a t w e a r e l e s s w o r r i e d a b o u t t h e p l a c e m e n t o f t h e w o r d s i n a s t r i n g .

Below are some the popular token based similarity metrics:
Jaccard coefficient
Cosine Similarity
q-GRAMS

29

2.1.2.1 Jaccard coefficient:

Jaccard coefficient or index is used for comparing the similarity and diversity of a given
sample set. The Jaccard coefficient measures similarity between sample sets, and is defined
as the size of the intersection divided by the size of the union of the sample sets [26].

Equation 2.4: Jaccard coefficient similarity

F o r e x a m p l e t a k e t w o s t r i n g s sl equals 'Jane Miss Doe' a n d s2 equals 'Doe Jane ', t h e s e c a n b e s p l i t

i n t o t w o t o k e n a r r a y s si equals square bracket " J a n e " , " M i s s " , " D o e " square bracket a n d s2 equals s q u a r e " D o e ", " J a n e " square bracket.

Figure 2.6: Example of Jaccard Coefficient

F r o m t h e a b o v e F i g 2 . 6 , w e c a n c a l c u l a t e , J underscore similarity parenthesis s1, s2 parenthesis equals 2 divided by 5 , w h e r e 2 i s t h e s i m i l a r

w o r d s i n b o t h t h e s t r i n g s a n d 5 i s t h e t o t a l n u m b e r o f w o r d s i n t w o s t r i n g s .

There are certain disadvantages of using such an approach, for example if comparing two
similar strings a missing value or a token can result in a skewed outcome. The other
drawback is it's very sensitive to typographical errors.

As discussed the main advantage is that the result if not dependent on the location of the
word in a string because all it matters is a token to be present in a string and not the location
of it.

2.1.2.2 Cosine Similarity:

When comparing tokens of two strings represented as n-dimensional vectors, cosine
similarity is the measure of the cosine angle that separates these vectors. The cosine value
falls between 0 and 1, where 0 means that the two strings are perfectly similar and 1 means
they are not. For example if two strings A and B were to be compared the first step would be

30

to tokenize the string (split the string at whitespace to form an array of words) and calculate
the cosine similarity between the resulting two arrays of tokens. Cosine similarity is one of
the most popular similarity measure applied to text documents, such as in numerous
information retrieval applications [27]

Figure 2.7: Representing A and B strings tokenized.

L e t ' s c o n s i d e r a n e x a m p l e o f t w o s t r i n g A a n d B w i t h t o k e n s square bracket A 1 , A 2 square bracket a n d square bracket B 1 a n d B 2 square bracket.

Term Frequency- Inverse Document Frequency (tf hyphen idf) is a statistical measure to measure
importance of a word to a document in a collection [50].
As with Jaccard coefficient, cosine similarity too is not dependent on the placement of the
words in the string

31

2.1.2.3 q-GRAMS:

A q-gram is a substring of a text, where the length of the substring is q. The idea is to break
the string into tokens of the q-grams and compare with another to find similarities and count
the number of matches between the strings. Additional padding is done to account for
characters at the start and end so as to ensure they are not ignored in the comparison. q-gram
algorithms aren't strictly phonetic matching in that they do not operate based on comparison
of the phonetic characteristics of words. Instead, q-grams can be thought to compute the
"distance," or amount of difference between two words. Utilizing the q-gram algorithm [28]
method is highly favorable, as it can match misspelled or mutated words, even if they are
determined to be "phonetically disparate."

Consider an example, when comparing two strings "Elvis" and "Jarvis" and use q equals 2
(length of substring), we get the following substrings, for "Elvis" we get "number sign E" "El" "lv"
"vi" "is" "s number sign" and for "jarvis" we get "number sign J" "ar" "rv" "vi" "is" "s number sign". We would get"""
a match of three in this case (highlighted above). Higher the numbers, similar are the words.
This approach includes the first and last letters in the word by adding padding so that they
too are considered for comparison which is in contrast to some methods that give less
importance to them (e.g. Smith-Waterman distance).

Table 2.10: Example of q-Grams when q equals2

ELVIS JARVIS
number sign E number sign J

E L J A
L V A R
V I R V
I S V I
S number sign I S

S number sign

2.1.3 Phonetic similarity metrics
Strings may be phonetically similar even if they are not similar at character or token level.
For example the word "C o l o r" is phonetically similar to "C o l o u r" despite the fact that the
string representations are very different. The phonetic similarity metrics try to address such
issues.

2.1.3.1 Soundex:
Soundex can be defined as a hashing mechanism for English words. It constitutes in
converting words into a 4 character string that is made up of the first letter in the word and
three numbers that are calculated by the hash function. This code would describe how a

32

word sounds and thus can be used to compare and find similar sounding words. An example
of the same is given below.

Below are steps for deriving the American Soundex code [29]:

1. Retain the first letter of the name and drop all other occurrences of a, e, h, i, o, u, w, y.
2. Replace consonants with digits as follows (after the first letter):

3. Two adjacent letters with the same number are coded as a single number.
4. Continue until you have one letter and three numbers. If you run out of letters, fill in 0s
until there are three numbers.

Using the above steps we can derive Soundex code for e.g. for "Eastman" as "E235",
"Easterman" as "E236 ' and "Westminster" as "W235". By comparing the generated
Soundex codes we can group words that sound similar. As in the above example, "Eastman"
and "Easterman" can be grouped together as the Soundex code can be calculated as being
near to each other when compared to the Soundex code of "Westminster".

Other approaches include New York State Identification and Intelligence System (N Y S I I S)
[30] and Oxford Name Compression Algorithm (O N C A) [31].

2.1.4 Numeric Similarity Metrics

As we have seen there are numerous approaches that have been developed for comparing
strings. When comparing numerical values the methods are primitive. In most cases when it
makes sense to compare numbers, it 's a basic comparison and queries can be developed to
extract numerical data with ease. There has been continuing research in using cosine
similarity and other algorithms in analyzing numerical data [32]. For example data in
numbers can be compared with primitive operators like equal, greater than and can used to
calculate the difference between two numeric strings.

2.2 Detecting Duplicate Records

Until now we have seen various methods that can be used to compare strings or individual
fields and use a metric to understand their similarity or lack of it. When applied to real-

33

world situations where data is multivariate and the number of fields is as dynamic as the
data itself, this makes the field of duplicate detection more complicated. There have been
numerous papers [14] and approaches addressing this issue. Broadly these approaches can
be classified as below.

Probabilistic approaches
Supervised Learning
Active-learning based techniques
Distance based techniques
Rule based techniques
Un-supervised learning

We further explore each of these approaches in detail below.

2.2.1 Probabilistic Matching Models

As the name suggests probabilistic matching [33] uses likelihood ratio (probability) theory
to classify data as duplicates. The idea of using probability for duplicate detection was
proposed by Fellegi and Sunter [6][34].

Below are the steps used by a typical probabilistic algorithm [35].

i. Extract/identify a sample set of data from the complete data.
ii. Using this extracted data manually label records as being duplicate or differing pairs.

iii. Then statistics are calculated from the agreement of fields on matching and differing
records to determine weights on each field.

iv. During the process, the agreement or disagreement weight for each field is added to
get a combined score that represents the probability that the records refer to the same
real-world entity.

v. Often there is one threshold above which a pair is considered a match, and another
threshold below which it is considered not to be a match. Between the two thresholds a
pair is considered to be potentially duplicate. These threshold values are defined
beforehand; usually by a domain expert.

One of the popular models is the Bayesian Decision Model [36] which is based on the Bayes
theorem to calculate suitable probabilities used to decide whether or not two records refer to
the same entity according to user-set thresholds.

34

2.2.2 Supervised Learning

Like humans learning from past experiences, a computer system does not have
"experiences". A computer system learns from data, which represents some "past
experiences" of an application domain.
Below is an example of such training which is used for classification of credit card
applications based on certain criteria.

Table 2.11: Sample training data used for supervised learning

Age_Customer Has_Job Own_House Credit_Score Decision
Old Yes No Excellent Yes

Middle No No Good No
Young Yes No Fair Yes

Using the above training data (table 2.8) the system/application is "taught/trained" how to
respond given a set of criteria. Once training is completed, system uses this data to classify
new records. For example using the above training data, the system can respond to a new
credit card application based on the criteria defined. The training data is normally selected
by a manual process. Users identify criteria that would suit all possible scenarios in that
domain. Supervised learning [37] gets its name due to the use of such pre-determined
training data. Such an approach is also known as classification or inductive learning.

S V Ms (Support Vector Machines) [38] are a useful technique for data classification. We
will examine in detail the technical details of SVM in Chapter 3 as we are using this
technique in this thesis. S V M learns by examples (the first step is training of S V M with
sample values) to classify data and assign labels to (classify) objects. In this thesis we will
be using linear S V M classifier (making a classification decision based on the value of a
linear combination of the input data) that find a hyperplane to separate two classes of data,
positive and negative. This is illustrated in figure 2.8 below.

35

Figure 2.8: S V M example

S V M uses the training data as the basis of classifying new data. It is important to note that
results of classification depend on the initial training data. If the input training data is true
representative of the whole dataset being classified, then S V M is expected to correctly
classify the data. Having such a training data is sometimes a problem with techniques that
don't use active learning [39] (explained in the next section below) as they requires a large
number of training examples. The labeling of training data is done manually, hence the
name supervised learning.

2.2.3 Active-Learning-Based Techniques

When training examples are selected for a learning task at random, they may be suboptimal
in the sense that they do not lead to a maximally attainable improvement in performance. As
we have seen earlier S V M and other supervised learning techniques depend on pre-
determined training data. It may not always be possible to have a training data that is true
representative of the whole dataset. Active learning methods [40] attempt to identify those
examples that lead to maximal accuracy improvements when added to the training set.

During each round of active learning, examples are added to the training set. Only examples
that improve the overall performance are identified and labeled. The system is then re-
trained on the training set including the newly added labeled example. Three broad classes

36

of active learning methods exist: (1) uncertainty sampling techniques [41] attempt to
identify examples for which the learning algorithm is least certain in its prediction; (2)
query-by-committee methods [42] utilize a committee of learners and use disagreement
between committee members as a measure of training example's informativeness; (3)
estimation of error reduction techniques [43] select examples which, when labeled, lead to
greatest reduction in error by minimizing prediction variance.

2.2.4 Distance-Based Techniques

Active learning techniques require some training data or some human effort to create the
matching models. In the absence of such training data or the ability to get human input,
supervised and active learning techniques are not appropriate. One way of avoiding the need
for training data is to define a distance metric for records which does not need tuning
through training data.

Distance-based approaches [44] that combine each record into one big field may ignore
important information that can be used for duplicate detection. A simple approach is to
measure the distance between individual fields, using the appropriate distance metric
(discussed in section 2.1) for each field, and then compute the weighted distance between
the records. In this case, the problem is the computation of the weights and the overall
setting becomes very similar to the probabilistic setting. One of the problems of the
distance-based techniques is the need to define the appropriate value for the matching
threshold. In the presence of training data, it is possible to find the appropriate threshold
value (a numerical value that can determine if a record pair is similar). However, this would
nullify the major advantage of distance-based techniques, which is the ability to operate
without training data.

2.2.5 Rule-based Approaches

The Rule-based approach [45] is the use of rules to define whether two records are similar
or not. It differs from the Probabilistic-based approach in the sense that each attribute is
given either a weight of one or zero whilst each attribute in the Probabilistic-based approach
is assigned a weight.
Below is an example of using rule-based approach to identify duplicate records.

37

The above rule can be implemented programmatically for e.g. the cuisine value differs
slightly, by using a distance based technique. A string-matching algorithm is applied on the
cuisine field of two records to determine the typographical gap. The next step would be to
compare this value with a threshold value to decide if pair of records are duplicate.
Importance should be given to determining this threshold value as it can result in false
positives or false negatives. Having a lenient threshold would result in classifying non-
duplicate pairs as duplicates, while on the other hand a strict threshold would prevent "real"
duplicates pairs as being identified as duplicates. Hence it is very important for rule-based
approaches to select a relevant string distance function and a proper threshold value. The
threshold value is normally obtained through experimental evaluation

The main advantage of rule-based approach is it's highly customized to be domain specific
as the rules are defined at field level (as seen in the above example). This can leverage
domain specific information and correctly identify duplicates that refer to the same real-
world entity. Rule-based approach might be helpful when there is a lot of labeled data to
train. Such an approach may not be scalable and as these rules are domain specific they
can't be reused on other domains.

2.2.5 Unsupervised Learning

As compared to supervised learning unsupervised learning requires no formal training data.
Unsupervised learning[46] is a general title for several types of learning scenarios in which
the input data set contains the data points themselves without any additional
information(training data), e.g., their classification. It is one the tasks of unsupervised
learning system to develop classifications automatically. Unsupervised algorithms seek out
similarity between pieces of data in order to determine whether they can be characterized as
forming a group.
Unsupervised learning may be divided into two types of problems - data clustering and
feature extraction. Data clustering, or exploratory data analysis, aims to unravel the structure
of the provided data set. Feature extraction, on the other hand, often seeks to reduce the
dimensionality of the data so as to provide a more 'compact' representation of the data set.

We explore in detail the concepts of unsupervised learning and how they were used as a part
of this thesis.

38

Chapter 3 Technical details

3.1 Architecture of the system
This Unsupervised Duplicate Detection (U D D) system consists of four modules: data retrieval, pre-
processing and blocking, the main algorithm and data presentation. The same can be seen in fig 3.1
below.

Below is a simple architecture diagram illustrating the system.

Figure 3.1: System architecture

39

3.1.1 Data Retrieval:

The data retrieval module consists of an interface to read the user query along with
the actual data retrieval from the database. To make the application interactive and simulate
a real world application a search box is given where the user can enter a query which can be
for a particular word or run wide open to query all the records in the database for analysis.

The data exists in two tables and has the same structure (field names). Element
identification is the process of mapping the fields of two tables and reading the information.
We are dealing with a simple dataset (explained in section 3.2 below) with fixed field
names. This may not be the case in a real world application where data can be stored in
databases with different names/elements and the process of mapping fields between the data
sources is a very crucial step in ensuring the integrity of the application.

3.1.2 Pre-Processing and Blocking:

The second module in the application consists of pre-processing and blocking. In
this step generally data is cleansed and parsed into one structure. This step also involves
removing special characters from the raw data and converting them to a lower case for
accurate comparison.

As part of pre-processing, data is sorted and exact matching records are deleted. This
is done comparing all the fields (taking each row as one string) and comparing it to others.
This ensures the same data doesn't exist and is a basic check that can be done.

The next major and crucial step in this module is blocking. Blocking "typically
refers to the procedure of subdividing data into a set of mutually exclusive subsets (blocks)
under the assumption that no matches occur across different blocks [47]". Normally in order
to classify records in a table, a unique hash function is generated for each record and
compared with all other records in the table. Records having the same or similar hash value
are categorized into groups. We will look at the details and techniques that are used for
blocking and also look at the efficacy of each of them.

3.1.3 U D D Algorithm

The main component of the system is the module that has the U D D algorithm. In this
we look at developing an algorithm that can train itself and aid in identifying duplicates.
This algorithm consists of a component that calculates the similarity vectors of the selected
dataset, assigning weights to the selected vectors and finally using the support vector

40

machine (S V M) to classify the data. The technical details and further information on each of
these components is discussed at length later in this section.

3.1.4 Data Presentation

The final module consists of presenting the data to the user. The unique data along with
statistics is presented to the user.

3.2 Loading of Data/Data Collection:

The dataset for this thesis is the restaurant dataset that is commonly used for record linkage analysis
and is available at http://www.cs.utexas.edu/users/ml/riddle/data/restaurant.tar.gz. There are 864
restaurant names and addresses with 112 duplicates with 432 in FODORS and 432 in ZAGAT
tables. These individual datasets are unique. The attributes of the dataset are name, address, city,
phone and cuisine. Below is the sample data from the dataset

Table 3.1: Sample data from Restaurant Dataset

Name Address City Phone Cuisine Dataset

bel-air hotel

hotel bel-air

701 stone canyon road

701 stone canyon road

bel air

bel air

310-472-1211

310-472-1211

Californian

Californian

FODORS

ZAGAT

le chardonnay

(los Angeles)

8284 melrose avenue los Angeles 213-655-8880 French

bistro

FODORS

le chardonnay 8284 melrose avenue los Angeles 213-655-8880 French ZAGAT

The data was transformed to excel sheet and uploaded to an Access database. As we are using a

simple application to read the data, no indices were created and the S Q L query was designed to

look for the query string in all the fields. When there was no query string entered, the application

performs a scan of all entries and analysis was done using all the table entries.

http://www.cs.utexas.edu/users/ml/riddle/data/restaurant.tar.gz

41

Figure 3.2: Technical architecture

42

3.3 Blocking

One of the main concerns that we need to address for duplicate record detection is the process of
segregating the total records into potential duplicate and non-duplicate sets. This is a crucial step
that can play an important role in the final outcome of the results. There has been a lot research
[16][7] on addressing the issue but a perfect solution is hard to find and can vary based on the data
being considered.

The focus of this thesis was to develop a working blocking technique that can be used for duplicate
detection in general and as a tool for restaurant dataset in particular. Some research papers [15]
assume that records from the same dataset (for e.g. FODORS / ZAGAT) don't have duplicates
within them. While this is a fair assumption, it will not hold true when we consider data from a non-
relational database. This is very much possible for web databases where the data is retrieved on the
fly (after the query is entered by the user, system fetches the relevant data) and such databases
many not be properly structured or normalized. This thesis focuses on assuming the possibility that
duplicates can exist in any database. As can be seen from the above Figure 3.2 blocking plays an
important role on how the raw data is fed to the main algorithm.

The underlying assumption of this thesis is to use a blocking algorithm to classify records
irrespective of the dataset they originated from. Blocking in simple terms is a technique to group
data. Normally in order to classify records in a table, a unique hash function is generated for each
record and compared with all other records in the table. Records having the same or similar hash
value are categorized into groups. These groups are categorized as potential duplicates and non-
duplicates. Blocking "refers to the procedure of subdividing data into a set of mutually exclusive
subsets (blocks) under the assumption that no matches occur across different blocks [47]". There
are many techniques that are used in this approach such as Soundex [29], N Y S I I S[30] and
Metaphone[48].

As we have seen Soundex function in Chapter 2, let's look at the double Metaphone function in
detail. As with Soundex, Metaphone is a phonetic algorithm which was developed by Lawrence
Philips [48]. Instead of using a fixed length as output (Soundex generates a fixed length output of 4
characters), Metaphone uses variable length keys as output. Words with similar phonetics have
similar or same key. In this thesis we are applying the principles of Soundex and double Metaphone
algorithms for blocking. These algorithms are applied to the Name field of the restaurant dataset.
The blocking algorithm helps us to divide the records in to two groups - potential duplicates and
non-duplicates.

Below is an example that explains the steps that are used to classify the records for search query of
"Los Angeles''.

43

i. Blocking module receives data from both the databases after deleting records that are
exactly same by comparing all the fields in the record.

Table 3.2: Sample data for a query of "Los Angeles" from FODORS and ZAGAT databases

Name Address City Phone Cuisine Source/
Row number

Arnie morton's of
Chicago

435 south la cienega boulevard Los
Angeles

310-246-
1501

steakhouses FODORS
1

Campanile spice
restaurant

624 south la brea a v e n u e los
angeles

213-938-
1447

californian FODORS
2

dynasty room 930 hilgard avenue Los
Angeles

310-208-
8765

continental FODORS
3

pinot hollywood 1448 n. gower street los
angeles

213-461-
8800

californian FODORS
4

le dome 8720 sunset boulevard Los
Angeles

310-659-
6919

french FODORS
5

Arnie morton's of
Chicago

435 south la cienega
boulevard

Los
Angeles

310/246-
1501

American ZAGAT
1

Campanile spices 624 south la brea a v e n u e los
angeles

213/938-
1447

american ZAGAT
2

the mandarin 430 north camden drive los
angeles

310/859-
0926

asian ZAGAT
3

ii. For each record a Soundex or Metaphone key is generated using the Name field.

Table 3.3: Sample data for a query of "Los Angeles" with Soundex value calculated for
Name field

Name Soundex
Code for
Name

Address City Phone Cuisine S o u r c e /

R o w number

Arnie
morton's of
Chicago

A 6 5 5 435 south la cienega
boulevard

Los
Angeles

310-246-
1501

steakhouses FODORS
1

Campanile
spice
restaurant

C 5 1 5 624 south la brea a v e n u e los
angeles

213-938-
1447

californian FODORS
2

dynasty
room

D 5 2 3 930 hilgard avenue Los
Angeles

310-208-
8765

continental FODORS
3

pinot
hollywood

P 5 3 4 1448 north gower street los
angeles

213-461-
8800

californian FODORS
4

le dome L 3 5 0 8720 sunset boulevard Los
Angeles

310-659-
6919

french FODORS
5

Arnie
morton's of
Chicago

A 6 5 5 435 south la cienega
boulevard

Los
Angeles

310/246-
1501

American ZAGAT
1

Campanile
spices
the mandarin

C 5 1 5

T 5 5 3

624 south la brea a v e n u e

430 north camden drive

los
angeles
los
angeles

213/938-
1447
310/859-
0926

american

asian

ZAGAT
2
ZAGAT
3

44

iii. Sort all the records in the dataset using the generated key.

Table 3.4: Sample data for a query of "Los Angeles " sorted on Soundex value

Name Soundex

Code for

Name

Address City Phone Cuisine Source/

Row #

Arnie
morton's of
Chicago

A655 435 s. la
cienega boulevard

Los
Angeles

310-246-
1501

steakhouses FODORS
1

Arnie
morton's of
Chicago

A655 435 s. la
cienega
boulevard

Los
Angeles

310/246-
1501

American ZAGAT
1

Campanile
spice
restaurant

C515 624 s. la brea
avenue

los
angeles

213-938-
1447

californian FODORS
2

Campanile
spices

C515 624 s. la brea
avenue

los
angeles

213/938-
1447

american ZAGAT
2

dynasty room D523 930 hilgard
avenue

Los
Angeles

310-208-
8765

continental FODORS
3

le dome L350 8720 sunset
boulevard

Los
Angeles

310-659-
6919

french FODORS
5

pinot
hollywood

P534 1448 north gower
street

los
angeles

213-461-
8800

californian FODORS
4

the mandarin T553 430 north camden
drive

los
angeles

310/859-
0926

asian ZAGAT
3

iv. If there are more than two records with the same Soundex key, then those records are sent to

potential duplicate set otherwise the record is moved to the non-duplicate set.

Table 3.5: Sample data for a query of "Los Angeles" grouped into potential duplicates

Name Address City Phone Cuisine Source/

Row #

Arnie morton's of
Chicago

435 s. la cienega
boulevard

Los
Angeles

310-246-1501 steakhouses FODORS1

Arnie morton's of
Chicago

435 s. la cienega
boulevard

Los
Angeles

310/246-1501 American ZAGAT 1

Campanile spice
restaurant

624 s. la brea
avenue

los angeles 213-938-1447 californian FODORS 2

Campanile spices 624 s. la brea
avenue

los angeles 213/938-1447 american ZAGAT 2

Table 3.6: Sample data grouped into non-duplicates based on the Soundex value

Name Address City Phone Cuisine Source/

Row #

dynasty room 930 hilgard avenue Los Angeles 310-208-8765 continental FODORS 3
le dome 8720 sunset boulevard Los Angeles 310-659-6919 french FODORS 5
pinot
hollywood

1448 north gower street los angeles 213-461-8800 californian FODORS 4

the mandarin 430 n. camden drive los angeles 310/859-0926 asian ZAGAT 3

45

v. Subsequent processing of calculating similarity vectors is done, which is explained in detail
in the following section

3.4 Similarity Vector Calculation

The next step is the similarity vector calculation which holds comparison of two records. Inputs to
this process are the potential duplicate dataset and non-duplicate dataset (outputs of the blocking
classifier). The output of a similarity vector function is a set of attribute similarity scores for each
pair of records in the dataset. In this step, the U D D algorithm calculates the similarity of record
pairs in both datasets grouped by the blocking classifier. The output of this process serves as input
to Weighted Component Similarity Summing (W C S S) Classifier and S V M classifier which are
examined in detail in the following sections.

S i m i l a r i t y v e c t o r c a l c u l a t i o n i n v o l v e s c o m p a r i n g e a c h f i e l d i n a r e c o r d t o t h e c o r r e s p o n d i n g f i e l d i n

a n o t h e r r e c o r d . W e r e p r e s e n t a p a i r o f r e c o r d s S sub 12 equals curly brace r sub 1 r sub 2 curly brace, w h e r e r sub 1 a n d r sub 2 c a n c o m e f r o m t h e s a m e

o r d i f f e r e n t d a t a s o u r c e s , a s a s i m i l a r i t y v e c t o r V sub 12 equals less than v sub 1, v sub 2, v sub n greater than, i n w h i c h v sub i r e p r e s e n t s t h e ith

f i e l d s i m i l a r i t y b e t w e e n r sub 1 a n d r sub 2 colon 0 less than equals v sub i less than equals 1 . V sub i equals 1 m e a n s t h a t t h e ith f i e l d s o f r sub 1 a n d r sub

2 a r e e q u a l a n d v sub i equals 0 m e a n s t h a t t h e ith f i e l d s o f r sub 1 a n d r sub 2 a r e t o t a l l y d i f f e r e n t .

U D D can employ any similarity function (one or multiple) to calculate the field similarity (some of
these are explained later in this section).The similarity calculation quantifies the similarity between
a pair of record fields. As the query results from the database are stored in string format, this thesis
is limited to only string similarity.

Given a pair of strings (S sub a, S sub b) , a similarity function calculates the similarity score between S sub a and
S sub b, which must be between 0 and 1. In my experiments, a transformation based similarity
calculation [49] method is adapted in which, given two strings S sub a equals curly brace t sub a1, t sub a2, t sub
am curly brace and S sub b equals curly brace t sub b1,
t sub b2, t sub bn curly brace c o n t a i n i n g a s e t o f t o k e n s , a s t r i n g t r a n s f o r m a t i o n f r o m S sub a t o S sub b i s a s e q u e n c e o f o p e r a t i o n s t h a t t r a n s f o r m s t h e

t o k e n s o f S sub a t o t o k e n s o f S sub b. F o r e x a m p l e l e t ' s c o n s i d e r t w o r e c o r d s , o n e f r o m ZAGAT a n d a n o t h e r f r o m FODORS.

Figure 3.3: Example of Similarity vector calculation

46

As can be seen from the above example, for a pair of records each of the fields/attributes are
compared individually (e.g. Restaurant Name with Restaurant Name, City with City etc.). By doing
this we can better establish two record's similarity or lack of it. Using the same above example
(figure 3.3) we know the records refer to the same real world entity and the only differentiating
attribute is the cuisine value. The similarity vector value for this pair of records would be angle bracket 0.5,1,1,
1,0 angle bracket. Note that even though the value for phone attribute is stored differently, this was resolved by
ignoring text differences (we used a text formatting routine to remove special characters).

Now let's examine how field to filed comparison was done. To calculate the similarity scores
between the two field/attribute values first we need to determine the number of transformations that
can be performed between two strings.

3.4.1 Text Transformations

Below are some of the text transformation types that can be used to compare two words
(tokens). Some of these methods are domain-independent and can be applied to all of the
attribute values in every application domain and for every attribute. Here is a brief summary
of transformation types [49].

Equality tests if two tokens contain the same characters in the same order.
Stemming converts a token into its stem or root. Computes if one token is equal to a
continuous subset of the other starting at the first character or last character.
Soundex converts a token into a Soundex code. Tokens that sound similar have the
same code.
Levenshtein distance is minimum number of edits needed to transform one string
into the other.
Metaphone generates a code when compared between two tokens reveals the
similarity
Substring computes if one token is equal to a continuous subset of the other, but
does not include the first or last character.
Acronym computes if all characters of one token are initial letters of all tokens from
the other object, (e.g. C P K, California Pizza Kitchen).
Drop determines if a token does not match any other token

In order to understand the field to field comparison, let's consider the values of Restaurant Name
attribute from Fig 3.3.'Campanile spice restaurant' and 'Campanile spices'.

47

Figure 3.4: Example of a transformation

The process of transformation can be explained by using the above example (fig 3.4).

i. Both the strings are converted to lower case and any special characters are removed.
ii. Split each of the strings into tokens using the white space as delimiter. For e.g. FODORS's

record will have the following token list ("Campanile ", "spice ", "restaurant").
iii. Each of the token from FODORS record is compared with all the tokens in ZAGAT's to

determine if text transformations (as listed above in 3.4.1) exist between tokens.
iv. Once the transformation is determined between the tokens, the transformation count is

increased by 1 and the tokens are deleted.
v. In our example equality transformation exists for the first token of FODORS's record and first

token of ZAGAT's record as they are same. The stemming is performed on the second tokens
of both the records. As token 3("restaurant") in FODORS record doesn't exist in ZAGAT's,
drop function is performed (add 1 to transformation count).

vi. The total number of transformations is calculated. In our example that would be a total of 3
transformations.

3.4.2 Computing Attribute Similarity Scores

Once the number of transformations is obtained, we can apply this count for calculating the
attribute similarity scores. Here we use the cosine measure [27] (as discussed in Chapter 2) which is
commonly used in information retrieval engines with the t f hyphen i d f (Term Frequency- Inverse
Document Frequency is a statistical measure to measure importance of a word to a document in a
collection) [50] weighting scheme to calculate the similarity of each of the attribute value. Because
the attribute values of the object are very short, term frequency weighting is binary. The
document/term frequency is 1 if the term exists in the attribute value and 0 otherwise.

48

The similarity score for a pair of attribute values is computed using this attribute similarity formula:

Equation 3.1: Similarity of two attribute values A, B

Where A and B are two attribute values for which the similarity is calculated

t is the number/count of transformations weight of token i in attribute value a parenthesis w sub ia parenthesis equals parenthesis 0.5 plus 0.5

freq sub ia parenthesis asterisk I D F sub i

weight of token i in attribute value b parenthesis w sub ib parenthesis equals freq sub ib asterisk I D F sub i

frequency of token i in attribute value a equals freq sub ia

frequency of token i in attribute value b equals freq sub ib

I D F (Inverse Document Frequency) of token i in the entire collection equals I D F sub i (i.e., if token i exists in

any of the two attribute values its value is negative 1).

The terms w sub ia and w sub ib respond to the weights computed by the t f hyphen i d f weighting function. This
function outputs set of attribute similarity scores for the pair of records that are being compared (as
in table 3.7). These values are sent to the next function (Classifier 1: Weighted Component
Similarity Summing (W C S S) Classifier- discussed in the next section) to calculate the total object
similarity score as a weighted sum of the attribute similarity scores.

We call a similarity vector (example table 3.7) formed by potential duplicate record pair as potential
duplicate vector and a similarity vector formed by a non-duplicate record pair(example table 3.8) as
non-duplicate vector. Given the non-duplicate vector set N, our goal is to try to identify the set of
actual duplicate vectors D from the potential duplicate vector set P.

Using this approach similarity vectors are generated by comparing the record pairs in the potential
duplicate and non-duplicate dataset.

Below is an example of similarity vectors for the sample records.

Table 3.7: Similarity vector of potential duplicates for records in table 3.5

Name Address City Phone Cuisine Source/ Row # Source/ Row #

1.000 0.8000 1.000 1.000 0.000 FODORS/1 ZAGAT/1

0.5 1.000 1.000 1.000 0.000 FODORS/2 ZAGAT/2

49

Table 3.8: Similarity vector of non-duplicates for records in table 3.6

Name Address City Phone Cuisine Source/ Row # Source/ Row #

0.000 0.000 1.000 0.000 0.000 FODORS/3 FODORS/4

0.000 0.000 1.000 0.000 0.000 FODORS/3 FODORS/5

0.000 0.000 1.000 0.000 0.000 FODORS/3 ZAGAT/3

0.000 0.000 1.000 0.000 0.000 FODORS/4 FODORS/5

0.000 0.145 1.000 0.000 0.000 FODORS/4 ZAGAT/3

0.000 0.000 1.000 0.000 0.000 FODORS/5 ZAGAT/3

3.5 Classifier 1: Weighted Component Similarity Summing (W C S S)

Classifier
Weighted Component Similarity Summing (W C S S) Classifier is the main algorithm of U D D
system in identifying duplicates. Inputs to this classifier are the similarity vectors of record pairs
from potential duplicates and non-duplicate sets. As we want to develop an unsupervised method
there is no training required for this classifier. This classifier tries to find out the duplicates from
non-duplicate and potential duplicate datasets (explained in detail through this section). The output
from this classifier is a duplicate dataset identified from the potential duplicates and non-duplicate
sets. As we have discussed in chapter 1 the weights of the field are also important in trying to
decide whether a record is duplicate or not. Before trying to identify the similarity between the
records, this classifier determines the weights of the fields which are required for calculation
(discussed in section 3.5.1 below).

Once the similarity vectors are found, W C S S and S V M classifiers (explained in section 3.6 below)
iterate until no further duplicates are to be found. During this process weights of the fields change
with each iteration (discussed in section 3.5.1). The figure 3.5 below is a representation of this
process. Here N represents the non-duplicate set and P represents the potential duplicate set. In the
first iteration W C S S classifier (represented by (i) and (iii) in figure 3.5) finds the duplicate pairs in
N and P named as f and d1 respectively. In the next step dataset N hyphen f and d1 plus f equals d are sent to S V M
classifier (represented by (ii) and (iv) in figure 3.5) to train the system which helps to identify the
duplicates from P hyphen d 1. These duplicates are represented as d 2. This process repeats until no further
duplicates are found in P and N.

50

Figure 3.5: Weighted Component Similarity Summing (W C S S) Classifier

3.5.1 Attribute Weight Assignment
In the W C S S classifier, we assign weight to an attribute to indicate its importance. The weights of a
field/attribute are given in such a way that the sum of all fields/attributes weights is equal to 1. In
non-duplicate vector most of the fields will have small similarity score (Table 3.8) for all record
pairs where as in duplicate vector most of the fields will have large similarity score (values will be
similar to Table 3.7) for all record pairs. In general, W C S S classifier employs duplicate and non-
duplicate intuitions for assigning weights. Inputs to this function are the similarity vector of non-
duplicate records and duplicate records.

Duplicate Intuition: For duplicate records the similarity between them should be close to 1. For a
duplicate vector V sub 12 that is formed by a pair of duplicate records r 1and r 2, we need to assign large
weights to the fields with large similarity values and small weights to the fields with small
similarity values. This will ensure that a record pair with most similarity gets classified as
duplicates.

Equation 3.2: Weight calculation for all the fields using duplicate vectors.

51

Where w sub di equals Normalized weight for ith attribute

p sub i equals Accumulated ith attribute similarity value for all duplicate vectors

For each attribute, p sub i value will be large when it has a large similarity value in the duplicate vector,
which will result in a large weight value being assigned to ith field. On the other hand, the field will
be assigned a small weight if it usually has a small similarity value in the duplicate vectors.

Non-Duplicate Intuition: In non-duplicate records the similarity between them should be close to
0. Hence, for a non-duplicate vector V sub 12 that is formed by a pair of non-duplicate records r 1 and r 2,
we need to assign small weights to the fields with large similarity values and large weights to the
fields with small similarity values. This will ensure that a record pair with less similarity gets
classified as non-duplicates.

Equation 3.3: Weight calculation for all the fields using duplicate vectors.

Where w sub di equals Normalized weight for ith attribute

q sub 1 equals Accumulated ith attribute dissimilarity value for all non-duplicate vectors

In non-duplicate vectors the dissimilarity value of ith field is 1 minus v, (where vi is the similarity of ith
field). For each field, if it usually has a large similarity value in the non-duplicate vectors, it will
have a small accumulated dissimilarity (q sub i) and will, in turn, be assigned a small weight. On the
other hand, it will be assigned a large weight if it usually has a small similarity value in the non-
duplicate vectors.

For example let's calculate weight for fields 'Restaurant Name' and 'City ' in non-duplicate vector
set from Table 3.8:

52

As we can see from above example weight of city is 0 because it has high similarity vectors for all
the records pairs and as restaurant name has low similarity vectors its weight is high. In the same
way weights for duplicate records can be calculated (using the Equation 3.2). For the first iteration
as weights of the fields are calculated before any duplicates are found by W C S S classifier, the input
for this (Attribute weight calculation) function would be only non-duplicate vectors.

The final weight of attribute is the combination of two intuitions weighting schemes. As part of
experiments, each scheme was given a weight to show its importance:

w sub i equals a asterisk w sub di plus parenthesis 1 minus a parenthesis w sub n i

Equation 3.4: Weight of all the fields combining duplicate weight and non duplicate weight.

Where a € [0,1] denotes the importance of duplicate vectors versus non-duplicate vectors.
The first time U D D algorithm is run there are no identified duplicates. Hence, a is assigned to be 0.
As more duplicate vectors are discovered, we increase the value of a. We initially set a to be 0.5 at
the 2nd iteration to indicate that duplicates and non-duplicates are equally important and
incrementally add 0.1 for each of the subsequent iterations.

3.5.2 Duplicate Identification
Once we get the weights of each field and the similarity vectors of non-duplicate and potential
duplicate datasets, the duplicate detection can be done by calculating the similarity between the
records. Hence, we define the similarity between records as:

Equation 3.5: W C S S similarity for records r sub 1 and r sub 2.

Where r sub 1, r sub 2 are the two records for which the similarity is being calculated.

w, is the weight of field (i).

vi is the similarity vector of two records r sub 1, r sub 2 of field (i) .

53

T w o r e c o r d s r sub 1 a n d r sub 2 a r e d u p l i c a t e s i f S i m i l a r i t y parenthesis r sub 1, r sub 2 parenthesis greater than equal to T sub sim, i . e . , i f t h e i r s i m i l a r i t y v a l u e i s

e q u a l t o o r g r e a t e r t h a n a s i m i l a r i t y t h r e s h o l d (u s e r d e f i n e d v a l u e t o i n d i c a t e d u p l i c a t e s) . I n g e n e r a l ,

t h e s i m i l a r i t y t h r e s h o l d T sub sim s h o u l d b e c l o s e t o 1 t o e n s u r e t h a t t h e i d e n t i f i e d d u p l i c a t e s a r e c o r r e c t .

I n c r e a s i n g t h e v a l u e o f T sub sim w i l l r e d u c e t h e n u m b e r o f d u p l i c a t e v e c t o r s i d e n t i f i e d b y c l a s s i f i e r o n e

w h i l e , a t t h e s a m e t i m e , t h e i d e n t i f i e d d u p l i c a t e s w i l l b e m o r e p r e c i s e . T h e i n f l u e n c e o f T sub sim o n t h e

p e r f o r m a n c e o f o u r a l g o r i t h m w i l l b e i l l u s t r a t e d i n c h a p t e r 4 .

3.6 Classifier 2: Support Vector Machine (S V M) classifier

As we had seen earlier in chapter 2, S V M [51] classifier is a tool used to classify data. S V M uses a
two-step process, training and classification. In the training step, labeled data is supplied to the
classifier, labeling each record as either positive or negative. S V M internally plots the information
(fig 2.3) by separating the data into groups. During the classification step, when the system is
supplied with data to be classified, it classifies the record as either being positive or negative based
on the training data.

The W C S S classifier outputs three sets of similarity vectors namely potential duplicate vectors,
non-duplicate vectors and identified duplicate vectors. From these vectors, the identified duplicate
vectors D are sent as positive examples and non-duplicate vectors N as negative examples for
training purpose. These two vectors serve as input (training data) to the S V M classifier. We can
train S V M classifier and use this trained classifier to identify new duplicate vectors from the
potential duplicate vector P.

3.6.1 Why choose S V M classifier?

There are many statistical tools [52] that aid in data classification. The main reason for using the
S V M classifier over other classifiers is that S V M classifier is not sensitive to the number of positive
or negative examples that it uses as part of training data. This is the case in our algorithm when
initially there may not be any identified duplicate records. S V M is suitable to U D D algorithm as the
algorithm classifies data in iterative way, any classification due lack of training data might result in
wrong classification. As the algorithm progresses through iterations the number of positive
examples increase.

As part of this thesis, an implementation of S V M by Thorsten Joachims [53] [54] was used. This is
one of the popular implementations of S V M. The S V M superscript light [55] is implemented in C plus plus and is
available as D L L that can be used with any application.

Below is an example of the two step process of how S V M classifier works.

54

3.6.2 Training / Learning:

Training data for S V M classifier is the similarity vectors from duplicates (identified by the W C S S
classifier) and non-duplicates. Duplicates are labeled as positive and non-duplicates as negative.

Table 3.9: Training data for S V M classifier combing entries from table 3.6 and table 3.7

plus 1 1 : 1 . 0 0 0 2:0.8000 3:1.000 4:1.000 5:0.000
plus 1 1 : 0 . 5 2:1.000 3:1.000 4:1.000 5:0.000
negative 1 1 : 0 . 0 0 0 2:0.000 3:1.000 4:0.000 5:0.000
negative 1 1 : 0 . 0 0 0 2:0.000 3:1.000 4:0.000 5:0.000
negative 1 1 : 0 . 0 0 0 2:0.000 3:1.000 4:0.000 5:0.000
negative 1 1 : 0 . 0 0 0 2:0.000 3:1.000 4:0.000 5:0.000
negative 1 1 : 0 . 0 0 0 2:0.145 3:1.000 4:0.000 5:0.000
negative 1 1 : 0 . 0 0 0 2:0.000 3:1.000 4:0.000 5:0.000

3.6.3 Classification:

Once training is complete, similarity vectors from potential duplicate dataset are sent to the S V M
classifiers classify function to determine if they are duplicates. The output from the classify
function is either a positive value (duplicate) or negative value (non-duplicate). Next chapter
contains details about various experiments that were conducted and how S V M classifier was able to
classify data.

55

Chapter 4
4.1 Tool introduction
As we had seen in the previous chapter there are many components that are needed to make the
application work. The technical architecture in figure 3.2 is a representation for the use case in
figure 1.1. In this chapter we will look at the technologies that were used to build the U D D
application as well as look various experiments that were conducted and finally compare the results
to similar applications that used the same dataset.

The U D D application was built using the following technologies.

4.1.1 Microsoft Visual Studio

The core of the system was built using the Microsoft Visual Studio (Version 2008). The code was
developed in C sharp dot Net, because it was a robust programming language and for the ability to use
LINQ footnote 1 (dot NET Language-Integrated Query). The Visual Studio I D E (Integrated Development
Environment) is popular choice among researchers to develop applications primarily for its ability
to access data (using drivers) and also provide all tools to deploy applications. The software and the
license were obtained from M S D N A A Access footnote 2

4.1.2 Microsoft Access Database

The database for this thesis was the Access database. As the dataset that was used (restaurant) was
small (total of 864 entries) and native connectivity with Vistula Studio was the reason for choosing
the access database.

4.1.3 Microsoft Jet 4.0 OLE DB Provider

Visual Studio has built in database connectivity tool known as the Microsoft Jet 4.0 O L E D B
provider for connecting to Access database.

4.1.4 Other components

Other components that were used for this thesis include the following.

S V M superscript Light 3 is a windows implementation of S V M algorithm developed by Thorsten Joachims
[56]. There are others variants [57] of S V M implementations, but S V M Light was chosen as it
provides easy integration to Visual Studio.

footnote 1 h t t p colon forward slash forward slash m s d n dot m i c r o s o f t dot c o m forward slash e n hyphen u s forward slash l i b r a r y forward slash b b 3 0 8 9 5 9 dot a s p x

footnote 2 h t t p colon forward slash forward slash m s d n 0 7 dot e hyphen a c a d e m y dot c o m forwsard slash c s u c i underscore c s

footnote 3 h t t p colon forward slash forward slash m i h a g r c a r dot o r g forward slash s v m l igh t lib forward slash

http://msdn.microsoft.com/en-us/library/bb308959.aspx
http://msdn07.e-academy.com/csuci
http://mihagrcar.org/svmlightlib/

56

A variation of Metaphone which was proposed by Lawrence Philips [48] and implemented by
Adam Nelson [63] was used for calculating the Metaphone value in this thesis.

4.2 Introduction to system
The U D D application developed for this thesis was designed with the objective of providing simple
interface and has flexibility to make changes to variables that have an impact on the results.
Below is the screen shot of the user interface:

Figure 4.1: Application User Interface with output details for search query 'los angeles'

The user interface has several tabs which are explained in detail below.
The configuration tab (figure 4.1), as the name implies is the place where one can select/set the
parameters for the application. The following options can be selected from the configuration tab.

Select the algorithm to use - The user has the option to select the standard U D D algorithm
or the enhanced U D D algorithm with blocking
When blocking is selected, we can specify either to use Soundex or Metaphone as the
blocking mechanism/technique.

57

For both the algorithms one can choose to use the string similarity metrics that were
discussed in section 3.4. By default all the metrics are selected.
Finally, we can set the threshold value that is used by the both the algorithm in the
application. We will see later in this chapter, the impact of changing threshold value on the
final results.

The application has a textbox that outputs the summary of the results with the option to clear the
logs and the information on the other tabs.

We will briefly look at what information is displayed on the other tabs.

All Results contains all the records that were fetched from both the FODORS and ZAGAT tables.

FODORS tab has all the records fetched for the query from FODORS table

ZAGAT tab has all the records fetched for the query from ZAGAT table

The two tabs that are of importance to us are the Non-Duplicates and Duplicate Records.

Figure 4.2: Non-duplicate(Unique) records for search query 'los angeles'.

The Non-Duplicates tab (figure 4.2) contains the unique records for the search query.

58

Figure 4.3: Duplicate Records tab showing the similarity vector values of duplicate records.

The Duplicate Records tab contains the similarity vectors of duplicate records that were identified
by the U D D algorithm. As can be seen it has the similarity vector values of two records from the
two tables. Source columns related to the source table and row number column refers to the record
number of the dataset that was fetched from the source table.

4.3 Evaluation Metric
Most of the duplicate detection approaches use precision, recall and f-measure [58] to measure the
performance of the algorithm, which are defined as follows:

1. Recall, which is the fraction of duplicates correctly classified over the total number
of d u p l i c a t e s in t h e da tase t . T h e f o r m u l a is: Recall equals correctly identified duplicate pairs

over true duplicate pairs

2. Precision, which is the fraction of correct duplicates over the total number of record
pairs classified as duplicates by the system. The formula is: Precision equals correctly identified

duplicate pairs over Number of duplicate pairs found

59

3. F-measure or F-Score, which is the harmonic mean of the precision and recall values
a n d is g i v e n b y : f — measure equals parenthesis 2 asterisk Precision asterisk Recall

parenthesis over parenthesis Precision plus Recall
parenthesis

4.4 Experiments
To analyze the effectiveness of the U D D algorithm in identifying duplicates various experiments
were conducted using the restaurant dataset. From the original dataset [59] we know that there are
112 identified duplicates pairs. The application that was developed for this thesis includes various
configuration options (as described in section 4.2) that need to be tested and results validated.

Experiments were divided into two categories, one involved querying using random words
(experiments 1-6) and other is the analysis of the complete restaurant dataset (experiment 7).

4.4.1 Random query experiments

Experiment 1: Let's consider a search query equals "new york" using the standard U D D algorithm and
U D D algorithm with blocking techniques (Soundex and Metaphone). By default we also chose all
the string comparison functions (Stemming, Soundex etc) and let the threshold value be at 0.85.

Figure 4.4: Experiment 1 for search query 'new york' output details of all algorithms

60

As can be seen from the above figure 4.4, we can derive the following evaluation metrics.

Table 4.1: Precision, Recall and f-measure for search query 'new york'

Number of
duplicate
pairs found

Correctly
identified
duplicate pairs

True
duplicate
pairs

Precision Recall f-measure

U D D
algorithm 44 40 43 0.909 0.930 0.919

U D D with
Soundex

41 40 43 0.975 0.930 0.952

U D D with
Metaphone

43 40 43 0.930 0.930 0.930

As we can see from the above table or the below graph precision, recall and f-measure are better in
blocking algorithm using Soundex than the standard U D D algorithm. It is also observed that
blocking with Metaphone works better than the standard U D D algorithm.

Figure 4.5: Graph showing the evaluation metric details for all three algorithms

Experiment 2: Now let's consider search query equals "america" using the standard U D D algorithm
and U D D algorithm with blocking techniques (Soundex and Metaphone). By default we also chose
all the string comparison functions (Stemming, Soundex etc) and let the threshold value remain at
0.85.

61

Figure 4.6: Experiment 2 for search query 'america' output details of all algorithms

As can be seen from the above figure 4.5, we can derive the following evaluation metrics.

Table 4.2: Precision, Recall and f-measure for search query 'america'

Number of
duplicate
pairs found

Correctly
identified
duplicate pairs

True
duplicate
pairs

Precision Recall f-measure

U D D algorithm 19 17 17 0.894 1.000 0.944

U D D with
Soundex 17 17 17 1.000 1.000 1.000

U D D with
Metaphone

18 17 17 0.944 1.000 1.000

For this experiment, all the metrics -precision, recall and f-measure are better in the U D D with
blocking algorithm as compared to the standard U D D algorithm.

62

Figure 4.7: Graph showing the evaluation metric details for all three algorithms

Experiment 3: Now let's consider search query equals "los angeles" using the standard U D D algorithm
and U D D algorithm with blocking techniques (Soundex and Metaphone). By default we also chose
all the string comparison functions (Stemming, Soundex etc) and let the threshold value remain at
0.85.

Figure 4.8: Experiment 3 for search query 'los angeles' output details of all algorithms

63

As can be seen from the above figure 4.8, we can derive the following evaluation metrics.

Table 4.3: Precision, Recall and f-measure for search query 'los angeles'

Number of
Duplicate
pairs

Correctly
identified
duplicate pairs

True
duplicate
pairs

Precision Recall f-measure

U D D
algorithm 9 9 9 1.000 1.000 1.000

U D D with
Soundex

9 9 9 1.000 1.000 1.000

U D D with
Metaphone

9 9 9 1.000 1.000 1.000

For this experiment, both the algorithms, U D D and U D D with blocking have the same metrics -

precision, recall and f-measure.

Figure 4.9: Graph showing the evaluation metric details for all three algorithms

Experiment 4: Let 's consider another search query equals "cafe " using the standard U D D algorithm
and U D D algorithm with blocking techniques (Soundex and Metaphone). By default we also chose
all the string comparison functions (Stemming, Soundex etc) and let the threshold value be at 0.85

64

Figure 4.10: Experiment 4 for search query 'cafe' output details of all algorithms

As can be seen from the above figure 4.10, we can derive the following evaluation metrics.

Table 4.4: Precision, Recall and f-measure for search query 'cafe'

Number of
duplicate
pairs found

Correctly
identified
duplicate pairs

True
duplicate
pairs

Precision Recall f-measure

U D D algorithm 26 10 10 0.384 1.000 0.555

U D D with
Soundex

18 10 10 0.555 1.000 0.714

U D D with
Metaphone

18 10 10 0.555 1.000 0.714

As we can see from the above table or the below graph the precision, recall and f-measure are better
in blocking algorithm using Soundex or Metaphone than the standard U D D algorithm.

65

Figure 4.11: Graph showing the evaluation metric details for all three algorithms

Experiment 5: Let 's consider another search query equals "sanfrancisco" using the standard U D D
algorithm and U D D algorithm with blocking techniques (Soundex and Metaphone). By default we
also chose all the string comparison functions (Stemming, Soundex etc) and let the threshold value
be at 0.85.

Figure 4.12: Experiment 5 for search query 'san francisco' output details of all algorithms

66

As can be seen from the above figure 4.12, we can derive the following evaluation metrics.

Table 4.5: Precision, Recall and f-measure for search query 'san francisco'

Number of
duplicate pairs
found

Correctly
identified
duplicate pairs

True
duplicate
pairs

Precision Recall f-measure

U D D
algorithm 19 18 18 0.947 1.000 0.972

U D D with
Soundex 18 17 18 0.944 0.944 0.944

U D D with
Metaphone 18 17 18 0.944 0.944 0.944

As we can see from the above table or below graph the precision, recall and f-measure are better in
the standard U D D algorithm when compared to U D D with blocking algorithm.

Figure 4.13: Graph showing the evaluation metric details for all three algorithms

Experiment 6: Finally let's consider a search query equals "french" using the standard U D D algorithm
and U D D algorithm with blocking techniques (Soundex and Metaphone). By default we also chose
all the string comparison functions (Stemming, Soundex etc) and let the threshold value be at 0.85.

67

Figure 4.14: Experiment 6 for search query 'french' output details of all algorithms

As can be seen from the above figure 4.4, we can derive the following evaluation metrics.

Table 4.6: Precision, Recall and f-measure for search query 'french'

Number of
duplicate pairs
found

Correctly
identified
duplicate pairs

True
duplicate
pairs

Precision Recall f-measure

U D D
algorithm 18 18 19 1.000 0.947 0.972

U D D with
Soundex

18 18 19 1.000 0.947 0.972

U D D with
Metaphone

18 18 19 1.000 0.947 0.972

As we can see from the above table or below graph the precision, recall and f-measure are the same
for the both the U D D algorithms.

68

Figure 4.15: Graph showing the evaluation metric details for all three algorithms

Analysis from the above experiments with random queries:

As we can see from the below graph (figure 4.16) among the 6 experiments, 3 of the experiments
blocking algorithm worked better than the standard U D D algorithm, where as in 2 experiments both
of algorithms have the same values and in only 1 experiment standard U D D algorithm works better
than blocking technique. Another observation is that in majority of the cases we were getting the
same results when using blocking with Soundex or Metaphone, hence only one set of data is
presented.

By further looking at the above experiments, we can see that recall remains the same for both the
algorithms (U D D algorithm and U D D with blocking), it 's the precision which is much better in
U D D with blocking technique. This leads us to conclude that during the duplicate detection process
U D D with blocking avoided adding false positive duplicate records when compared to the standard
U D D algorithm. It was also observed that the threshold value also did not make any difference in
final results, so it was kept constant for all the experiments.

69

Figure 4.16: Graph showing the f-measure comparison for all the experiments with random queries

4.4.2 Complete Dataset

As a true test of the effectiveness of the application, experiments were conducted for the complete
dataset. When there is no value entered in the query box, the application assumes it as query of all
the records in the database.

Below figure 4.17 is the screenshot of the application with logs after it was run for the complete
dataset.

70

Figure 4.17: Experiment showing details for the complete dataset

The evaluation metrics below are calculated for the complete dataset.

Table 4.7: Precision, Recall and f-measure for the complete restaurant dataset

Number of
duplicate pairs
found

Correctly
identified
duplicate pairs

True
duplicate
pairs

Precision Recall f-measure

U D D
algorithm 139 98 112 0.705 0.875 0.780

U D D with
Soundex 122 101 112 0.827 0.901 0.862

U D D with
Metaphone

122 101 112 0.827 0.901 0.862

71

Figure 4.18: Evaluation metrics for the complete restaurant dataset

This experiment was run for the complete dataset using U D D and also employing blocking with
Soundex and Metaphone. There were 112 identified duplicates [65] from the restaurant dataset.

The standard U D D algorithm found a total 139 duplicate pairs with 41 false positives (wrongly
classified by the classifier as duplicates). After accounting for this we have an accuracy of 87.5%
and f-measure of 0.780.

U D D with blocking classifier produced similar results when using Soundex and Metaphone
techniques. When compared to the standard U D D algorithm, the blocking algorithm identified 122
duplicate pairs with 21 false positives. The accuracy rate is 90.2% which is better than the standard
U D D algorithm. The main difference is the reduction of false positives. Blocking algorithm
classified 21 false positives when compared to 41 by the standard U D D. This is a big improvement
and helps in reducing wrong classification of records as duplicates.

4.5 Comparisons with Other Works

In this section, we make a comparison between the results we obtained in this thesis with other
works that used the same dataset.

72

The dataset in this thesis, the Restaurant dataset, was also used by Ravi Kumar and Cohen [60].
Their approach is also based on unsupervised method, similar to this thesis. Their proposed
approach is based on a hierarchical graphical model to learn to match record pairs. However, their
results were not as favorable, where their best result is only at 82% for precision and 84.4% for F-
score. Our precision for the U D D algorithm with blocking approach is 82.7% whilst F-score is
86.2%.

Another work that used the Restaurant dataset is the work by Tejada et.al. [61]. They developed a
system called Active Atlas [64], which was based on supervised learning. The training data for the
application was obtained via decision tree learning based on the computed weights and user input.
The results obtained from this approach are 109 true positives and 2 false positives out of 112
duplicates. Meanwhile, our results using the U D D algorithm with blocking approach are 98 true
positives and 24 false positives out of 112 duplicates. Our result is slightly worse but at the
advantages of not requiring training data and user input.

Cohen and Richman [62] also used the Restaurant and Cora datasets in their research. Theirs is a
supervised approach where the system learns from training data how to cluster records that refer to
the same real-world entity in an adaptive way. The results they obtained for the Restaurant dataset
is the best insofar, at 100% for both precision and recall.

73

Chapter 5- Conclusion and future work
5.1 Conclusion

This thesis concentrated on the development of an Unsupervised Duplicate Detection algorithm that
can serve as foundation for developing applications that use Web databases. As we had seen from
the results, using an additional classifier (like blocking) can result in higher accuracy.

With exponential growth of data, duplicate detection is an important problem that needs more
attention, using an U D D algorithm that learns to identify duplicate records has some advantages
over offline/supervised learning methods. Although the focus of the U D D application in the thesis
was limited to restaurant dataset, the same principles can be used broadly to other domains.

When compared to traditional databases, Web-based retrieval system in which records to match are
greatly query-dependent, a pre-trained approach is not appropriate as the set of records in response
to a query is a biased subset of the full data set. U D D algorithm which is an unsupervised, online
approach for detecting duplicates is a suitable solution, when query results are fetched from
multiple Web databases. The core of U D D algorithm relies on using W C S S and S V M classifiers to
assign weights and classify data. This thesis is a step forward in enhancing the U D D algorithm by
adding an additional classifier.

Experimental results demonstrate that using blocking classifier; we were able to limit the number of
record comparisons that take place thereby improving accuracy. This was done by effectively
grouping source data using similarity metrics like Soundex and Metaphone. One observation was
that using Soundex or Metaphone produced almost similar results, which leads us to conclude that
any hash function can be used in a blocking algorithm.

A comparison of experimental results with the standard U D D algorithm showed that by using
blocking classifier, we were able limit the number of false positives. Although the experiments
were limited, this holds a promise that U D D combined with blocking is comparable to other
approaches for duplicate detection.

Finally to summarize, we can conclude the following after reviewing the experiments:
1. Unsupervised duplicate detection algorithm is comparable to other supervised

algorithms in identifying duplicates (section 4.5). The advantage of U D D is there is no
training required.

2. Using blocking classifier in U D D improves overall accuracy rate.

74

5.2 Future Work

This thesis was an effort in developing a solution for the problem of duplicate detection. As we
have seen there are numerous approaches and algorithms that aim to address this issue. Although
there may not be a perfect solution that would address the problem of duplicate detection, there is
scope to develop new algorithms that are generic to meet various requirements. This thesis built
upon the idea of U D D and proposed a general framework for using blocking classifier in duplicate
detection. There are several directions in which this approach can be extended.

As we had observed, similarity metrics forms the basis for determining the similarity of two
strings/objects. There is a need to develop new algorithms that can present accurate results while
taking into account various forms of data.

Most of the current duplicate detection systems focus on two aspects, one using machine learning
based algorithms to speed up the process of identifying duplicates and second, developing
knowledge based approach for matching pairs of records. An interesting direction for future
research is to develop techniques that combine these two approaches.

These days there are many applications that extract and present information from the Web. This
information is either unstructured or imprecise. Duplicate record detection techniques are crucial for
improving the quality of the extracted data. This calls for development of robust and scalable
solutions. More research is needed in the area of data cleaning and information quality in general
and in the area of duplicate record detection in particular.

75

References:

1 Fayyad, Usama; Gregory Piatetsky-Shapiro, and Padhraic Smyth (1996) "From Data
Mining to Knowledge Discovery in Databases".

2 SB Kotsiantis ,"Supervised learning: A review of classification techniques'' Informatica, vol.
31, pp. 249-268, 2007.

3 Peter Dayan " Unsupervised Learning"
http://www.gatsby.ucl.ac.uk/~dayan/papers/dun99b.pdf

4 R. Baxter, P. Christen, and T. Churches, "A Comparison of Fast Blocking Methods for
Record Linkage, " Proc. KDD Workshop Data Cleaning, Record Linkage, and Object
Consolidation, pp. 25-27, 2003.

5 W. E. Winkler. The state of record linkage and current research problems. Technical
Report RR99/04, US Census Bureau, 1999.

6 I.P Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American Statistical
Association, 40, 1969.

7 M. A. Hernandez ' and S. J. Stolfo. Real-world data is dirty: Data cleansing and the
merge/purge problem. Data Mining and Knowledge Discovery, 2(1):9-37, 1998

8 V.S. Verykios, G.V. Moustakides, and M.G. Elfeky, "A Bayesian Decision Model for Cost
Optimal Record Matching, " The VLDB J., vol. 12, no. 1, pp. 28-40, 2003.

9 A. McCallum, K. Nigam, and L. H. Ungar. "Efficient clustering of high-dimensional data
sets with application to reference matching". In KDD, pages 169-178, 2000.

10 R. Ananthakrishna, S. Chaudhuri, and V. Ganti. "Eliminating fuzzy duplicates in data
warehouses". In VLDB, pages 586- 597, 2002.

11 S. Chaudhuri, V. Ganti, and R. Motwani, "Robust Identification of Fuzzy Duplicates" Proc.
21st IEEE Int'l Conf. Data Eng., pp. 865876,2005.

12 M. Bilenko and R.J. Mooney, "Adaptive Duplicate Detection Using Learnable String
Similarity Measures" Proc. ACM SIGKDD, pp. 39-48, 2003

13 A. Culotta and A. McCallum, "A Conditional Model of Deduplication for Multi-Type
Relational Data" Technical Report IR-443, Dept. of Computer Science, Univ. of
Massachusetts Amherst, 2005

14 A.K. Elmagarmid, P.G. Ipeirotis, and V.S. Verykios, "Duplicate Record Detection: A
Survey" IEEE Trans. Knowledge and Data Eng., vol. 19, no. 1, pp. 1-16, Jan. 2007.

15 Weifeng Su, Jiying Wang, and Federick H.Lochovsky, " Record Matching over Query
Results from Multiple Web Databases'' IEEE transactions on Knowledge and Data
Engineering, vol. 22, N0.4,2010.

16 Partrick Lehti(2006), "UnsupervisedDuplicate Detection Using Sample Non-duplicates",
Lecture Notes in Computer Science, NUMB 4244, pages 136-164.

17 http://msdn.microsoft.com/en-us/library/bb190163.aspx#mdm04_topic4

http://www.gatsby.ucl.ac.uk/~dayan/papers/dun99b.pdf
http://msdn.microsoft.com/en-us/library/bb190163.aspx%23mdm04_topic4

76

18 http://www.cs.utexas.edu/~ml/papers/marlin-kdd-03.pdf
19 Bellman R. E. (1957) "Dynamic Programming". Princeton University Press, Princeton, NJ
20 "Levsiten Distance: Ristad, E.S.; Yianilos, P.N.; , "Learning string-edit distance" Pattern

Analysis and Machine Intelligence, IEEE Transactions on , vol.20, no.5, pp.522-532, May
1998
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=682181&isnumber=14993

21 Zhan Su; Byung-RyulAhn; Ki-YolEom; Min-Koo Kang; Jin-Pyung Kim; Moon-Kyun Kim;
, "Plagiarism Detection Using the Levenshtein Distance and Smith-Waterman
algorithm, " Innovative Computing Information and Control, 2008. ICICIC '08. 3rd
International Conference on , vol., no., pp.569, 18-20 June 008doi:0.1109/ICICIC.2008.422

22 T.F. Smith and M.S. Waterman, "Identification of common molecular sub-sequences",
Journal of Molecular Biology, 147:195-197, 1981.

23 Waterman, Michael S.; Temple F. Smith and William A. Beyer (1976). "Some biological
sequence metrics". Advances in Mathematics 20 (4): 367—387

24 http://www.avatar.se/molbioinfo2001/seqali-dyn.html
25 Jaro, Matthew A. (1976), UNIMATCH: A Record Linkage System: User's Manual, U.S.

Bureau of the Census, Washington, D.C.
26 http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap2_data.pdf
27 R. B. Yates and B. R. Neto. "Modern Information Retrieval". ADDISON-WESLEY, New

York, 1999.
28 Ukkonen E. "Approximate string-matching with q-grams and maximal matches (1992) "

Theoretical Computer Science, 92 (1), pp. 191-211.
29 http://www.archives.gov/research/census/soundex.html
30 Taft, Robert L. (1970), "Name Search Techniques", Special Report No. 1 (New York State

Identification and Intelligence System, Albany, NY)
31 Gill, L.E. (1997) OX-LINK: The Oxford Medical Record Linkage System. Record Linkage

Techniques - Proceedings of an International Workshop and Exposition, March 21-21, 1997,
Arlington, VA, USA, 15-33.

32 Jie Song, Yubin Bao, and Ge Yu. 2010. A multilevel and domain-independent duplicate
detection model for scientific database. In Proceedings of the 11th international conference
on Web-age information management (WAIM'10), Lei Chen, Changjie Tang, Jun Yang, and
Yunjun Gao (Eds.). Springer-Verlag, Berlin, Heidelberg, 729-741.

33 Fellegi, Ivan Peter; Alan B. Sunter (dec 1969). "A theory for record linkage". Journal of the
American Statistical Association 64 (328): 1183--1210.

34 W.E. Winkler, "Using the EM Algorithm for Weight Computation in the Fellegi-Sunter
Model of Record Linkage, " Proc. Section Survey Research Methods, pp. 667-671, 1988

35 Stefania Cardinaleschi, Fabiana Rocci,Vincenzo Spinelli. Integration of Administrative
Registers and Statistical Archives. The Case of the Eurostat Structure of Earning Survey in
Italy.

36 http://www.autonlab. org/tutorial s/bayesstruct. html

http://www.cs.utexas.edu/~ml/papers/marlin-kdd-03.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=682181&isnumber=14993
http://www.avatar.se/molbioinfo2001/seqali-dyn.html
http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap2_data.pdf
http://www.archives.gov/research/census/soundex.html
http://www.autonlab

77

37 Elmagarmid, A., Ipeirotis, P., Verykios, V. (2007). Duplicate Record Detection: A survey.
IEEE Transactions on Knowledge and Data Engineering 19(1): 1-1

38 http://www.autonlab.org/tutorials/svm.html
39 Support Vector Machine Concept-Dependent Active Learning For Image Retrieval. Edward

Chang, Simon Tong, KingsbyGoh, Chang-Wei Chang IEEE Transactions on Multimedia
2005

40 S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning. In KDD,
pages 269-278, 2002.

41 P. Juszczak and R. P. W. Duin. Uncertainty sampling methods for one-class classifiers. In
Proceedings of the ICML'03 Workshop on Learning from Imbalanced Data Sets, 2003.

42 R. Gilad-Bachrach, A. Navot, and N. Tishby. Query by committee made real. In Advances
in Neural Information Processing Systems (NIPS), volume 18, pages 443-450. MIT Press,
2006.

43 N. Roy and A. McCallum. Toward optimal active learning through sampling estimationof
error reduction. In Proceedings of the International Conference on Machine Learning
(ICML), pages 441-448. Morgan Kaufmann, 2001

44 M. Bilenko and R.J. Mooney, "Adaptive Duplicate Detection Using Learnable String
Similarity Measures, " Proc. ACM SIGKDD, pp. 39-48, 2003

45 Y. R. Wang and S. E. Madnick. The inter-database instance identification problem in
integrating autonomous systems. In Proc. fifth IEEE Int'l Conf. data Eng. (ICDE '89), 1989.

46 Becker, S &Plumbley, M (1996). Unsupervised neural network learning procedures for
feature extraction and classification. International Journal of Applied Intelligence, 6, 185-
203.

47 U. Draisbach, F. Naumann, A comparison and generalization of blocking and windowing
algorithms for duplicate detection, in: Proceedings of QDB 2009 Workshop at VLDB, 2009.

48 Lawrence Philips, The Double Metaphone Search Algorithm, C/C++ Users Journal, June
2000.

49 http://www.isi.edu/integration/papers/tejada02-kdd.pdf
50 Robertson S (2004). Understanding inverse document frequency: On theoretical arguments

for IDF. Journal of Documentation, 60(5), 503-52
51 http://research.microsoft.com/pubs/67119/svmtutorial.pdf
52 http://www.autonlab. org/tutorial s/
53 http://nlp.stanford.edu/IR-book/html/htmledition/choosing-what-kind-of-classifier-to-use-

1 .html
54 http://www.cs.cornell.edu/People/tj/
55 http://svmlight.joachims.org/
56 http://svmlight.joachims.org/
57 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.autonlab.org/tutorials/svm.html
http://www.isi.edu/integration/papers/tejada02-kdd.pdf
http://research.microsoft.com/pubs/67119/svmtutorial.pdf
http://www.autonlab
http://nlp.stanford.edu/IR-book/html/htmledition/choosing-what-kind-of-classifier-to-use-
http://www.cs.cornell.edu/People/tj/
http://svmlight.joachims.org/
http://svmlight.joachims.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

78

58 http://www.cs.utexas.edu/~ml/papers/marlin-kdd-wkshp-03.pdf
Mikhail Bilenko and Raymond J. Mooney. In Proceedings of the KDD-03 Workshop on
Data Cleaning, Record Linkage, and Object Consolidation, 7-12, Washington, DC, August
2003.

59 http://www.cs.utexas.edu/users/ml/riddle/data/restaurant.tar.gz.
60 P. Ravikumar and W. W. Cohen. A hierarchical graphical model for record linkage. In 20th

Conf. Uncertainty in Artificial Intelligence (UAI '04), 2004.
6 1 h t t p : / / w w w . i s i . e d u / i n f o - a g e n t s / p a p e r s / t e j a d a 0 2 - t h e s i s . p d f

62 W.W. Cohen and J. Richman. Learning to match and cluster large high-dimensional data
sets for data integration. In Proc. Eighth ACMSIGKDD Int 'l Conf. Knowledge Discovery
and Data Mining (KDD '02), 2002.

63 Implement Phonetic ("Sounds-like") Name Searches with Double Metaphone Part V:
.NET Implementation, CodeProject. http://www. codeproject. com/KB/recipes/dmetaphone5.aspx

6 4 h t t p : / / w w w . i s i . e d u / i n t e g r a t i o n / A p o l l o /

6 5 h t t p : / / w w w . c s . u t e x a s . e d u / u s e r s / m l / r i d d l e / d a t a . h t m l

66 Manku GS, et al. Proceedings of the 16th international conference on World Wide Web.
ACM, New York, NY, USA; 2007. Detecting near-duplicates for web crawling; p. 141-150.

67 Broder, Andrei Z.; Steven C. Glassman and Mark S. Manasse and Geoffrey Zweig (1997).
"Syntactic Clustering of the Web". Proceedings of the Sixth International World Wide Web
Conference (WWW6). pp. 1157--1166.

68 Bilenko, M., and Mooney, R. 2002. Learning to combine trained distance metrics for
duplicate detection in databases. Technical Report Technical Report AI 02-296, Artificial
Intelligence Lab, University of Texas at Austin. Available from
http://www.cs.utexas.edu/users/ml/papers/marlin-tr-02.pdf.

69 R. Manivannan and S.K. Srivatsa, 2011. Semi Automatic Method for String Matching.
Information Technology Journal, 10: 195-200.

http://www.cs.utexas.edu/~ml/papers/marlin-kdd-wkshp-03.pdf
http://www.cs.utexas.edu/users/ml/riddle/data/restaurant.tar.gz
http://www.isi.edu/info-agents/papers/tejada02-thesis.pdf
http://www
http://www.isi.edu/integration/Apollo/
http://www.cs.utexas.edu/users/ml/riddle/data.html
http://www.cs.utexas.edu/users/ml/papers/marlin-tr-02.pdf

