Data warehouse with XML Technology

A Thesis Presented to
The Faculty of the Computer Science Program

California State University Channel Islands

In (Partial) Fulfillment
of the Requirements for the Degree

Masters of Science in Computer Science

By
Supriya Dwivedi
December 2012

® 2012
Supriya Dwivedi

ALL RIGHTS RESERVED

APPROVED FOR THE COMPUTER SCIENCE PROGRAM

i

Advisor: Dr Andrzej Bieszczad Date

Tops D Sk Y iy

Dr Peter Smith Date

Dr Richard Wasniowski Date

APPROVED FOR THE UNIVERSITY

ol

A, L il ./.' <_\ =

S
Dr Gary A. Berg Date

Non-Exclusive Distribution License

In order for California State University Channel Islands (CSUCI) to reproduce, translate and
distribute your submission worldwide through the CSUCI Institutional Repository, your agreement to
the following terms Is necessary. The author(s) retain any copyright currently on the item as well as
the abllity to submit the item to publishers or other repositories.

By signing and submitting this license, you (the author(s) or copyright owner) grants to CSUCI the
nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission
(including the abstract) worldwide in print and electronic format and in any medium, including but not
limited to audio or video.

You agree that CSUCI may, without changing the content, translate the submission to any medium
or format for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of this submission for purposes of
security, backup and preservation,

You represent that the submission Is your original work, and that you have the right to grant the
rights contained In this license. You also represent that your submission does not, to the best of
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the
submission contains no libelous or other unlawful matter and makes no improper invasion of the
privacy of any other person.

If the submission contains material for which you do not hold copyright, you represent that you have
obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by
this license, and that such third party owned material is clearly identified and acknowledged within
the text or content of the submission. You take full responsibility to obtain permission to use any
material that is not your own. This permission must be granted to you before you sign this form.

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH
CONTRACT OR AGREEMENT.

The CSUCI Institutional Repository will clearly identify your name(s) as the author(s) or owner(s) of

the submission, and will not make any alteration, other than as allowed by this license, to your
submission.

Data wasChouk |4 XML Techmolo

aQy
Title of ltem SN

Data warehouse , XML ., Rusiness 37116’11{3@71@_

3 to 5 keywords or phrases to describe the item

SLOPRIVA DwIVED]L
Author(s| Name (Print)

QBu sy o] o7 |2012
Author(s)'Slghétu@ | I

Date

This s a permitted, modified version of the Non-exclusive Distribution
License from MIT Libraries and the University of Kansas.

Master Thesis by Supriva Dwivedi

Data warehouse with XML Technology

By

Supriya Dwivedi

Computer Science Program

California State University Channel Islands

Abstract

Data warehousing is not a trivial task, when dealing with vast amounts of distributed and
heterogeneous data. Traditional Data warehouses are not well equipped to deal with the
heterogenecous data. To meet the increasing business demands and to overcome the challenges
faced by the traditional Data warehousing, the Extraction Transformation and Loading (ETL)
technology needs to be extended. We exploit XML as a pivot language in order to unify, model
and store heterogeneous data. We will describe an architecture for an XML based Data
warehouse that is capable of integrating heterogeneous data into a unified repository.

In this thesis, we will show how XML technologies can be effective in improving the Data
warehousing process. The hasic idea behind this thesis is to associate XML with Data
warehousing. We will focus on the integration process and describe the architecture to
integrate heterogeneous data into an XML Data warehouse.

Later in this thesis, we will implement an XML Data warehouse and then validate its
performance against traditional Data warehouse in terms of data load time, disk space
utilization, data retrieval time and speed of operation.

Master Thesis by Supriva Dwivedi

Acknowledgement

| would like to express my greatest regards and gratitude to my advisor Dr. Andrzej Bieszczad
for his continuous support, patience, motivation, enthusiasm, and immense knowledge. His
guidance helped me all through the course of my research, from the selection of the topic to
the entire write up. | could not have imagined having a better advisor and mentor for my

research study.

Besides my advisor, | would like to thank Dr. Peter Smith and Dr. Richard Wasniowski for their
encouragement and insightful feedback.

Also, | thank my friends both at Computer Science department at CSU Channel Islands and
outside, and the family members for their invaluable feedback and assistance, especially during

the course of implementation of this thesis.

Master Thesis by Supriva Dwivedi

Table of Content

CHAPTER 1 : INTEOQUCTIOIL v s sensi s e seasi s s sass b s st o b n s s ws me ms 9
1.1 XML Data WarehOUSING ...t e e e e e e e e e e e e n e eaee e s 9
1.2 OB eCtiVe Of the THESIS.cuiiiiieiicreriiiessisseriirrrt e ae s issrr b aaees s srsrasessbaasesssssertaseeriesessasssstasesssssrnsstanrasenes 11

CHAPTER 2 : Architecture and Components of XML Data warehouse........ccnncnnesccsee e 13
2.1 Comparison of the XML model and the relational modelccoooviiieeiiiien i e, 13
2.2 How can XML Imprave Data WarehOUSING......ccccv e iiveerinreesisseriisreriessesissssrtesessissessvrsssssesessrsssnsassens 14

2.2.1 Source Data INtegration .. .o ettt e e et 15
2.2.2 Native XIVIL Data StOrageottt et ettt e aeeseaneseaneseanesseanes ennnssennesessnnesnnnes 15
2.2.3 Front-end INformation DeliVery ..o seer e er st rrer e s e rsser b e es s ssbrrnsesssesrassnes 15
228 EFICIBINCY ..ttt ettt ettt et et ek f et e ha s ekt e s bR e ek be b b anee bt eebe et ea bt easearr s 16
2. 2.5 IMIAINEENANCE ...ttt ettt ettt esnet e anes eanes e anes e snes eanes eanes ennes eanesseanes ennnssenneseesneesnnnes 16
R I o= =1 o T1 1 4 U SO UU U UUURSU TR 16
2. 2. 7 INTErOPErability oo e e e e ee e e e e ee e eannes 17
2.3 XML based INtegration ArChitECEUNE ... iiceeerieeenveerrreer st reerae s e issnrbrseesis st rrrssnsesessrsssnnanrens 17
2.4 Archit@CtUre COMPONENTS. . oo ittt ettt et e e s e e ek ke s baanes s hbesebeauneea b essaaars 18
2.4, 1 DAt8 SOUICES wouevrieeerrinneerinanerreeeer nsnes nsnes nanes nsnessnsnessnsnessnsnessmsnessnsnessasnessansessensessennersensersssnersnnnes 18
2.4.2 ETL {Extraction, Transformation and Loading} Services:cccvvvvvvviiviverecrrie et eersnens 19
2.4.3 XML Data WarEhOUSEttt et et e et ear s eas s s sens st snns st beas st bnnsssbnnsraasessnnnnnns 20
2.4.4 Event Trigering ENINe ..ottt ce e et e ce et ee e s e ee e e eeees e mnae e eeeenns 21
L R N o o o - O OSSPSR PO 21
B Y=Y -1 - U 22
2.5 ACtiVE ETL DABafloW cooveeieeei et ettt e e e es st e s b e e e e e es s nne s saer e e e ennetaernnnnns 23

CHAPTER 3 : Steps to Build XML Data warehoUSES ... esn s s 25
3.1 Methods for cleaning and transforming data......ccccccr e irreeirrerie e e er e rre v resr s esrssens 25
3.2 Selecting significant data and multiple level of summarizationccccoeeei e 26

Master Thesis by Supriva Dwivedi

3.3 Building necessary dimensions depending on multiple level summarizationc.ccoo oo, 27
3.4 Building middleware XML doCUMENTS ... 27
3D BUIIINE F LS i eiveriiiie et ireer s i rsrrr e s e s e sasbetbaae et ssare s sassssbaaeessassrtbasenssaases issssrtasnesiasrstrasnsnsssnsransees 28
CHAPTER 4 : IMPlemMERTALION coooeeeeeseereceeeessees e scssee st sesssessses st st s e ssses s s et s s 30
4.1 Introduction to Power Canter ClIEnT. ...t e e e e e 30
4. 1.1 RePOSiEOry IMaNaer. . ccviiieieiie et iereniiiaeesieaeerteanesiasesssaanntissrsssesses asnssiassssseanntiasssssssses ennrnssrasressans 30

£ 1.2 DBSIGIIE it ieiee e ce e et ettt e e bt ee et eea et e e e e e s et aat et ta e st e fe et eeen e aont bt e e e s eenaree s 31
o N T q ¢ i Lo T Y =T 4 T T S 33

4. 1.4 WOTKFIOW IMONITOT L.ttt ettt et et et aas b s s e st e s e e ssenn e 33
i - T o o T PR 34
4.3 IMPOrting XML definition .ocvvvieeriiioevveiirnessisseeriareeriesessvssssrasesssssensisresteeesssissssrsssesssssesssmrssess sasrsssses 35
A4 IMPLEMENTATION (..ot e e et e s st s e et ts s aes sansseaebbtbe e tanes s snnsseaenbstbnasbbeesssnnnses 39
4.5 PerformManCce COMPAITSON ...ttt ie ettt e e et e seeees e aess e eees sssees sanns e aensseeees ssnaes sannr e smnnnenes 45
4.5.1 Loading data in Data WarEhOUSEcccciviiiir e iieerieeen e reerae s e sserrbrseer s st vrsssnsssessrssensasnens 45
4.5.2 Front-end Information Delivery ...ttt e 47
4.5.3 Disk space UtIliZationoooeie e e e e e enne s 48
4.5.4 Data RetrieVal iN REPOIES civviiiveriiieeiiisreirireerserresvsssrrrresssssessirrsstaeesesiesssrsssesssssessssssssssessrssersassen 48
4.5.5 Speed Of OPEratioNScoi it e e eer e e e e e e e s e e e e e e e re e s e e are 52
CHAPTER 5 : Conclusion and FUTUTE WOTK ... s s s 55
LT o 4 T 11T T U 55
5.2 FUBUTE WOTK .t e et e et e e e e esa e e e enne e 55

R BTN S .ot ce ettt ee e es b a8 488 £ a8 R 57

o N B LR WN e

NN R RNNNRNRRR R R R R B R B
U R WN PR, O WU NGV R WN RO

Figure 1.1:
Figure 1.2:
Figure 2.1:
Figure 2.2:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 4.1:
Figure 4.2:

. Figure 4.3:
. Figure 4.4.
. Figure 4.5:
. Figure 4.6:
. Figure 4.7:
. Figure 4.8:
. Figure 4.9:
. Figure 4.10:
. Figure 4.11:
. Figure 4.12:
. Figure 4.13:
. Figure 4.14.
. Figure 4.15;
. Figure 4,16; Execution time comparison for Insert Statement
. Figure 4.17:
. Figure 4.138:
. Figure 4.19:

Master Thesis by Supriva Dwivedi

Table of Figures

Data-centric XML document

Document-centric XML document

Architecture of XML Data warehouse

Heterogeneous data integration workflow

Building dimensions depending on multiple levels summarization
Building middleware or intermediate XML documents
Linking fact and dimension XML documents

Overview of Power Center client tools

Designer

Data Flow diagram from source to target

Sample Customer XML file with multiple-occurring elements
Customer XML source definition

Sample DTD file

Sample DTD Source Definition

Sample XML Schema

XML Schema Definition (XSD) of the SalesTerritory Table
ER diagram of Sales department

ER diagram of HR department

Comparative graph for Load time

Graph for time taken to retrieve data

Sample Traditional Data warehouse table

Sample Customer XML Document

Execution time comparison for Select Statement
Execution time comparison for Delete Statement
Relative Execution time graph

10
11
18
24
27
28
29
31
33
34
36
37
38
38
39
42
45
46
47
49
50
51
52
53
53
54

Master Thesis by Supriva Dwivedi

CHAPTER 1

Introduction

Recently, there has been a lot of interest in Analytics which can be accomplished with the help
of Data warehousing. Data warehouse stores huge amounts of historical data used by Decision
Support Systems. According to Bill Inmon; “Data warehouse is Subject Oriented, Integrated,
Time Variant, Non-Volatile collection of data in support of management decision making
process” [4].Many companies use Data warehousing to help their business make fast decisions

and manage risk better.

Today, large amounts of corporate data are on the web. These corporate data are present in
different formats (for example, relational database, text, flat files, multimedia, html, etc.).
These types of data are known as complex or heterogeneous data. According to Tseng and
Chou; “Only 20% of corporate information system data are transactional, i.e., numeric, this
numeric data can be easily processed because multidimensional analysis is robust and it is a
mastered technique on numeric centric Data warehouses” [6]. The remaining data is semi-
structured or unstructured that stay out of reach of On-Line Analytical Processing (OLAP)
technology, because of the lack of tools to integrate and analyze the complex data. With the
limitations of traditional ETL (Extraction, Transformation, and Loading) technology prevalent in
current Data warehouses, it is not possible to augment the analysis with complex data. To meet
the increasing business demands and to overcome the challenges faced by the traditional data
warehousing, the ETL technology needs to be extended. Moreover, traditional Data warehouse
are limited in their ability to provide the real time data. There is a time gap between source
refresh and target refresh.

Recently, XML technologies have provided ample support for sharing, storing, spreading and
working with the semi-structured data. XML Data warehouse can integrate complex data,
provide near real time data, support computerized decision support system, improve data
coming from heterogeneous sources, and provide online analysis of complex data. XML Data
warehouse will be capable of providing the most refreshed data every single time the user

requests for it thus helping to increase business competitiveness.
1.1 XML Data warehousing

In order to store heterogeneous data sources into a unified repository, an XML based Data
warehouse model is required. XML is used for managing, modeling or representing facts and

9

Muaster Thesis by Supriya Dwived|

dimensions. Facts are the metrics to be analyzed (e.g., sales) and dimensions are those
attributes that describe facts (e.g., product, time, region or salesperson). The advantage of
using XML is that it seamlessly integrates data and structure into the same document and also it
does not require any predefined schema. Another feature of XML is its simplicity and flexibility.

XML documents are of two types depending on its content: Document-centric XML document
and Data-centric XML document. Data centric XML document are fairly regular structure
document, as shown in Figure 1.1. These XML document contain structured data such as the
textual representation of relational data, for example financial data, invoice data, sales data
etc. These XML document can originate from relational databases.

<order id=''X123'"'>
<customer account="10">
<name>Thomas Edison</names>
<telephone>123456123</telephone>

</customers>
<items>
<item id=''CD1’’>
<name>cd player</names
<unitprice>60.6</unitprice>
<quantitys>l</quantity>
</item>

</items>
</order>

Figure 1.1: Data-centric XML document

Document-centric XML documents are semi-structured or unstructured document and contain
large amount textual data, as shown in Figure 1.2. These documents are normally written in
XML or in another format, such as RTF (Rich Text Format), PDF, or SGML (Standard Generalized
Markup Language), and then converted to XML format.

10

Muaster Thesis by Supriya Dwived|

<business._newspaper date= '‘Dec.1,1998""' >
<economy >

<article»

<headline>Financial Crisis Hits Southeast Asian
Market</headline>

<paragraph=>

The financial crisgis in Southeast Asian countries,
has mainly affected companies in the food

market sector. Particularly, Chicken SPC Inc. has
reduced total exports tco £1.3 million during this
half of the year from $10.1 million in 1997.
</paragraphs

<paragraph:

</articles

< /economys>

</business.newspapers

Figure 1.2: Document-centric XML document

In XML Data warehouse, we can use web services to solve the problem of transferring
heterogeneous data among various systems. When web services are embedded into the XML
documents, it is known as Active XML document (AXML). An Active XML document contains
some data available explicitly while the other data is called through the web services. When
these web services are triggered, it will update the document with the fresh data.

1.2 Objective of the Thesis

The main objective of this thesis is to associate XML with Data warehousing. Several
heterogeneous data sources can be easily converted to the XML format as it is a neutral format.
Other features of XML are its simplicity and flexibility which makes it useful for every
application that requires translation and exchange. In this thesis, we will prove that XML is in
right place inside the architecture of Data warehouse to integrate different data sources. In this
thesis first, we will propose conceptual architecture of the XML Data warehouse to integrate
heterogeneous data sources. This architecture will demonstrate the use of web services in XML

Data warehouse.

Later, we will implement an XML Data warehouse. We will validate the performance of our XML
Data warehouse with the traditional Data warehouses. In practical implementation, we will use
all the concepts of XML Data warehouse which we have defined earlier except the use of web
service as it will be beyond the scope of this thesis.

11

Master Thesis by Supriva Dwivedi

In chapter two, we will initially draw comparisons between XML and the relational model, and
then discuss how XML technology can improve the Data warehousing process. Later, we will
focus on the architecture of XML Data warehouse using web services. We will define the use
and functionality of all the components of XML Data warehouse.

In chapter three, we will propose a logical approach to load data from multiple heterogeneous
sources into an XML Data warehouse, so that queries can be optimized. Furthermore, a
procedure of building XML Data warehouse from an XML document is demonstrated by
creating required fact and dimension tables.

In chapter four, first we will discuss the tools used to implement an XML Data warehouse. Later
in this chapter, we will show the practical implementation of the XML Data warehouse using
sample data from heterogeneous data sources. We will integrate data from disparate sources
into XML Data warehouse and then validate the performance of the XML Data warehouse. We
will validate the performance of XML Data warehouse against traditional Data warehouse in
terms of time taken to load the data in Data warehouse, time taken to retrieve data from data
warehouse, disk space utilization and the speed of operation.

12

Master Thesis by Supriva Dwivedi

CHAPTER 2

Architecture and Components of XML Data warehouse

Web is a vast source of information and is growing at a fast rate. A large amount of corporate
information is generated from a variety of sources like emails, HTML files, web data,
unstructured text as well as structured databases. This unstructured and semi-structured data
are known as complex or heterogeneous data. A lot of research has heen done to integrate this
heterogeneous data into a unified repository. However, the integration process involves

identification, guerying and merging of data from heterogeneous sources which is difficult.

A major amount of information available on the web today is semi-structured. Semi-structured
data has an irregular structure and does not contain a fixed schema. Many researches have
been done in the past in developing data models, query languages and systems to manage
semi-structured data. Object Exchange Model (OEM) is one such model that was explicitly
defined to represent semi-structured data in heterogeneous systems. A modified version of this
data model has been used in the development of the Extensible Markup Language (XML) and
has kindled a lot of interest in modeling semi-structured data. XML is well suited to model semi-
structured data because it makes no restrictions on the tags and relationships used to
represent the data. XML also provides advanced features to model constraints on the data,
using an XML schema or a Document Type Definition (DTD). However, XML does have some
differences with the other semi-structured data models: For example XML is ordered
collections while semi-structured data is unordered, and in XML references can be used for
unigue identifiers for the elements; this is absent in most other data models. Regardless of
these differences, XML is a popular data model is most commeoenly used to represent semi-
structured data. So we are using XML database instead of relational database in our Data
warehouse. Following are the points which are taken into consideration to decide between XML

database and relational database:

2.1 Comparison of the XML model and the relational model
The main differences between relational database and XML database are:

* Hierarchical relationships

In relational databases, hierarchies are maintained in the form of logical relations. The only
way to define hierarchy is by using more than one table where one table acts as parent and

13

Master Thesis by Supriva Dwivedi

other as a child. An XML document itself can be hierarchical. It contains information about

the relationship of data items to one another as a hierarchy.

Self-describing nature

An XML document is self-describing in nature. We can easily understand XML data just by
looking at it as XML document contains tags that describe the data. It may contain different
types of data. However, in relational databases the column definitions are used to describe
the data content.

Flexibility of the data

Relational databases are fairly rigid. For example, normalizing and de-normalizing the tables
is generally difficult once the database is in use. In contrast, XML models are relatively
flexible and serve as a better option when database design is changed frequently.

When highly structured data is present in small quantity

Sometimes highly structured data are present in very small quantities. In relational
database these data are represented using complex star schemas. This star schema contains
many joins between fact and dimension table, with most of the table containing very few
rows. This type of data can be hetter represented using single XML document as XML is
hierarchical by nature.

So due to the above discussed reasons, we will integrate all heterogeneous data into XML

database instead of relational database. XML Database will improve the performance of our

Data warehouse in many ways.

2.2 How can XML Improve Data warehousing

For information systems, XML have the capability to exchange data between browsers and

application programs, between application programs and other application programs, etc.

XML can contribute in the warehousing process: data integration, cleansing procedures, data

storage, and front-end information delivery. Fellowing are the reasons which show that XML

will improve the performance of Data warehouse:

14

Muaster Thesis by Supriya Dwivedi

2.2.1 Source Data Integration

Source data may come from different heterogeneous sources and integrating these sources is
the most important step. We can have sources which have data created by legacy systems
based on mainframe application. Apart from this, we can have multiple web applications
providing data for real time processing or data sharing. All this information is used to create the
Data warehouse for the company.

If there are systems which generate data in XML, the communication among these will be much
easier. The systems which have a common XML schema can exchange information with each
other. Although in some old applications XML writers need to be embedded, several recent
systems are already equipped to create output data in XML format. Existing relational
databases already support query output directly in XML form

2.2.2 Native XML Data Storage

Native XML databases store the core of XML based Data warehouse. They provide the
possibility to integrate semi-structured data inside the Relational Data warehouse. This direct
XML storage can fulfill the needs of storage support for Data Web-House.

In this category, we can identify Lore, Natix, and Tamino. In Hybrid scenarios, XML data can be
saved directly inside the database in relational database tables. Indeed, market DBMS (e.g.,
DB2, Oracle, Sql Server etc.,) does offer the capability to bulk load data inside a relational table
from XML sources. This step is done with the help of XML schema.

2.2.3 Front-end Information Delivery

More and more sophisticated tools are used to deliver information outside the Data
warehouse. The extensive utilization of XML will be helpful in eliminating reporting and query
tools from end user’s terminals. An XML document along with an XSLT transform can generate
user friendly reports. The resulting business information could be published with HTML pages in
the company’s intranet website. XSLT is utilized to change an XML document into one another
XML document, or any other kind of document that is understood by a browser, like HTML and
XHTML.

15

Master Thesis by Supriva Dwivedi

2.2.4 Efficiency

XML is a neutral format, which enables communication among different Data warehousing
tools. No owner format is needed to link and merge different warehousing tools, which helps to
divide the process such that different tools can he used for extraction and transformation
purposes. The efficiency of the global process will be higher, as tools have a good performance
within different steps. We can chain a high extraction tool with XML generation capability and a
high transformation tool with XML input, etc. Since XML is used in all the tools, no extra
transformation among different owner tool’s format is required.

2.2.5 Maintenance

The business rules of the organizations are never the same, due to changes in the real world.
The changes may happen due to regulatory changes, or other changes in business practices or

as a result of corporate recrganizations.

Due to the evolution of management rules, many programs need to be modified to enable new
decision elements or new formulae for restitution. These rules define the decisional elements,
equations, and parameters. For most of the existing tools, to realize this operation, a query has
to be formulated into the metadata. Then, the user has to update all the concerning programs.
Data warehousing process should be updated automatically to make the maintenance process
work efficiently, XML presents the ability to specify the transformations using XSLT {XSL
Transformations). If the system is able to generate a new transformation automatically, no

extra update or change will be needed to enable the evolution.
2.2.6 Scalability

An important aspect to achieve the scalability is to ensure that changes in the implementation
on either the application system side or the data side do not change the transported data
format between the two applications. This means that the client application or the server
application does not need to bhe aware of that change.

One way of achieving this is to move the data in the standardized format between these
components. Currently, the main format that is used in all the scenarios is XML. The idea is to
take the data in the data system or in the application system, move it into the standardized
format of XML, both on the wire as well as using standardized grammar, which we can express
in XML, to warp the data and transport it between the different systems.

16

Master Thesis by Supriva Dwivedi

2.2.7 Interoperability

These days organizations are using web for interaction, blending partners, suppliers, and
customers to form a virtual enterprise that functions as the superset of the physical
arganizations. This e-business is performed through multiple real-time information exchange
technologies such as an electronic document interchange (EDI), business-to-business exchange,

and e-business server application.

Establishing interoperability between these different sources is needed to integrate data inside
Data warehouse. XML can play a major role in the integration of web sources inside the
business Data warehouse, from corporate internal information portals, parts databases,

product catalogs, and business-to-business document exchange, etc.

2.3 XML based Integration Architecture

In this section we will show an architecture which will integrate the data coming from
heterogeneous systems and then getting loaded into a uniform warehouse. ETL services are
used to integrate these heterogeneous data into a unified XML repository. This architecture is
based on components like metadata, event log, and event triggering engine. The architecture
has a commen language as XML for all the components. We can categorize XML documents
created in this process in two ways. Fact and dimension are created in XML or we can say that
warehouse data will be in XML format. All the metadata, rules, logs are also created in XML
which can be the second type of XML used in the architecture. Thus XML Data warehouse

architecture can look like as below:

17

Muaster Thesis by Supriya Dwivedi

Heterogeneous Data Sources

Multimedia

WWwW DBSource XML Source ‘ Source

:

;- ETL Services
Event Logs

ﬁ =
/
/
"Web Services

Check
| L
/

Event Triggering ,
Engine

| XML

Request———

Data Warehouse K/)n\ —
Response Quew\w
5 Q”e”\

Figure 2.1: Architecture of XML Data warehouse

2.4 Architecture Components

Following are the components of XML Data warehouse:

2.4.1 Data Sources

Traditional Data warehouses integrate data from transactional and structured data sources.
One objective of our architecture is to integrate heterogeneous data which can be translated
into XML format automatically. It's worth being noted that input schema can be updated at any
time either by adding, altering or dropping data sources. These input schemas describe complex
data and the relevant entities, elements and/or attributes for each data source.

18

Master Thesis by Supriva Dwivedi

Technically, when a developer accesses a database via the web-based GUI, he can browse
through the database structure and select interesting tables. He can select or filter out records
based on graphs or he may query the tables. The similar method is followed for other data
source systems. For an XML data source too, the developers can go through the element
hierarchy and then prefer specific paths.

2.4.2 ETL (Extraction, Transformation and Loading) Services:

ETL processes are used for fetching data from source systems, applying business rules to
transform data, changing it to XML format and loading it into XML Data warehouse. This
process fetches data from different sources via multiple interfaces. The ETL process not only
performs integration of low level characteristics like image color, image texture, image shape,
file location, file size, update date, creation date, etc., but also integrates other characteristics
of complex data like relationship between entities, image content, etc. Integrating these
characteristics from complex data, however require semantic data extraction and mining

strategies.

We have used web services on developing ETL tasks, which results in multiple advantages. Web
Services can resolve issues related to interoperability and distribution of data. Web services can
also be embedded into XML documents, which transform them into an Active XML {AXML)
document. These AXML documents can then be refreshed by triggering these web services.

As we deal with heterogeneous source systems, the data can be in different structure or even
with similar systems also the structure may differ. Usually we face challenges in accessing
sources or converting them into single format and structure. We also face issues in integrating
those sources and schemas. And at the end we need verify data quality and accuracy. We need

to make sure data is consistence and complete.
There are also other challenges related to security, gaining access to web services, licensing and
developing integration services. To overcome these issues, we can develop several source

handler services, each of which deals with a specific type of data source.

Transformation and cleaning tasks face some conflicts related to both structure and data levels

as listed below:

19

Master Thesis by Supriva Dwivedi

Structure level conflicts:

* We might get issues for Domain of different source systems. Similar Domain from multiple
systems may differ in the structure.

* Difference in names for similar objects is also possible. Same elements may carry different
names in the source systems.

* Schema model may also have a difference for similar objects.

Data level conflicts can arise when similar data are represented using different ways:

* Data value conflicts where we use different ways to instantiate a certain element through
different data sources {e.g., France vs. FR)
* Data unit conflicts where the same element can be instantiated using different measuring

units, originating from heterogeneous data sources {e.g., Dollar vs. Euro)

Data representation conflicts where different representations are used for the same element
through different sources of complex data (e.g., date format) require accurate mapping and
matching between contents and structure of heterogeneous data sources. Moreover,
developing transformation services that are based on metadata can avoid such conflicts.
Loading transformed data, and writing them into XML documents is not simple. We cannot |oad
the entire data each time. Elements already present in xml should get updated and new
elements should get inserted. They should also identify their target document.

There are various ETL tools available where the latest versions have features to extract data
from XML or even from a wehsite itself. For example, the upgraded version of Informatica
(Power Center) has brought few new transformations. These transformations are specially used
for extracting XML data or using an http website to extract.

2.4.3 XML Data warehouse

XML Data warehouse is the repository where data are loaded through ETL services. The outputs
of the ETL process are XML documents. Some of the important questions taken into
consideration are which data should be given explicitly in XML document? Which data should
be given implicitly? The explicit parts of Active XML documents are similar to the starting and
ending tags in XML documents, But the dynamic parts are shown as a method to call web
services.

20

Master Thesis by Supriva Dwivedi

XML schema supports complex data types and is considered as a grammar for the warehoused
Active XML documents. AXML documents induce multiple benefits. First of all, XML can be used
as uniform language and can store complex data in it. Secondly, web services are the best
solution to overcome the problem of non-interoperability and distribution of data over
distributed and heterogeneous data sources. Thirdly, when querying Active XML documents,
their embedded web services are invoked to refresh the decument with most updated data.
Lastly, Active XML documents can be stored in XML format. Cn contrary, no browser can read
AXML documents yet. Also, the end-user applications do not fully support AXML documents. To
parse AXML documents, we propose scanning requested AXML document to find the
embedded web services, then invoking these web services, and subsequently enriching the

current documents with the result retuned from the web services.

2.4.4 Event Triggering Engine

The event triggering engine manages metadata and event logs, to ensure smooth processing of

data. It handles multiple processes which can be described as below:

* |t verifies that the source systems are available.

» |t verifies the data elements and makes sure that sources-to-targets mapping is correct.
* |ttakes care of event triggering and checks their conditions throughout the process.

* |t monitors event logs for all processes and their impacts on XML Data warehouse.

* |t has some rules defined and triggers tasks based on conditions.

" |t manages XML web services activation.

= When web services are called it refresh the XML documents with most recent data.

The timing of triggering web services is also an important factor. It can be scheduled on weekly,
daily, hourly or based on some events. It can also be triggered on demand.
2.4.5 Event Log

The purpose of the event log is to capture infermation about all events detected throughout
the architecture, either by data sources, ETL service modules, or XML Data warehouse. Some
events can be triggered based on the information available in event log. Queries used by the
users are also important information that is maintained by the event log. Information about the
events is logged in the event log into XML format. It mainly stores event type, event
description, date, time, status, error message. Thus, the event log not only handles exceptions,
but also provides history of integration tasks and describes user’s events. This log is checked by
the Event Triggering Engine at regular interval. Some examples of events that result in logging

21

Master Thesis by Supriva Dwivedi

are: changing the list of data sources specified in the input schema, changing attributes of a
specific data source, integrating data from their sources {extracting, transforming or loading),

and so on.

2.4.6 Metadata

We bhelieve that if the metadata are defined correctly upfront, the automation of various
processes in the architecture becomes very easy. Metadata can be of various natures: data
source descriptions, ETL services, storage structures of the XML Data warehouse, and data
refreshing policies. Hence, metadata can be considered as a grammar for XML documents and

as configuration files for data sources and ETL services.

Metadata may contain the following information:

* Metadata of data sources: This includes data types, descriptive information such as
structure, ownership, interfaces, format, update frequency over a certain period, access
methods, refresh time, and so on.

* Metadata of ETL services: This includes ETL service interfaces, transformation and cleaning
rules given by business, targeted XML documents, data elements mapping names, updating
rules, and so on.

* Metadata of XML Data warehouse: This includes Data warehouse structure, warehouse

size, refreshing plan, physical location of XML documents, indexing, and so on.

Active Rules

In the architecture, rules are created based on different steps like data extraction from complex
sources, transformation or XML warehouse data load. We need to make rules to trigger
processes based on variety of events. For example any change in data source schema will result
in an event to add or alter a source. So these events continuously monitor source system
schema.

The architecture can allow some temporal events. Such events are used in our integrating
architecture, to detect changes in the structure of data sources. For example, modifications in
source system can be checked every hour. Source system availability can be checked every time

before the extraction. This can also be scheduled weekly or daily for maintenance purpose.

22

Master Thesis by Supriva Dwivedi

Weekly or monthly backup of the XML warehouse can be taken. After any insert or update data
quality can be checked.

Eventually, there are many rules which can trigger the actions in the architecture. These rules
can send a notification to a server for all the changes happening in the source system and
trigeer the ETL to extract it. They may affect the XML Data warehouse itself by invoking
embedded web services, when guerying Active XML documents in order to refresh them with
up-to-date results.

2.5 Active ETL Dataflow

The ETL Dataflow is bi-directional in nature. In "forward direction," complex data is pulled from
heterogeneous sources, converted into the desired formats, and then loaded into the XML Data
warehouse through the ETL services. In "backward direction," the XML Data warehouse is
refreshed by calling web services. The evaluations of web services are controlled by the Event
Triggering Engine, to call and perform particular integration tasks or other third-party Web
service,

Integrating semi-structured or unstructured data into an XML Data warehouse involves all the

above defined components. The design below (Figure 2.2) shows how we can integrate
heterogeneous data sources in the XML Data warehouse.

23

Master Thesis by Supriya Dwivedi

Figure 2.2: Heterogeneous data integration workflow

24

Master Thesis by Supriva Dwivedi

CHAPTER 3

Steps to Build XML Data warehouses

This chapter we will propose a logical approach to load data from heterogeneous sources into
an XML Data warehouse, so that queries can be optimized. Furthermore, a procedure for
building XML Data warehouse from an XML document is demonstrated by creating required
fact and dimension tables.

3.1 Methods for cleaning and transforming data

The presence of an XML schema is very essential, mainly for evaluating data accuracy. XML
schema defines a valid method to specify the content and structure of XML documents that are
utilized for analysis. If XML schema is correctly established and all documents are compliant
with it, there is a lower probability to have inconsistent data. We have defined some rules for

carrying out data cleaning and transformation process.

1. If a XML schema is present, we have to validate the correctness of all schema conditions.

» Validating if accurate usage of the attributes and name of entities in the document: For
example, <CUSTOMERTYPE>, <customertype>, <CustomerType> will be considered as three
different fields

» Verifying if data type and natural logic are followed. For example, a zip code might have

string data type, but it can have only digits, not letters, etc.
* Validate the hierarchy is followed for all elements and attributes.

* |n parent-child relationship observe if order indicators are followed. For example, the order
indicators can be All, Choice and Sequence. Indicator “All” signifies that there is no order
defined for child elements, and they can be included in any sequence. Indicator “Choice”
signifies that any one child can be included. “Sequence” means that there is an order
defined for child, and they can be included in defined order.

» Define null values. In a database, null values can be defined in two ways: {1) Null value is
coming from source (2) Invalid values coming from source is treated as null. For example,
characters coming from source for field telephone number will be treated as null.

25

Master Thesis by Supriva Dwivedi

* |n XML schema, occurrences of any element might be restricted. For example, for an
element minimum occurrence is two and the maximum is 10. This tells that the element
should appear at least two times and not more than 10.

» Verify other schema restrictions also. Other restrictions on elements might be present in
the schema. For example, "Status Field" can have only three values: Open, In-progress, and
Closed.

2. Removing duplicate data, for e.g., a customer name was entered in the different manner, by
multiple order entry systems placed in different locations. Possible ways can be: surname &

first name, surname & first name & the father’s initial, first name & surname etc.

3. Remove conflicts from entities & attributes values, for e.g., two different blood groups
existing for a person. As a person will have only have one blood group, so the correct, one must
be captured.

4. Removing erroneous records, occurred during the process of entering data, for eg.,
mistyping. Manual cleaning for some of the data may be required because only the domain
experts can understand the correctness of data. Moreover, we can also implement some of the
rules by understanding the business logic. This will reduce the manual intervention in the

cleaning process.

3.2 Selecting significant data and multiple level of summarization

Following steps should be considered for selecting significant data and multiple level of
summarization:

* Not all data in the heterogeneous databases is integrated into the XML Data warehouse. We
should be very careful in the process of selecting significant data and data summarization
level. We must extract only valuable and significant information from all the data sources.
The extracted information should also be considerably diversified, so that in the future it is
capable enough to handle multiple queries.

" We decide the multiple level of summarization based on many factors, e.g., how much disk-

space is available, how frequently a user request for a specific query, or if historical data

were necessary.

26

Muaster Thesis by Supriya Dwivedi

' Furthermore, when multiple levels of summarization exist, it will considerably increase the
performance of the query. In most of the Data warehouse projects, the speed of querying
data is more important than the disk-space. So we should consider detailed levels of
summarization as it increases the performance of XML Data warehouse.

3.3 Building necessary dimensions depending on multiple level summarization

We have decided the multiple level of summarization for a specific dimension in the previous
step. Depending on the levels of summarization for specific dimensions are required in reports,
we would create and populate new XML document. The content of new XML will be extracted
from heterogeneous data source. For example, we need to display “country” or “region” as a
level of summarization to see the forecasted sale in reports. We can find this information
directly from the original document by fetching distinct values of “country” and/or “region”
element and storing it in a new document.

m
I \
XML Documents

containing Sales

N

Select unigue

Territory Data

values of
Regions 1 =
Regrons B
= RegioniD
Region :
CountrylD Cauntries
Select unique m . \| Country
values of CountrylD
Countries RegioniD
1

Dimensions

Figure 3.1: Building dimensions depending on multiple levels summarization

3.4 Building middleware XML documents

In the course of building an XML Data warehouse from data residing in heterogeneous sources,
building middleware documents are a common method to store useful & significant

27

Muaster Thesis by Supriya Dwivedi

information. We will select only significant information and will reject insignificant information.
Now which information in the heterogeneous data sources are most significant and should be
integrated in the XML Data warehouse is a good question. Researchers have answered it by
defining different techniques, e.g., mining and analyzing transactional repository for detecting
different user’'s queries, or detecting shared hierarchies and merging of dependencies etc.
However, for general users analyzing the user’s queries in each data mart (or domain) is a
common way to do it.

Intermediate SalesTerritory Data

' TerritorylD

| |
| [‘ RegionlD
XML
Documents | ‘ CountrylD
containing B
Sales Territory SalesYTD
. 4 CostYTD

CostlastYear

Figure 3.2: Building middleware or intermediate XML documents

Here, we are interested in data representing activity. We will select the data for middleware
document based on data used in different queries, calculations, etc. For this, we will be
extracting data from original document and storing it into middleware XML document. The
facts in the XML Data warehouse are this middleware document, which are connected to the
dimensions.

3.5 Building facts

In this step, we will identify the relationships between keys of different middleware
documents. We need to make sure that the link between these documents is not lost, and they
maintain fact and dimension relationship. These documents should maintain primary-foreign
key relationship for facts and dimensions.

28

Muaster Thesis by Supriya Dwivedi

e
Intermediate grtofthe &
SalesTerritory Data TimelD
Mqrhiﬁg\ Regions
Afternoon
Evening RegionID
TerritorylD i ! Region
s CountrylD
CountrylD
e Countries
Country
CountrylD
RegionID
ModifiedDate
\“""-——__

Figure 3.3: Linking fact and dimension XML documents

Following all the above mentioned steps, we can build the schema to load the data into an XML
Data warehouse.

29

Master Thesis by Supriva Dwivedi

CHAPTER 4

Implementation

In this chapter, first | will discuss the tools which are used to implement an XML Data
warehouse. | will also demonstrate how we can import or create source and target XML
definition.

Later in this chapter, | will integrate the data coming from different sources into an XML Data
warehouse. These heterogeneous data will include flat file data, relational database, and XML
data. | will integrate all these data into an XML Data warehouse and then validate that it's
performance is better than the traditional Data warehouses. | have built an XML Data
warehouse using Informatica Power Center and Oracle database. As mentioned earlier, | will
not implement the web services part in this XML Data warehouse.

4.1 Introduction to Power Center Client

Informatica Power Center Client tool allows us to specify how to transfer the data from source
to target through the transformations. In the backend, the Power Center Server will fetch data
from the source and deliver it to the target database based on the instructions given from the
Repositary Service. To design the Data warehouse we will work with different types of client
tools as listed below:

= Repository Manager
= Designer

* Workflow Manager
* Workflow Monitor

Below is the brief description of all the tools and their functionality:

4.1.1 Repository Manager

Repository Manager is a database managed by the Repository Service. It is used to store the
metadata created by Informatica Client tools. The Integration Service uses repository objects to
extract, transform, and load data based on the instructions given in the repository objects. The
repository also stores administrative information such as user names, passwords, permissions,

and privileges. In the Repository Manager, we create folders to work in the designer window.

30

Muaster Thesis by Supriya Dwivedi

Source and Targets

Informatica Client

R ODBC / Native P
Repasitory Manger
Designer T
ODBC f Native
Workflow Manager
Wﬂl‘kﬂﬂw MeRitary- — — - — — — — — —— — — NMetwork Protocogl - - - - —————-— - -

Repository Server
Repository Agent

Informatica Server

Repository ‘
Database

Figure 4.1: Overview of Power Center client tools

4.1.2 Designer

The Designer has sub tools that assist us to create mapplets and mappings so that we can
specify how to transform and move data from source to target.

Tools in Designer

There are different types of sub tools available in the designer window to move and transform
data from source to target. These tools are listed below:

Source Analyzer allows us to create or import the source definitions from multiple sources like
flat file, COBOL files, XML document, application sources, word documents, pdf, and relational

databases.

In Target Designer, we create or import target table definitions based on the requirements of
the user.

31

Master Thesis by Supriva Dwivedi

Muapping Designer is used to move data from source to target through the transformations.
These transformations are applied between the source and the target definitions.

Transformation Developer is used to design individual reusable transformations.

Mapplet Designer is used to design Mapplets, which contains set of transformations and can be
reused in the Mappings.

Transformation
Transformations are used for cleaning, and scrubbing data as per the data requirements. There

are various types of transformation to manipulate the source data according to the needs of
the end user.

32

Muaster Thesis by Supriya Dwivedi

Source Analyzer Target Designer Transfarmation Develaper Mapplet Designer

D Informatica PowerCenter Designer. - [M=pping Designer

- Swamy - [Temp,_key

1l

£ Repository o -
r‘:’ -‘_11 i
S g 100% - <
DOU O [:]E 4w w PR D lLBaBawE § <80 "5 50 e 18NS
Fepository Navigator = 5 e B @ﬂ =81 New_Company_Mapp -
|. Temp_keysoft A = =
£ il Wapping Leigpsy s
Firdanos =
ey =
kiran_Admin M - .
e apping Designer
: Swwamy - T e PRINg g
- 2 Business Compan "ol = a
= EJ Sources =
: #- & Sowce D [- s K-]Name =
B B Targets ‘l? Compatipld I [P |}| Comparyld | | ¥ Companyld
i 1 & - Companytame ‘{ Ples—p ' | Comparphlame i CamparyM ams
o) | ompant’_ ? Region I i Region ' Flegion
B Cubes | ¥ Stale S) S e # ' Siae |
B Dimensions City S|P —— "l City > City [
@ Transformations Sddiess l— b e "1 Address | Addiess]
o B Mapplets _Phone AT e |) |thne _ # ' Phons =
SR 1 i s P—I | [> I | o B
[ﬂﬁ Tewm_Com- L=
w '
< . 2 s >
:J Y Mappmg Mew Comparny happ iz Wal| [e -~
mapping Mew Comparny M app inserted,
_}j: A
=
,D%I WK C]D'\ Save .ﬂ Fetch Log '}.‘ Generate ,}\'Valldale ADE]:’”__J _LJ
eady 1 M 7
v
Work area

Figure 4.2: Designer

4.1.3 Workflow Manager

A workflow is a set of instruction that instructs the Integration Service to run tasks such as
sessions, email notifications, and shell commands. After we create tasks in the Task Developer
and Workflow Designer, we can connect the tasks with links to create a workflow.

4.1.4 Workflow Monitor

The Workflow Monitor window monitors all the scheduled and running processes in the
Workflow Manager. This monitors the status of the processes like whether the task created in
workflow manager has succeeded or failed and other information like the total time taken to
complete the task.

33

Master Thesis by Supriya Dwivedi

Once the workflow has succeeded, Integration service successfully delivers all the desired

records from source to target. The diagram below shows the stepwise process to integrate
data:

Data warehouse

Data Mart 1

Relation DBs

Source

Flat File Sources

Data Mart 2

Other Sources

seibel

Figure 4.3: Data Flow diagram from source to target

4.2 Extraction

In Informatica when we import an XML definition, the Desigher creates a schema in the
repository for the definition. The repository schema provides the structure from which we edit
and validate the XML definition. We can create metadata from following file types:

1 XML files
* DTD files

34

Muaster Thesis by Supriya Dwivedi

1t XML schema files
1 Relational tables
' Flat files (txt, csv, xls files)

' Word document
v Pdf

4.3 Importing XML definition

XML is a self-explanatory language. Each data element has the tags at the beginning which
shows the start of the element. And a tag at the end is end of data element. A designer tool in
ETL is dependent of these tags. These tags help to define the elements, their occurrences and
hierarchy. Designer also verifies the data of the elements and picks a data type based on the
representation. We are allowed to change the data type in the imported XML definition.

A Sample customer XML file is shown in below figure. It contains multiple occurring elements
Customer, Phone and email etc. ‘Customer’ has been defined as root element. Based on XML
data, the structure is defined in designer.

LUStOmer |1] - NOTEpPaD

File Edt Fgrmat Yew Help

= -

xml version="1.0" encoding="utf-8'7>
CLUSTOMERS>
<CUSTOMER ID = "1"»
<ACCOUNT _NUM>AWDD000001 </ ACCOUNT _NUM>
<CUSTOMER_TYPE>4</CUSTOMER_TYPE>
<ADDRESS>
<STREET>2251 E1li0t Avenue</STREET>
«CITY>Seattlec/CITY>
<STATE> </STATE>
«ZIP>98104</21P>
</ADDRESS>
<PHONE> </PHONE>
<PHONE> «/PHONE>
<EMATIL> </EMAIL>

</CUSTOMER>

<CUSTOMER ID = "2">»
<ACCOUNT_NUM> </ACCOUNT_NUM>
<CUSTOMER_TYPE> </CUSTOMER_TYPE>
<ADDRESS>
«STREET> «/STREET>
«CITY> </CITY>
<STATE> </STATE»
ZIP> </ZIP>
</A<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>