
Reporting System for Road Kill 
Utilizing Mobile Devices 

A Thesis Presented to 

The Faculty of the Computer Science Program 

California State University Channel Islands 

In (Partial) Fulfillment 

Of the Requirements for the Degree 

Masters of Science in Computer Science 

By 

Guadalupe Ojeda 

August 2012 



2 

Master Thesis by Guadalupe Ojeda 

© 2012 
Guadalupe Ojeda 
ALL RIGHTS RESERVED 



3 

APPROVED FOR THE COMPUTER SCIENCE PROGRAM 

Advisor: Doctor Andrzej Bieszczad Date 

8/20/2012 

Doctor Sean Anderson Date 

8/20/2012 

Doctor Peter Smith Date 

8/20/2012 

APPROVED FOR THE UNIVERSITY 

Doctor Gary A. Berg Date 

8/20/2012 



Non-Exclusive Distribution License 

In order for California State University Channel Islands (C S U C I) to reproduce, translate and 
distribute your submission worldwide through the C S U C I Institutional Repository, your agreement to 
the following terms is necessary. The authors retain any copyright currently on the item as well as 
the ability to submit the item to publishers or other repositories. 

By signing and submitting this license, you (the authors or copyright owner) grants to CSUCI the 
nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission 
(including the abstract) worldwide in print and electronic format and in any medium, including but not 
limited to audio or video. 

You agree that C S U C I may, without changing the content, translate the submission to any medium 
or format for the purpose of preservation. 

You also agree that C S U C I may keep more than one copy of this submission for purposes of 
security, backup and preservation. 

You represent that the submission is your original work, and that you have the right to grant the 
rights contained in this license. You also represent that your submission does not, to the best of 
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the 
submission contains no libelous or other unlawful matter and makes no improper invasion of the 
privacy of any other person. 

If the submission contains material for which you do not hold copyright, you represent that you have 
obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by 
this license, and that such third party owned material is clearly identified and acknowledged within 
the text or content of the submission. You take full responsibility to obtain permission to use any 
material that is not your own. This permission must be granted to you before you sign this form. 

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED 
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU 
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH 
CONTRACT OR AGREEMENT. 

The C S U C I Institutional Repository will clearly identify your names as the authors or owners of 
the submission, and will not make any alteration, other than as allowed by this license, to your 
submission. 

Title of Item Reporting System for Road Kill Utilizing Mobile Devices 
3 to 5 keywords or phrases to describe the item 

Mobile Device, Road Kill, Wildlife-Vehicle Collision, Reporting System 
Authors Name (Print) Guadalupe Ojeda 

Authors Signature Date 8/22/2012 
This is a permitted, modified version of the 
Non-exclusive Distribution License from MIT 
Libraries and the University of Kansas 



4 

Reporting System for Road Kill 
Utilizing Mobile Devices 

By 
Guadalupe Ojeda 

Computer Science Program 
California State University Channel Islands 

Abstract 

Living in an expanding industrialized society requires the creation and 
maintenance of functional roadways that meet the needs of a mobile population. Roads 
are essential for commuters to travel to their desired destinations, yet they may be 
constructed anywhere and everywhere without sufficient thought about possible 
consequences to the surrounding environment. As vehicles travel on current roadways, 
they may be killing surrounding wildlife on a daily basis. This destruction of wildlife, 
known as road kill, is an increasingly common problem that must be addressed. Urban 
dwellers need to know that the surrounding animal environment is an important 
consideration when roads are constructed or improved. 

The overall goal of this project was to assist in creating a repository of data 
related to road kill. Researchers could gather information and formulate findings from the 
database through web-based data mining tools that are implemented now and in the 
future for the project. Development planners could then present their findings to 
minimize the negative impact of urban development upon wildlife and humans. 

The implementation goal of this project was to design and develop a functional 
mobile application that could conduct transect observations using a Global Positioning 
System. Another aspect of this undertaking was to permit crowd-sourcing road kill 
information through an i Phone device that utilizes an Application Program Interface for 
reporting observations to a remote database. 



5 

Acknowledgements 

I would like to thank Rebekah Ojeda and Daniel Ojeda for their support with my thesis 
project. I would like to thank my mother Marisela Chavez for her support during my 
thesis project. I would also like to thank Doctor Andrzej Bieszczad, Doctor Sean Anderson, and 
Doctor Peter Smith for their participation. 



6 

Table of Contents 
Chapter 1: Introduction 10 

1.1 Introduction to the Problem and Solution for Road Kill 10 

1.2 An Introduction to the Splatter Spotter Architecture 10 

1.3 Introducing the Mobile Client Application 12 

1.4 Associating the Mobile Device with a Server 13 

1.5 A Summary of the Remaining Chapters 14 

1.6 Key Terms 14 

Chapter 2: Field Overview 15 

2.1 Using Technology and Crowd Source to Address Environmental Challenges 15 

2.2 The Role of Database 15 

2.3 The Communication Process between the Mobile Client and Server/Database 16 

2.4 Tools for Producing Mobile Applications 16 

2.5 Similar Apps that Address Environmental Issues 22 

Chapter 3: Functions Utilized for the Mobile Application 24 

3.1 Different ways of Recording a Report 24 

3.2 Reporting with Transect 25 

3.3 Submitting a Report 25 

3.4 Uploading Multiple Reports 26 

3.5 Omitting Items From the Database 26 

3.6 Storing Reports Locally 27 

3.7 Resuming Incomplete Reports 27 

3.8 Displaying Completed Reports 28 

3.9 Badge Notification System 28 

3.10 Setting Default Units of Measurement 29 

Chapter 4: In-depth Description of the Design and Functionalities of the Application 
30 

4.1 Mobile Device Tools Utilized 30 

4.2 Conceptual Database Design 31 

4.3 Initiating a Report with New Entry 32 

4.3.1 Single Report 33 

4.3.2 Mechanisms of Transect 41 



7 

4.4 Uploading Incomplete Items to the Server 45 

4.5 Omitting Items from the Local Database 46 

4.6 Updating an Incomplete Report 47 

4.7 Retrieving a Completed Report 50 

4.8 Badge Number Notification 51 

4.9 Setting Default Units of Measurement 52 

4.10 Functionalities of the Home Page 53 

Chapter 5: Conclusion 54 

Chapter 6: Future Work 55 

References 56 

Appendix A 60 



8 

Table of Figures 
Figure 1.1 An Introduction to the Splatter Spotter Architecture 11 

Figure 1.2 Introducing the Mobile Client Application 12 
Figure 1.3 Associating the Mobile Device with a Server 13 
Figure 2.1 The Communication Process between Mobile Client and Server/Database ... 16 

Figure 2.2 i Phone 3 G S 18 

Figure 2.3 Windows Phone 19 

Figure 2.4 Androids Phone 20 

Figure 2.5 Roadkill App 22 

Figure 2.6 Street Bump App 23 

Figure 3.1 Different ways of Recording a Report 24 

Figure 3.2 Reporting with Transect 25 

Figure 3.3 Submitting Report 25 

Figure 3.4 Uploading Multiple Reports 26 

Figure 3.5 Omitting Items from the Database 26 

Figure 3.6 Storing Reports Locally 27 

Figure 3.7 Resuming Incomplete Reports 27 

Figure 3.8 Displaying Completed Reports 28 

Figure 3.9 Badge Notification System 28 

Figure 3.10 Setting Default Units of Measurement 29 

Figure 4.1 Conceptual Database Design 31 

Figure 4.2 Initiating a Report with New Entry 32 

Figure 4.3 Automatically Retrieving Time/Place 33 

Figure 4.4 Manually Inserting Place 34 

Figure 4.5 Inserting Road Information 35 

Figure 4.6 Inserting Killed Information 36 

Figure 4.7 Manually Inserting Kill 37 

Figure 4.8 Supplementary Information Insertions 37 

Figure 4.9 Manually Inserting Supplementary Information 38 

Figure 4.10 Actions for Adding and Removing Photo 39 

Figure 4.11 Actions for Processing a Report 40 

Figure 4.12 An Example of Transect with Waypoints 41 

Figure 4.13 Mechanisms of Transect 42 

Figure 4.14 Notifying that Action is needed 43 

Figure 4.15 Actions for Processing Transect 43 



9 

Figure 4.16 Uploading Incomplete Items to the Server 45 
Figure 4.17 Omitting Items from the Local Database 46 
Figure 4.18 Actions for Omitting Reports 47 
Figure 4.19 Retrieved Time/Place 48 
Figure 4.20 Updating Road Information 48 
Figure 4.21 Updating Killed Information 49 
Figure 4.22 Updating Supplementary Information 49 
Figure 4.23 Retrieving a Completed Report 50 
Figure 4.24 Actions for Completed Report 51 
Figure 4.25 Badge Number Notification 51 
Figure 4.26 Setting Default Units of Measurement 52 

Figure 4.27 Functionalities of the Home Page 53 



10 

Chapter 1: Introduction 
1.1 Introduction to the Problem and Solution for Road Kill 

Commuters and city planners need to contemplate the impact of new and 
improved roadways upon the surrounding environment and wildlife. Road kill occurs 
when a vehicle kills an animal on a road that is utilized by the driving public. Many 
drivers are unaware of the impact of road kill upon the animal population. Data is not 
currently being collected because there is no central repository that would assemble such 
information. Without the data, city planners are not able to analyze the statistics in order 
to improve the roads for both animals and humans. Research is needed to quantify the 
severe roadway problems that arise with a growing industrialized population. There needs 
to be a way to track animal characteristics and location while traveling the various roads. 

The Splatter Spotter application created for this study permits drivers to become 
more attentive to how a developing city disrupts various types of animal corridors. This 
application allows any user to gather and store road kill data to one central location. It 
also allows cities and other agencies to analyze the data collected by citizens in order to 
reduce the hazards of an animal presence upon the highways of a growing population. 

The goal is to permit drivers to record their observations on various types of 
mobile devices. Commuters could gather useful data, including types of animals killed 
and the conditions of the surrounding environment, and enter it into their mobile phone 
application. The collected data could then be sent to a repository, where the information 
is stored and examined. Researchers and city planners could then evaluate the data and 
make adjustments to the roads to demonstrate consideration for wildlife in the 
surrounding areas and to decrease wildlife-vehicle collisions. 

1.2 An Introduction to the Splatter Spotter Architecture 

Splatter Spotter is an application that permits a commuter to do more than just 
ignore road kill. This application allows a user to record various observations regarding 
road kill. Road kill reports are collected, stored, and analyzed using various tools. Figure 
1.1 describes the architecture of how various tasks are conducted for the Splatter Spotter 
application. 



11 

Figure 1.1 An Introduction to the Splatter Spotter Architecture 

Figure 1.1 displays various elements that interact with each other to collect, store, 
and analyze reports. The elements shown in the image consist of server, database, mobile 
client, and web client. 

A server is a machine in the cloud that accepts reports and delegates commands 
based on a set of rules provided by the application. The server allows a web client to 
access the web-based application in the cloud. Also, the app permits the clients to 
communicate with the database. 

The database stores reports from various web and mobile clients. The database 
provides a repository for reporters to input information into one central location. Also, 
researchers are able to analyze the information stored in the database. 

Mobile clients utilize mobile applications that interact with the server and 
database. Reporters upload their observations to the server situated in the cloud, 
represented as a black arrow in the Figure. Reports consist of data about the animal, 
location, optional image, and any additional information about the observation. After the 
server has validated the reports, then the server stores the reports into the database, 
represented as an orange arrow in the Figure. After the data has been stored into the 



12 

database, a confirmation from the server is sent back to the reporter, represented as a red 
arrow. If the server has received an inaccurate report by the reporter, then an error 
message is sent back to the mobile client for correction, represented as a red arrow in the 
Figure. 

Web clients run on laptop and desktop computers, which interact with the server 
and database through a web browser. Reporters upload their observations to the server 
situated in the cloud, represented as a black arrow in the Figure. After the server has 
validated the reports, then the server stores the reports into the database, represented as an 
orange arrow in the Figure. After the data has been stored into the database, a 
confirmation from the server is sent back to the reporter, represented as a red arrow. If the 
server has received an incorrect report by the reporter, then an error message is sent back 
to the web client for correction, represented as a red arrow in the Figure. Researchers use 
filters provided for the web client to access the data from the database. The black arrow is 
a query from the researcher to examine a specific area, animal, and so on. The orange 
arrow is the query for the database. The blue arrow is the retrieved data from the database 
based on the query. The red arrow represents sending the retrieved information to the 
researcher from the database. 

1.3 Introducing the Mobile Client Application 

Figure 1.2 Introducing the Mobile Client Application 

This thesis focuses on the mobile client-side of the project, which contains features that 
permit the commuters to report road kill, as shown in Figure 1.2. The tool permits the 
commuter to report a single or transect observation. A single report acquires a location, 
information about an animal, an image, and any additional information about the 
observation. A transect report allows for multiple single reports to be collected when a 
commuter drives for a lengthier segment of road. The mobile client application permits 
the commuter to manipulate any record locally by storing, deleting, viewing, and 



13 

continuing any report. The server utilizes a custom Application Program Interface (A P I) 
to process commands received by the mobile client. Rules from the A P I allow the client-
side to upload accurate information into the remote database. 

1.4 Associating the Mobile Device with a Server 

Accumulating data on a mobile client is convenient, but those reports are only 
available to a single person. A superior method is the ability to share every report stored 
on mobile client devices with others. A server is a perfect solution because all of the 
reports are situated in one central location and from there can be shared with others. 

Figure 1.3 Associating the Mobile Device with a Server 

The server executes additional functions that the app cannot perform because of 
the constraints of a mobile platform. The server-side contains an A P I, which allows 
mobile clients to communicate with the server. The app has a custom A P I that contains 
functions to gather photos taken from the mobile client and submit reports that were 
observed. User input is validated on the server-side, so that information sent from the 
mobile device is accepted. After the server has flagged the accepted information, the 
report is inserted into the remote database. The reports gathered in the database can be 
analyzed and visually overlaid onto a visual displaying tool, with the use of filters 
provided by the web-based application. The information is visually displayed as a single 
or transects reports that could be uploaded through the mobile or web clients. There are 
other features explained in greater detail in Ojeda's paper [26] concerning how the 
mobile client communicates to the server and how web clients analyze and store 
information from the database. Figure 1.3 displays the web-based application for the 
Splatter Spotter project. 



14 

1.5 A Summary of the Remaining Chapters 

Chapter two is a field overview of the mobile device application. 

Chapter three describes functions utilized for the mobile application. 

Chapter four is an in-depth description of the design and functionalities of the 
application. 

Chapter five states the conclusion of the thesis. 

Chapter six provides suggestions for any future work that can be done or work 
that was not completed for this project. 

1.6 Key Terms 

A P I - Application Programming Interface 

X M L - Extensible Markup Language 

S Q Lite - Structured Query Language Lite 

i O S - Apple's mobile operating system 

Wi-Fi - Wireless connectivity of electronic devices 

3 G S - Speedier 3rd generation mobile telecommunications 

App - Application 

X code - Apple's application development software 

i Phone - Apple's Internet and multimedia-enabled smartphone 

Transect - Recorded occurrences along a path 

Waypoints - Collection of coordinates along a route defined by latitude and longitude 

H T T P - Hypertext Transfer Protocol 



15 

Chapter 2: Field Overview 
This chapter discusses the specific devices and the methodology needed to collect 

relevant road kill data. An explanation is provided about how information is being 
gathered and stored. The communication process is explained as to how the information 
is sent from the mobile client to server/database. Various tools are discussed in providing 
different ways of implementing mobile applications. Related apps are presented which 
address environmental issues. 

2.1 Using Technology and Crowd Source to Address 
Environmental Challenges 

Research indicates that motorists would voluntarily report road kill observations 
on their daily commute if given appropriate technology. Such technology could be 
delivered through web-based applications [20] and mobile devices with built in G P S 
software [27] to provide accuracy [19] for data collection. After supplying data to 
researchers, the results that come from studying the data would assist the government in 
constructing wildlife crossings [20] or mending existing roads. This project was 
implemented for the purpose of improving the environment by reporting road kill through 
a mobile device. 

Crowdsourcing is the process of distributing an application to an unknown set of 
volunteers to solve a problem [40]. A crowdsourcing method permits numerous 
individuals to independently input road kill observations. This application provides 
individuals with a set of tools for the purpose of improving roads. Crowdsourcing also 
provides the developer with user feedback to improve the app for a better user 
experience. 

2.2 The Role of Database 

A database is a collection of digital data that is stored on the server [41] or 
directly to disk. A database is utilized on the mobile device to permit users to store past 
and present data. The database stores observation data, which are collected from the road 
kill. Collecting historical data is important for this project, as analyzers need to evaluate 
data from numerous reports. The important information that needs to be collected is 
broken down into the following categories: Time/Place, Road, Kill, and Additional. The 
different categories were selected because a data analyzer needs to know where and when 
the animal was killed, the composition of the road, what type of animal was killed, and 
any additional information that may help in analyzing the data. Using the above 
categories for this project, reporters can provide data analyzers with detailed reports that 
can be used to construct better roadways or modify existing ones. 



16 

Figure 2.1 The Communication Process between Mobile Client and Server/Database 

The communication protocol is a set of rules that allows a message to be 
communicated to the receiver [39]. This project contains a custom A P I that defines how 
the mobile client communicates with the server and database, as shown in Figure 2.1. An 
H T T P connection is established when a reporter uploads an observation to the server 
situated in the cloud, represented as a black arrow in the Figure. The parameters in the 
report are sent as a string in plain text to the server. After the server has validated the 
report, then the server stores the report into the remote database, represented as an orange 
arrow in the Figure. Once the data is stored into the database, a confirmation from the 
server is sent back to the reporter, represented as a red arrow. If the server has received 
an inaccurate report by the reporter, then an error message is sent back to the mobile 
client for correction, represented as a red arrow in the Figure. The confirmation and error 
messages communicate through the same H T T P connection that was established with the 
server earlier. 

2.4 Tools for Producing Mobile Applications 

This section provides a brief description of various mobile devices and mobile 
applications. The project can be developed in various mobile devices such as the i Phone, 
Windows Phone, and Android Phone. Creating applications on these devices means 
learning new languages, tools, designs, and procedures. Another method for creating the 
project could have been a mobile device that is a non-native based H T M L application, 
which is explained later in this chapter. There could have also been different types of 
communications to the server and different methods of storing data to a database. A more 
secure way of communicating to the server could have been utilized instead of a non-
secure method. Also, there are other methods that could have been performed instead of 
creating a native app (an application developed for a specific platform) for the project. 



17 

Smartphone and Application 

A smartphone device is a small handheld device that consists of a touch screen 
and weighs less than 2 pounds [50]. These devices have Internet, G P S and Near Field 
Communication (N F C) built into the device. Apps assist users in accomplishing certain 
tasks on their smartphone devices [36]. There are custom apps that operate with the 
devices' hardware for completing certain tasks on behalf of the user. Many devices can 
be used to make phone calls, send and receive text messages, check emails, stay 
organized, and so on. Apps can be used for such things as: entertainment, business, and 
searching the web [52]. Many apps permit a user to manipulate the information on the 
server-side wherever they are, provided that there is an Internet connection. Developers 
can design an app geared to user requirements and hardware devices. 

i Phone 

In order to get a valid signature to develop an app and submit applications to the 
App Store, an Apple Developer must register at the developer website [9]. The tools and 
languages listed below are essential for developers to design an app for the iPhone 
device. 

MacBook Pro [7] supports the use of a Unix-based operating system [49] known 
as Mac OS X, which is written in Objective-C that also gives developers an opportunity 
to create i Phone applications. i O S [3] is the mobile operating system for various Apple 
devices [47]. The i Phone environment uses the i Phone Application (I P A) to archive the 
i O S application files. X code [10] is used to create the i Phone application requiring an 
i O S [54] Software Development Kit (S D K). An i O S simulator is used in conjunction with 
X code, which is a helpful tool for developers to simulate the app as if the application 
were running on an i Phone device [5]. 

Objective-C is the language that applications are written in which is a set of 
mostly Smalltalk extensions, that are added to the widely used programming language C. 
Objective-C gives C full object-oriented capabilities that are simple and straightforward 
[8]. Cocoa Touch (written in Objective-C [2]) is an Application Programming Interface 
(A P I) that is added to the i Phone environment, allows the device to read the information 
from the user through the hardware [38]. 



18 

Figure 2.2 i Phone 3 G S 

There is a device for which the application has been created, that reporters can 
utilize in the field. The i Phone [6], as shown in Figure 2.2 [46], is an Internet and 
multimedia-enabled smartphone that runs various services to complete tasks [45]. 

Windows Phone 

In order to be able to develop an app and upload to the App Hub, a Windows 
Phone Developer must register at the developer website [24]. The tools and languages 
listed below are essential for developers to design an app for the Windows Phone. 

Windows Phone is the mobile operating system for various Windows Phones 
[42]. Windows is an NT-based operating system [53], which is written in C, C plus plus, and 
Assembly language, and supports the use of C plus. Windows Phone environment uses the 
Silverlight Application Package (X A P) [12] to archive the Windows application files. 
Windows Phone Software Development Kit (S D K) is a tool utilized in producing 
software for Windows Phones [23] which is written in C sharp [56]. Visual Studios [10] is 
used to create Windows Phone application, requiring the Windows Phone S D K in order 
to create applications [43]. Windows Phone simulator is used in conjunction with Visual 
Studios, which is a helpful tool for developers to simulate the app as if the application 
were running on a Windows Phone device [23]. 

C sharp is a programming language that utilizes object-oriented programming [37]. C sharp 
was created for Microsoft's .NET Framework. In creating the design and style of a 
Windows Phone application [22], a developer needs to know Extensible Application 
Markup Language (X A M L). X A M L also performs tasks that users can interact with 
through the Windows Phone. 



19 

Figure 2.3 Windows Phone 

The Windows Phone, as shown in Figure 2.3 [21] is a suitable candidate for 
creating the project as it has advanced features similar to the i Phone. The down side is 
that the device is not being adopted as fast as the i Phone or Android, which makes it 
more difficult to achieve a larger user base. 

Android Phone 

In order to authenticate and upload to Google play, an Android Developer must 
register at the developer website [15]. The tools and languages listed below are essential 
for developers to design an app for an Android Phone. 

Android is the mobile operating system for various Android devices [34]. The 
Android environment uses the Android Package Kit (A P K) (written in Java [35]) to 
archive the Android application files. Eclipse is used to create Android Phone 
applications [13] requiring the Android Software Development Kit (S D K). Eclipse is a 
tool utilized in producing software for Android [34] devices. The Android simulator is 
used in conjunction with Eclipse, which is a helpful tool for developers to simulate the 
app as if the application were running on an Android Phone device. 

Java is a programming language that utilizes object-oriented programming [48]. 
X M L is used to design the visual structure of the Android Phone U I and to make 
debugging problems easier to remedy [17]. 



20 

Figure 2.4 Androids Phone 

The Android Phone, as shown in Figure 2.4 [14] is a suitable candidate for 
creating the project. Android Phones have far more features that permit the user to 
accomplish more tasks with the device than the i Phone or Windows Phone. The Android 
Phone is being adopted at a faster rate because it is cheaper and accessible to all carriers. 
The down side for the device is that it is being created by numerous companies, which 
makes it harder for developers to create one app for multiple devices. 

Non-Native App 

An alternative method for creating a native app on the mobile device is to create 
an H T M L app similar to what was created for this project. An H T M L version is 
accessible to everyone that has an Internet connection and a mobile browser to access it. 
The H T M L app obtains user information the same way as it would for a native 
application. Developing an H T M L app would provide an overall enjoyable user 
experience because the developer can customize and perform anything without 
restrictions. The problem with developing an H T M L app is that reporters can only use the 
app when there is an Internet connection. This project needs to be accessed anywhere 
there are roads, meaning mountains, back roads, and so on. This means that cellular 
connections may not be obtainable for reporters to upload their observations. 

Structured Response System from Server-side to Client-side 

X M L is a human-readable language that machines understand as well [55]. X M L 
[32] assists the app in validating user input by reading messages from the server. 
JavaScript Object Notation (J SON) is an easy language for humans to read and write and 
for machines to understand and parse [18]. J SON is becoming a standard for developers 
who want to use X M L. J SON acts and behaves like X M L for storing and exchanging 
text information [33]. J SON is lighter, faster and easier to parse information from strings. 



21 

X M L was used instead of J SON, as J SON was not integrated into the developer library 
until i O S 5.0 [4]. 

Database Management Systems 

S Q Lite is a public domain that implements most of the S Q L standards and is an 
ACID-Compliant embedded relational database management system [51]. S Q Lite [28] is 
the local database used on the mobile device for storing report information. 

Derby is an open source relational database implemented in Java [1]. Derby has a 
small footprint, is S Q L standardized, and operates directly from disk. Derby is written in 
Java, which supports the Java V M that accesses the database. Derby utilizes more 
memory occupying several megabytes compared to S Q Lite, which occupies less than a 
few hundred kilobytes [30]. 

D b star (D b dot asterisk) reads and writes to a database utilizing the libraries f rom C/ C plus plus, 
implying that only C/ C plus plus programs can utilize the database. D b dot asterisk utilizes less memory, 
occupying fewer kilobytes than S Q Lite. S Q Lite binds to various programming languages 
meaning that any program can utilize the database [29]. 

Firebird is an embedded database system that can be developed to a full size 
enterprise-class client/server database. S Q Lite is an embedded database system only. 
Firebird utilizes more memory occupying several megabytes compared to S Q Lite, which 
occupies less than a few hundred kilobytes [31]. 

Communication Protocol between Client-side to Server-side 

Hypertext Transfer Protocol Secure (H T T P S) is a procedure that encrypts the 
information that is being transferred between client-side and server-side. H T T P S 
guarantees authenticity, confidentiality, and integrity from client to server. This type of 
approach prevents others from eavesdropping and man-in-the-middle attacks [44]. This 
project can benefit from H T T P S as the information being collected is considered to be 
sensitive data. In order to obtain a valid H T T P S communication, the developer must buy 
an S S L Certificate, which can range from several U S dollars to thousands of U S D. There 
is a free S S L Certificate that can be used, but that method has limitations that users may 
not deem secure enough. An H T T P S method was not used in this project, as security was 
not taken into account when the project was initially created. 

Alternative Mobile Devices 

There are other mobile devices that can be utilized in permitting a reporter to 
upload their observations such as: laptops, netbooks, and tablets. Laptops have larger 
screen sizes and can accomplish additional tasks that certain mobile devices cannot. 
Laptops are not ideal for this project because reporters are not keen about lugging around 
a heavy laptop with no cellular access to report road kill observations. Netbooks are 
smaller and lighter, but are less resource intense than laptops. They are also not ideal 



22 

because reporters need more resources to do various other tasks. Tablets contain larger 
screen sizes and have similar features to the various smart phones that are being utilized 
daily. However, tablets are not ideal, either, because of their higher cost, which limits 
accessibility. 

Alternative Methods for Data Collection 

There are various ways of collecting wildlife-vehicle collision data, which could 
have been utilized. A mass email could have been sent to various people asking for 
information about their observations. This method may be considered as spam for most 
people and therefore not the best choice. A phone call to various people could have been 
made asking for information about any observations on road kill. Most people do not like 
this method as they are busy and consider telemarketers annoying. A survey could have 
been made asking people for observations while they exit stores. This method would not 
yield enough data, as many individuals are not interested in taking surveys while in a rush 
to get home. Various individuals could complete a questionnaire about their observations. 
This method would not yield enough data either, as individuals are not interested in 
answering questions throughout their busy day. 

2.5 Similar Apps that Address Environmental Issues 

Figure 2.5 Roadkill App 

The Roadkill app shown in Figure 2.5 [11] is similar to what is being developed 
for this project. The app accepts road kill observations from commuters. The commuters 
can complete a single report by dropping a pin onto a map and filling out the necessary 
information about the road kill. Also, a transect feature permits the commuters to take 
multiple reports while observing a lengthy stretch of road. The report is then sent to a 
data analyzer's email account for further processing. 



23 

Figure 2.6 Street Bump App 

Street Bump, as shown in Figure 2.6 [25], is an app that detects potholes and 
reports them to city officials. As of this write up, the app is still being developed, but has 
some features that are worth noting. Commuters using this app are able to record 
"bumps" or potholes with the use of the i Phones' accelerometer. Once the device has 
detected a pothole, a G P S location is retrieved and the report is uploaded to the server for 
later analysis. The app provides city officials with reports of potential road problems. 



24 

Chapter 3: Functions Utilized for the 
Mobile Application 

This chapter discusses a variety of functions that are utilized in the mobile 
application that was created. An individual can set default units of measurement based on 
user preferences. The mobile app allows for such mechanisms as single, transect, and 
incomplete reports. The app can store reports remotely on the server as a single report or 
as multiple reports. A user has the ability to store reports, view completed reports, and 
omit reports that are stored locally on the application. The app has a notification system 
that reminds an individual of how many incomplete reports remain. 

3.1 Different ways of Recording a Report 

Figure 3.1 Different ways of Recording a Report 

A reporter can record a report, which consists of Internet or No Internet, as shown 
in Figure 3.1. No Internet reports are stored locally on the application and can later be 
stored remotely with an Internet connection. Internet equipped reports are stored locally 
on the application and stored remotely on the server. 



25 

3.2 Reporting with Transect 

Figure 3.2 Reporting with Transect 

A reporter can record a transect that consist of "observations" or "no 
observations". "No observation" is classified as a report because this information is 
important to document as well. Observations are collections of wildlife-vehicle collision 
data, which constitute a report. These reports are then stored locally on the application 
and stored remotely on the server, as shown in Figure 3.2. A transect is stored locally to 
the application if there is no Internet connectivity. Transect reports can be stored to the 
remote database when there is an Internet connection. 

3.3 Submitting a Report 

Figure 3.3 Submitting Report 

A reporter has to record time/place, road, kill, and additional data about the 
wildlife-vehicle collision before storing it on the server. This information constitutes a 
report, as shown in Figure 3.3. Any report taken by the reporter is stored locally on the 
application for later review. If a report is accompanied by an image, then the report is 
stored to the remote server with a value in the image parameter. If a report does not have 
an image, then the value of the image parameter is empty. The reporter can submit 
reports to the remote server when the mobile device has an Internet connection. 



26 

3.4 Uploading Multiple Reports 

Figure 3.4 Uploading Multiple Reports 

A reporter can upload multiple reports to the remote server. Each report 
constitutes an observation containing time/place, road, kill, and additional, as shown in 
Figure 3.4. To successfully upload all reports, each field needs to be completely filled in. 
If a report does not have an image, then the reporter can still store the report remotely to 
the server, as an image is optional. If a report is accompanied by an image, then the report 
is stored to the remote server with a value in the image parameter. If there is more than 
one incomplete report, then the app reiterates the process for all incomplete reports. The 
reporter can submit reports to the remote server when the mobile device has an Internet 
connection. 

3.5 Omitting Items from the Database 

Figure 3.5 Omitting Items from the Database 

Omitting items is useful as reports can grow exponentially. Omitting consists of 
deleting or purging reports from the application, as shown in Figure 3.5. The reporter can 
omit all reports, selected reports, or completed reports. A report can be complete and/or 
incomplete. 



27 

3.6 Storing Reports Locally 

Figure 3.6 Storing Reports Locally 

A reporter can record some or all of time/place, road, kill, and additional data for 
a specific observation. The different categories constitute a report and are ready to be 
marked as complete or incomplete, as shown in Figure 3.6. If a report has not been 
thoroughly completed, then the report is marked as incomplete. Reports that are 
submitted remotely to the server are marked as complete. Complete and incomplete 
reports are stored locally. 

3.7 Resuming Incomplete Reports 

Figure 3.7 Resuming Incomplete Reports 

A reporter can resume any report that has not been stored remotely to the server. 
A reporter is able to store a report locally and remotely after modifications have been 
made to the single report, as shown in Figure 3.7. Incomplete reports are stored locally to 
the application if there is no Internet connectivity or if the report is still incomplete. 
When there is an Internet connection, a reporter can store incomplete reports to a remote 
database. 



28 

3.8 Displaying Completed Reports 

Figure 3.8 Displaying Completed Reports 

A reporter can view previously submitted reports of past observations. This 
feature allows the reporter to keep a log of all reports that they have completed. A 
completed report is comprised of time/place, road, kill, and additional data, as shown in 
Figure 3.8. 

3.9 Badge Notification System 

Figure 3.9 Badge Notification System 

A notification system such as a badge number is useful in reminding reporters that 
there are incomplete reports that need to be completed. The application retrieves all 
incomplete reports stored within the local database and updates the badge number 
accordingly, as shown in Figure 3.9. 



29 

3.10 Setting Default Units of Measurement 

Figure 3.10 Setting Default Units of Measurement 

A reporter is capable of adjusting default units through settings, as shown in 
Figure 3.10. The units are globally changed throughout the application after the 
adjustments have been made. Units of measurement are Imperial units or International 
system of units. 



30 

Chapter 4: In-depth Description of the 
Design and Functionalities of the 
Application 

This chapter gives an in-depth description of the design and functionalities of the 
application. There were various tools that were employed for creating the application. A 
visual display of the database helps in explaining the table and attributes that were used 
for this project. The application permits setting default units of measurements. A reporter 
has the ability to generate a single or transect report. Uploading a single report from the 
mobile device to the server is explained. The app provides a method for adjusting 
incomplete reports and reviewing completed reports stored locally. A method is given for 
uploading incomplete observations to the remote database. A reporter can omit reports 
from the local database on the device without modifying the remote database. A 
notification system was implemented for alerting a reporter about an incomplete report. 

4.1 Mobile Device Tools Utilized 

i O S is the operating system that was chosen, which allows an application to be 
used on the mobile device. X code is the tool used for developing an application for the 
mobile device. Objective-C is the language used to construct the mobile application. i O S 
Simulator is used to test the application through a virtual environment. Cocoa Touch is 
the language used to manipulate the application with various finger gestures. The i Phone 
allows for finger gestures and access to mobile device hardware features. Mac O S X is 
the operating system that was chosen, which allows for creating mobile device 
applications for the i Phone. S Q Lite is a database management system for executing 
queries, storing data, and retrieving data. X M L is the language used as a response from 
the server-side to the client-side with information to manipulate the application. 



31 

4.2 Conceptual Database Design 

Figure 4.1 Conceptual Database Design 

The database table is entitled Roadkill, which consists of attributes that are 
essential for a detailed report, as shown in Figure 4.1. The attributes are: r kid, currdate, 
currtime, latitude, longitude, segment num, segment type, Max Speed num, Max Speed type, 
Lanes, Lane underscore Visibility, Surrounding, Edge, Wildlife underscore Signs, Kill underscore 
Status, ID underscore Confidence, Seen underscore Kill underscore Before, Country, State, City, Kill 
underscore Size, Kill underscore Species underscore Common underscore Name, 
Kill underscore Species underscore Latin underscore Name, Kill underscore Class, Weather, 

Temperature, Photo, Comments, 
All underscore Fin, Submitted, and Transect underscore Points. 

The S Q L database requires data types to determine what values are going to be 
inserted into the database (Appendix A, A.1). Data types are useful because the app needs 
to know how to retrieve those values and display them in the specific fields accordingly. 
The following data types are used: integer, tiny int, text, varchar, and blob. 
Data Types 

INTEGER 

Signed integer can be stored as 1-4, 6, or 8 bytes. TINY INT is considered to be an integer as well. 

TEXT 

Text string can be encoded in U T F-8 and stored into the database. 
VARCHAR is considered to be text as well. 



32 

BLOB 

Blob stores the data exactly as it is received. 

4.3 Initiating a Report with New Entry 

Figure 4.2 Initiating a Report with New Entry 

The "New Entry" button initializes a report selection, as shown in Figure 4.2. An 
alert message pops up letting the user choose from a single report or transect report. 
Based on the device's Wi-Fi/3G capabilities, a user is taken to one of two different report 
views for a single report. If Wi-Fi/3 G is enabled, then the user is taken to a report that 
auto fills some of the fields. If Wi-Fi/3 G is not enabled, then the user is taken to a report 
where each field needs to be manually completed. If a transect report is selected, then the 
user is taken to the transect view. 



33 

4.3.1 Single Report 

There are four diverse categories in the single report: Time/Place, Road, Kill, and 
Additional. 

Figure 4.3 Automatically Retrieving Time/Place 

The Time and Place category takes the user ' s date, time, latitude, and longitude at 
the point of initializing the report, as shown in Figure 4.3. 

Information f rom the mobile device is automatically inserted into its respective 
areas with specific information. Date and time are retrieved f rom the mobile device itself 
and formatted to present t ime as H H colon m m colon s s and date as y y y y hyphen M M hyphen d d With an 

Internet connection, the latitude and longitude are automatically collected and inserted into their 
fields as decimal degrees f rom the location manager library. Without Internet connection, 
the latitude and longitude attempts to automatically input the location of the device as 
decimal degrees f rom the location manager library. 



34 

Figure 4.4 Manually Inserting Place 

If the location is not acquired for whatever reason, then the user has to manually 
insert the latitude and longitude of the report in decimal degrees, as shown in Figure 4.4. 
The placeholder displays how to input the information into the text field. After the 
information has been inserted into the text field, the app validates and notifies the user if 
the information is invalid. Regular expressions are used to validate both latitude and 
longitude text fields. The regular expression verifies if the string is between -90.000000 
and 90.000000 for latitude and -180.000000 and 180.000000 for longitude. If the input is 
still invalid, then an exclamation mark error button is displayed next to the invalid text 
fields. Once the button is pressed, an alert message displays a valid format for the text 
field. After the user has inserted valid information into the text field and presses the done 
button, the numbers and punctuation keyboard is dismissed. 



35 

Figure 4.5 Inserting Road Information 

The Road category takes the user's information about the road upon which the 
road kill was found, as shown in Figure 4.5. 

The text fields display a number and punctuation keyboard. The user is able to 
input a whole number or a decimal number to the tenth place. The placeholder displays 
how to input the information into the text field. After the information has been inserted 
into the text field, the app validates and provides notification if the information is invalid. 
Regular expressions are used to validate both segment and max speed text fields. The 
regular expression verifies if the string is either a whole number or a decimal number to 
the tenth place. If the input is still invalid, then an exclamation mark error button is 
displayed next to the invalid text fields. Once the button is pressed, an alert message 
displays a valid format for the text field. After the user has inserted valid information into 
the text field and presses the done button, the numbers and punctuation keyboard is 
dismissed. 

Based on the unit of measurements selected in the settings page, the segment and 
max speed pickers are predetermined to a unit standard. Every picker has its own set of 
values. Users can adjust any picker to provide precise information about the road. Once 
the user has selected a value for the picker, the title changes and the position of the value 
is retained. If the user wants to adjust the value to something else, then the picker scrolls 
to the value previously chosen and allows the user to change to a different value. 



36 

Figure 4.6 Inserting Killed Information 

The Kill category takes in user information about the dead animal that was found, 
as shown in Figure 4.6. 

Information from the mobile device is automatically inserted into their respective 
areas with specific information. With an Internet connection the country, state, and city 
are automatically inserted from the reverse geocoder library. A reverse geocoder takes 
the latitude and longitude previously retrieved and establishes the place mark of the 
device. The place marks used in this app are country, locality, and administrativeArea. 
All remaining fields have to be manually inserted. The placeholder displays how to input 
the information into the text field. After the information has been inserted into the text 
field, the app validates and notifies the user if the information is invalid. Regular 
expressions are used to validate all text fields. The regular expression verifies if the string 
contains upper/lower alphabet characters with or without spaces to a maximum of 255 
characters. If the input is still invalid, then an exclamation mark error button is displayed 
next to the invalid text fields. Once the button is pressed, an alert message displays a 
valid format for the text field. After the user has inserted valid information into the text 
field and presses the done button, the alphabetical keyboard is dismissed. 

Users can adjust any picker to provide precise information about the kill. Once the 
user has selected a value for the picker, the title changes and the position of the value is 
retained. If the user wants to adjust the value to something else, then the picker scrolls to 
the value previously chosen and allows the user to change to a different value. 



37 

Figure 4.7 Manually Inserting Kill 

Without an Internet connection, the user has to manually insert country, state, and 
city using an alphabetical keyboard for the kill, as shown in Figure 4.7. All remaining 
fields have to be manually inserted with the previously mentioned methods from the 
automatic insertion. 

Figure 4.8 Supplementary Information Insertions 

The Additional category takes in additional information about the dead animal, as 
shown in Figure 4.8. 

With an Internet connection, the weather and temperature are automatically 
inserted into the weather and temperature fields. The latitude and longitude that were 
previously obtained from the mobile device are used in acquiring the weather through an 
online weather A P I [16]. Weather information is posted back to the app through H T T P as 



38 

X M L. To acquire the current weather and temperature values, the X M L string is parsed 
using the N S X M L Parser. 

Figure 4.9 Manually Inserting Supplementary Information 

Without an Internet connection, the user has to manually select weather and the 
temperature unit, as shown in Figure 4.9. Weather is defaulted to clear. Based on the unit 
of measurements selected in the settings page, the temperature picker is predetermined to 
a unit standard. Users can adjust pickers to provide precise information about weather 
and temperature. Once the user has selected a value for the picker, the title changes and 
the position of the value is retained. If the user wants to adjust the value to something 
else, then the picker scrolls to the value previously chosen and allows the user to change 
to a different value. 

Without an Internet connection, the user has to manually input the temperature 
into the text field, as shown in Figure 4.9. The placeholder displays how to input the 
information into the text field. After the information has been inserted into the text field, 
the app validates and notifies the user if the information is invalid. A regular expression 
is used to validate the temperature text field. The regular expression verifies if the string 
contains a whole number with a maximum of three numbers. If the input is still invalid, 
then an exclamation mark error button is displayed next to the invalid text fields. Once 
the button is pressed, an alert message displays a valid format for the text field. After the 
user has inserted valid information into the text field and presses the done button, the 
numbers and punctuation keyboard is dismissed. 



39 

Figure 4.10 Actions for Adding and Removing Photo 

An optional photo can be selected if a user presses the "Add Photo" button, as 
shown in Figure 4.10. Doing so permits the user to select from three different actions: 
remove photo, take photo, and choose existing photo. "Remove Photo" assures that the 
image view is set to nil and the image is no longer displayed. "Take Photo" calls the 
image picker controller class, which permits the user to utilize the built-in camera on the 
mobile device and places the image to the image view. "Choose Existing Photo" calls an 
image picker controller class, which permits the user to select a photo from the camera 
roll or photo library on the mobile device and places the image to the image view. After 
an image has been selected, the user is able to tap on a thumbnail of the image to display 
a full sized image. 

A text view is then displayed to let the user input optional comments if they 
believe more information is required for the report. When the text view is activated, a 
done button is located on the upper right of the additional category. This button assists in 
dismissing the keyboard when done. After the information has been inserted into the text 
view, the app validates and notifies if the information is invalid. A regular expression is 
used to validate the text view comments. The regular expression verifies if the string 
contains alphabet, numbers, periods, and spaces with a maximum size of 255 characters. 
If the input is still invalid, then an exclamation mark error button is displayed next to the 
invalid text view. Once the button is pressed, an alert message displays a valid format for 
the text view. After the user has inserted valid information into the text view and presses 
the done button, the keyboard is dismissed. 



40 

Figure 4.11 Actions for Processing a Report 

Pressing the "Action" button allows for processing the report with three 
alternative choices: "Abort", "Save", or "Submit", as shown in Figure 4.11. 

"Abort" relocates to the home page without saving and submitting the current 
report. 

The app saves the current report locally. To save the report correctly, there are 
preventions implemented. A function is called before the data is saved, which scrutinizes 
latitude, longitude, and temperature against regular expressions mentioned earlier for 
invalid field entry. The prevention is implemented, so that the data being requested from 
the Internet has time to be retrieved and stored in certain fields. To save to the local 
database, an SQL statement is required. An insert statement is executed to collect all 
variables from the four different categories mentioned. The values from a reporter are 
inserted into the database to their corresponding attributes listed in the Roadkill database. 
As the information is being saved to the local database, an activity indicator is displayed 
informing the user that the app is still processing the information. Also, the app 
determines if all fields are filled in 1 or not filled in 0 and sets the submitted attribute 
value to 0. Once the app has been successfully inserted into the local database, the app 
relocates to the home page. 

If there is Internet connectivity, the "Submit" button is enabled to submit the 
report. First, the program verifies if all required fields are filled in. If it is not filled in 
correctly, then the user is alerted that there are field values missing before they are able to 
submit. Second, the program verifies if there is Internet by asking for an Internet page 
request. Lastly, the app verifies if the server is active and the upload file located on the 
server is accessible. If either Internet or server is not obtainable, then an alert from the 
app notifies the user about the problem and the data is saved locally as mentioned above. 



41 

If the fields are filled in correctly and Internet/server is obtainable, then the 
program proceeds to send the data to the server. First, if there is an image, the image is 
uploaded to the server as a dot j p g file. The app sets up a U R L request with an H T T P 
method of POST. A unique valid H T M L post is created with a generated random number 
for the header. A content type for the H T T P header field of multipart/form-data is set. 
The body of the post is created with a start header, the name of the image, content type of 
image/jpeg, image data being used, and ending header. Every step of the body except the 
image data being used is encoded using the U T F-8 encoding system. A U R L connection 
is made with a synchronous request of the body and a response from the server. The 
server replies with an X M L response containing one of the following: an image file 
name, image file error, or empty file. 

Second, a new post is created containing all the information from the report and 
the response from the server. The string is encoded in ASCII and the length of the post 
being sent is obtained. The app sets up the U R L with the string of information inserted 
from the report. The H T T P method is set to POST. The header is started with length of 
the post that was encoded earlier and the content-type is set to application forward slash x hyphen 

www hyphen form hyphen u r l encode. A U R L connection is made again with a synchronous 
request of the new post and a response from the server. The server replies with an X M L response 

containing one of the following: submit error or submit success. If submit error is returned, then the app 
parses the corresponding error messages from the server. The X M L tags given are 
flagged in the app as errors for the specific fields that need to be changed. If submit 
success is received, then the app saves locally. As the information is being uploaded to 
the server and updated to the local database, an activity indicator is displayed informing 
the user that the app is still processing the information. As the information is being saved 
and uploaded to the server, the app sets all fields as filled in with the value of 1 and 
submitted with the value of 1. 

4.3.2 Mechanisms of Transect 

Figure 4.12 An Example of Transect with Waypoints 

A transect is a different type of report consisting of one or more reports that 
includes waypoints, as shown in Figure 4.12. 



42 

Figure 4.13 Mechanisms of Transect 

After transect is initiated, a reporter is presented with three buttons, as shown in 
Figure 4.13. The first button, "Start Transect", permits a reporter to initiate a transect 
report, which obtains the origin location and initializes the waypoints to be called every 
five minutes. The second button, "Record Report", lets a reporter record a report while in 
transect mode. The reporter can record data utilizing the single report method. Actions 
for this report are modified to "Abort" and "Save". Abort cancels the current report and 
relocates to the transect page. Save stores the report into the local database as a single 
report and adds a 1 to the Transect underscore Points attribute. The third button, "Done" stops the 
waypoints function from being called and obtains the destination location. An array 
containing Transect underscore Points equaling 1 is created. Using this array, an S Q L update 
statement is called to insert the start, way, and end points to the Transect underscore Points attribute 
as a single string. This string separates latitude and longitude with commas. 



43 

Figure 4.14 Notifying that Action is needed 

A label is displayed when the "Done" button is clicked and notifies the reporter 
that further action is needed, as shown in Figure 4.14. If there are r epor t s , then the label 
displays "Reports needed to submit". If there are no reports, then the label displays 
"Submit transect". 

Figure 4.15 Actions for Processing Transect 

The "Action" button shown in Figure 4.14, allows the user to process a complete 
transect, as shown in Figure 4.15. 

If the reporter has started the report and does not want to continue, then the home 
button stops the waypoints from being called and relocates to the home page. 

"Submit", allows the user to upload transect information to the server. If Wi-
Fi /30 is unobtainable, then submitting saves the reports locally and the user is able to 



44 

submit later. When Wi-Fi/3 G is obtainable, then the user is able to upload the reports 
remotely and update locally. To do this, the primary numbers that were stored in the array 
when the "Done" button was pressed are used again. A for loop is used to process the 
primary numbers in the array. An S Q L select statement is used to select all data from the 
database using the primary number in the array, which stores these values into temporary 
variables. 

If the fields are filled in correctly and Internet/server is obtainable, then the 
program proceeds to send the data to the server. First, if there is an image, the image is 
uploaded to the server as a dot j peg file. The app sets up a U R L request with an H T T P 
method of POST. A unique valid H T M L post is created with a generated random number 
for the header. A content type for the H T T P header field of multipart forward slash form hyphen 

data is set. The body of the post is created with a start header, the name of the image, content type of 
image/j peg, image data being used, and ending header. Every step of the body except the 
image data being used is encoded using the U T F-8 encoding system. A U R L connection 
is made with a synchronous request of the body and a response from the server. The 
server replies with an X M L response containing one of the following: an image file 
name, image file error, or empty file. 

Second, a new post is created containing all the information from the report and 
the response from the server. The string is encoded in ASCII and the length of the post 
being sent is obtained. The app sets up the U R L with the string of information inserted 
from the report. The H T T P method is set to POST. The header is started with the length 
of the post that was encoded earlier and the content-type is set to application forward slash x hyphen 

w w w hyphen form hyphen u r l encode. A U R L connection is made again with a synchronous 
request of the new post and a response from the server. The server replies with an X M L response 

containing one of the following: submit error or submit success. If submit error is returned, then the 
app continues to the next primary number in the array. If submit success is received, then 
the app updates locally. As the information is being uploaded to the server and updated to 
the local database, an activity indicator is displayed informing the user that the app is still 
processing the information. As the information is being saved and uploaded to the server, 
the submitted value is set to 1 by the app. The process is repeated until all primary 
numbers in the array have been processed. If the report has not been completed, then the 
upload steps are skipped for that report to the next primary number in the array. Once 
every report has been processed, the user is relocated to the home page. If there are no 
reports recorded, then a single report is saved locally and sent to the remote database 
(same steps above) with default values and transect points. 



45 

4.4 Uploading Incomplete Items to the Server 

Figure 4.16 Uploading Incomplete Items to the Server 

If there are incomplete entries that are ready to be uploaded to the server, then the 
"Upload I t e m s " button is displayed on the lower right of the home page view, as shown 
in Figure 4.16. Uploaded i tems permit the user to upload multiple entries to the server. 
An S Q L select statement retrieves Submitted reports that equal to 0 and All underscore Fin that 
equal to 1 from the local database, and stores the primary numbers in an array. 

A for loop is used to process the primary numbers in the array. An S Q L select 
statement is used to select all data from the database using the primary number in the 
array, which stores these values into temporary variables. 

After the app verifies for Internet and file accessibility, then the i tems can be 
uploaded to the server one at a time. First, if there is an image, the image is uploaded to 
the server as a dot j peg file. The app sets up a U R L request with an H T T P method of POST. 
A unique valid H T M L post is created with a generated random number header. A content 
type for the H T T P header field of multipart forward slash form hyphen data is set. The body of the 

post is created with a start header, the name of the image, content type of image forward slash j peg, 
image data being used, and ending header. Every step of the body except the image data being used 

is encoded using the U T F-8 encoding system. A U R L connection is made with a 
synchronous request of the body and a response from the server. The server replies with 
an X M L response containing one of the following: an image file name, image file error, 
or empty file. 

Second, a new post is created containing all the information from the report and 
the response from the server. The string is encoded in ASCII and the length of the post 
being sent is obtained. The app sets up the U R L with the string of information inserted 
from the report. The H T T P method is set to POST. The header is started with length of 
the post that was encoded earlier, and the content-type is set to application forward slash x hyphen 

www hyphen form hyphen 



46 

u r l encode. A U R L connection is made again with a synchronous request of the new post 
and a response from the server. The server replies with an X M L response containing one 
of the following: submit error or submit success. If a submit error is returned, then the 
app continues to the next primary number in the array. If submit success is received, then 
the app updates locally. As the information is being uploaded to the server and updated to 
the local database, an activity indicator is displayed informing the user that the app is still 
processing the information. As the information is being saved and uploaded to the server, 
the submitted value is set to 1 by the app. The process is repeated until all primary 
numbers in the array have been processed. If Internet is not obtainable between entries, 
then the program breaks from for loop and stops uploading information to the server. 

4.5 Omitting Items from the Local Database 

Figure 4.17 Omitting Items from the Local Database 

When there are reports in the database, the "Omit Items" button is displayed on 
the lower left of the home page view, as shown in Figure 4.16. The "Omit Items" button 
relocates to the Delete Entries view, as shown in Figure 4.17. The table view displays 
reports from the local database. The table view has a function that counts the number of 
rows in the database and presents that many entries. This table view retrieves data from 
the database and presents the date and time in one record cell. The date is displayed as the 
text label of the report while the time is displayed as the detail text label of the report. A 
report that has been submitted is accompanied with a green check mark. If the record has 
not been submitted, then a non-submitted image is shown instead. To delete a selected 
report from the local database, tap a report to reveal a check mark to the right of the 
report. The primary number is collected into an array when the report has been selected 
and waits for further processing. Tapping the report again conceals the check mark and 
the primary number is removed from the array. 



47 

Figure 4.18 Actions for Omitting Reports 

The "Action" button allows for deleting all, deleting selected, purging completed, 
and returning home, as shown in Figure 4.18. Home relocates to the home page. 

"Delete All" removes all complete and incomplete reports from the local 
database. Before removing the reports, an alert message is displayed confirming "YES" 
to delete or "NO" to not delete. If a user has chosen "YES", then an S Q L select statement 
selects all reports in the local database collecting the primary numbers into in array. A for 
loop is used to delete all primary numbers in the array with an S Q L delete statement. 
After all reports have been processed, the user relocates to the home page. 

"Delete Selected" removes the selected reports from the local database. The 
primary numbers are collected into in array when the user taps on a report as mentioned 
earlier. A for loop is used to delete all primary numbers in the array with an S Q L delete 
statement. After the process has completed, the table view refreshes displaying the 
reports that remain in the local database. If there are no reports in the local database, the 
user relocates to the home page. 

"Purge Completed" removes the completed reports from the local database. An S Q L 
select statement selects all reports that have been submitted and groups these primary 
numbers into in array. A for loop is used to delete these primary numbers in the array 
with an S Q L delete statement. 

4.6 Updating an Incomplete Report 

An incomplete report is accessible to a reporter for data that have not been 
completed. The "Action" button has the same structure and functionality as the single 
report action button mentioned above. 



48 

Figure 4.19 Retrieved Time/Place 

The Time and Place category retrieves the user's date, time, latitude, and 
longitude of the report that was previously saved and inserted into their respective areas 
from the local database, as shown in Figure 4.19. These label values are not changeable. 

Figure 4.20 Updating Road Information 

The Road category retrieves user information about the report that was previously 
saved and inserted into their respective areas from the local database, as shown in Figure 
4.20. If a reporter has inserted values in the text fields, then those values are displayed. A 
reporter is permitted to change the information from the text fields. Changes made follow 
the same structure as the single report mentioned above for validating information for 
each text field. Picker values are retrieved from the database based on the reporter's 
selections. The values of these pickers are changeable. 



49 

Figure 4.21 Updating Killed Information 

The Kill category retrieves user information about the report that was previously 
saved and inserted into their respective areas from the local database, as shown in Figure 
4.21. Country, state, and city are not changeable. If a reporter has inserted values in the 
text fields, then those values are displayed. Reporters are permitted to change the 
information from the text fields. Changes made follow the same structure as the single 
report mentioned above for validating information for each text field. Picker values are 
retrieved from the database based on the reporter's selections. The values of these pickers 
are changeable. 

Figure 4.22 Updating Supplementary Information 

The Additional category retrieves user information about the report that was previously 
saved and inserted into their respective areas from the local database, as shown in Figure 
4.22. Weather and temperature are not changeable. If an image was stored, then the 
image is retrieved from the local database and displayed. The image is changeable and 



50 

has the same actions as the single report mentioned above. If a reporter has inserted a 
value in the text view, then that value is displayed. A reporter is permitted to change the 
information from the text view. Changes made follow the same structure as the single 
report mentioned above for validating information for the text view. 

4.7 Retrieving a Completed Report 

Figure 4.23 Retrieving a Completed Report 

When the user selects a report from the table view of the home page, the primary 
number is transmitted to the complete view. The app executes an S Q L select statement 
using the primary number received. After the app finds the report, it inserts the values 
into their respective areas from the local database, as shown in Figure 4.23. The app does 
not allow a user to modify any retrieved information in the report. 



51 

Figure 4.24 Actions for Completed Report 

After the user has finished reviewing the completed report, the "Home" button 
relocates to the home page, as shown in Figure 4.24. 

4.8 Badge Number Notification 

Figure 4.25 Badge Number Notification 

The total number of incomplete reports in the local database determines the badge 
number. This number is shown on the app icons, as shown in Figure 4.25. The Badge 
function is called after reports are removed from the local database on the home page. 
When returning from any views to the main screen in the application, a badge function is 
executed updating the badge number. Primary numbers are grouped into an array through 
the use of an S Q L select statement on the local database searching for incomplete reports. 
The total number of elements in the array is stored as the shared application number. This 
shared application number is displayed on the app icon as a badge. 



52 

4.9 Setting Default Units of Measurement 

Figure 4.26 Setting Default Units of Measurement 

The "Settings" button is shown at the centered bottom of the home page view. 
Settings provide the user with a feature of adjusting the units of measurement in the app, 
as shown in Figure 4.26. There exist two types of units: Imperial and International 
System. Once the user has set their units of choice, these units are globally adjusted 
throughout the app with the use of user-shared variables. 

Units are either "ON" or "OFF" in the settings page. On indicates that the units are 
enabled. Off indicates that the units are disabled. Both units cannot be enabled at the 
same time, as the app is either using Imperial or International system units. Fields that 
utilize these settings of units are segment, speed, and temperature. Segment has units M I 
(Miles) or K M (Kilometers). Speed has units M P H (Miles per hour) or K M/H 
(Kilometers per hour). Temperature has units F (Fahrenheit) or C (Celsius). These default 
settings are remembered even after the app is closed and removed from the multitasking 
section of the mobile device. 



53 

4.10 Functionalities of the Home Page 

Figure 4.27 Functionalities of the Home Page 

The home page displays complete and incomplete reports, as shown in Figure 
4.27. Users may also modify the reports that are stored locally by editing or deleting 
them. The New Entry button aids the reporter in initiating a report. Settings add an 
additional feature for setting global variables. The legend is positioned at the upper left of 
the home page view and depicts the icon for which each was intended. 

The table view displays reports from the local database. The table view has a 
function that counts the number of rows in the database and presents that many entries. 
This table view retrieves data from the database and presents the date and time in one 
record cell. The date is displayed as the text label of the report while the time is displayed 
as the detail text label of the report. A report that has been submitted is accompanied with 
a green check mark. If the record has not been submitted, then a non-submitted image is 
shown instead. When a user selects a certain row from the table view, a primary number 
of that row is transmitted to the incomplete or complete view for further processing. 
Sending this primary number provides the correct record to be viewed. 

Swiping left or right allows a user to delete a single row. In doing so, it displays a 
"Delete" button to the right of the row. After pressing the button, an S Q L delete 
statement omits the report from the local database by using the primary number of that 
row. 



54 

Chapter 5: Conclusions 
There were four goals that were accomplished in this project. These goals were to: 

create a functional mobile application, allow for transect observations, obtain crowd-
source road kill information through an i Phone device, and assist in creating a repository 
of data related to road kill. Through the creation and implementation of the Splatter 
Spotter, this project was able to successfully accomplish all four goals. First, a functional 
mobile application was created to allow a reporter to input data into a single or a transect 
report. Reports could be stored to a local database on the device or to a remote database 
on the server. Reporters could view or modify existing reports that were stored on the 
mobile device. Second, transect observations were initiated to allow a reporter to observe 
a longer segment of the road. This type of observation utilizes the G P S feature built into 
the i Phone device to report various locations throughout the observed segment of road. 
Third, a crowd-sourcing system was accomplished in that road kill observations could be 
collected. Anyone with an i Phone device and the Splatter Spotter application could 
participate in collecting data about road kill. Fourth, a protocol was devised through the 
application that assisted in creating a repository of data related to road kill. All reports 
could be stored into one central location, allowing anyone to analyze the road kill data. 
This project could be transplanted to other crowd-sourcing mobile applications. For 
example, a botanist or entomologist can use what was done in this project to report 
significant information on plants/insects in the field. All it takes is an idea, and the 
willingness to produce an application. 



55 

Chapter 6: Future Work 
A variety of additional modifications could be constructed if a developer were 

interested in improving this road kill application. A more aesthetic look for the 
application could be created for smoother user navigation. Alternative methods could be 
implemented for communication between client-side and server-side. Application 
features could be improved for better user interactions. An application could be created 
on alternative platforms and various tests could be performed for enhancements. 

A newer design could allow the reporters to navigate through the application more 
efficiently. A "how to guide" could be created to assist reporters when they initially use 
the application. Retina could be integrated into the application, so that reporters can have 
a better viewing experience. An adjustment could be made to the code, so that the 
application can be used in either portrait or landscape mode. This would help in 
displaying images taken by the mobile device to be seen correctly in any orientation. 

A secure communication protocol could be created to prevent snoopers from 
obtaining sensitive data when submitting to the server. Updating H T T P to H T T P S 
provides a more secure way of communicating between client-side and server-side. 
Exchanging information from server-side to client-side could also be improved by using 
J SON instead of X M L. J SON could provide a faster, more reliable way for the 
application to parse the information from the server. 

A feature could be created to permit a reporter to backup their local data on the 
mobile device. This could be accomplished by generating a website to download and 
upload backup files to and from the mobile device. Another backup solution could be the 
integration of i Cloud that would allow reporters to backup local data to a remote location. 
Also, a function could be developed to allow reporters to sort/search reports by date, 
name, classification, complete, incomplete, and so on. An additional function could allow 
the reporters to visually display local data on a map using the i Phone device. Another 
function could allow the application to download a file from the server permitting the 
reporters to input road kill information faster. The file should contain animal common 
names and animal Latin names. This could be accomplished when reporters are inputting 
a common name or Latin name of the road kill to auto complete the remainder of the 
report. 

The application could be built on another platform such as the i Pad, Android, and 
Windows Phone to expand the reach of collecting data related to road kill. Such an 
application would allow an integration of various social networks for sharing and posting 
of road kill reports. Beta testing could be conducted to improve on any bugs that may 
exist. Also, stress testing could be conducted to simulate multiple uploads at the same 
time. The application could then be altered for a better user experience based on the 
results of the stress test. 



56 

References 
1. Apache Software Foundation. (2012, June). What is Apache Derby?. Retrieved from 
http://db.apache.org/derby/#What+i s+Apache+Derby. 

2. Apple Inc. (n.d.). Cocoa Touch. Retrieved from 
http://developer.apple.com/technologies/ios/cocoa-touch.html. 

3. Apple Inc. (2007, June). iOS. Retrieved from Apple website 
http://www.apple.com/ios/. 

4. Apple Inc. (2012, June). iOS 5.0. Retrieved from 
http://developer.apple.com/library/ios/#releasenotes/General/WhatsNewIniPhoneOS/Arti 
cles/iOS5.html. 

5. Apple Inc. (2012, June). iOS Simulator. Retrieved from 
http://developer.apple.com/library/ios/#documentation/Xcode/Conceptual/ios_developme 
nt_workfl ow/ 25-
Using_iOS_Simulator/ios_simulator_application.html#//apple_ref/doc/uid/TP40007959-
CH9-SW1. 

6. Apple Inc. (2009, June). iPhone. Retrieved from Apple website 
http://www.apple.com/iphone/. 

7. Apple Inc. (2006, January). Mac. Retrieved from Apple website 
http://www.apple.com/mac/. 

8. Apple Inc. (2007, October). Objective-C. Retrieved from 
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/In 
troduction/introObj ectiveC.html. 

9. Apple Inc. (n.d.). Register. Retrieved from Apple website 
http://developer.apple.com/programs/register/. 

10. Apple Inc. (2012, June). Xcode. Retrieved from Apple website 
http://developer.apple.com/xcode/. 

11. CSUCI. (n.d.). Splatter Spotter Overview. Retrieved from CSUCI website 
http://roadkill.csuci .edu/. 

12. erikreitan. (2008, June). ASP.NET - Silverlight XAP FAQ. Retrieved from 
http://forums.asp.net/tA277554.aspx. 

13. Google. (n.d.). Download the Android SDK. Retrieved from 
http://developer.android.com/sdk/index.html. 

http://db.apache.org/derby/%23What+i
http://developer.apple.com/technologies/ios/cocoa-touch.html
http://www.apple.com/ios/
http://developer.apple.com/library/ios/%23releasenotes/General/WhatsNewIniPhoneOS/Arti
http://developer.apple.com/library/ios/%23documentation/Xcode/Conceptual/ios_developme
http://www.apple.com/iphone/
http://www.apple.com/mac/
http://developer.apple.com/library/mac/%23documentation/Cocoa/Conceptual/ObjectiveC/In
http://developer.apple.com/programs/register/
http://developer.apple.com/xcode/
http://roadkill.csuci
http://forums.asp.net/tA277554.aspx
http://developer.android.com/sdk/index.html


57 

14. Google. (2011, November). Galaxy Nexus 4G (LTE). Retrieved from 
http://www.android.com/devices/detail/galaxy-nexus-4g-lte. 

15. Google. (n.d.). Google Play Android Developer Console. Retrieved from 
https://accounts.google.com/ServiceLogin?service=androiddeveloper&passive=true&nui 
=1&continue=https://play.google.com/apps/publish/&followup=https://play.google.com/ 
apps/publish/. 

16. Google. (2010, February). Google weather api. Retrieved from 
http://www.google.com/ig/api?weather=. 

17. Google (2012, July). XML layouts. Retrieved from 
http://developer.android.com/guide/topics/ui/declaring-layout.html. 

18. json. (1999, December). Introducing json. Retrieved from JSON website 
http://www.j son.org/. 

19. Kolowski, J., & Nielsen, C. (2008). Using penrose distance to identify potential risk 
of wildlife-vehicle collisions. Biological Conservation, 141, 1119-1128. 

20. Lynda, Mapes V. (2012, March). Animals on the move: first survey results, and 
photos galore. Retrieved from 
http://seattletimes.nwsource.com/html/fieldnotes/2017670592_animals_on_the_move_fir 
st_survey_results_and_photos_galore.html. 

21. Microsoft. (2010, November). Discover. Retrieved from 
http://www.microsoft.com/windowsphone/en-us/features/default.aspx. 

22. Microsoft. (2012, March). How to create your first silverlight application for 
windows phone. Retrieved from http://msdn.microsoft.com/en-
us/library/ff402526(v=vs.92).aspx. 

23. Microsoft. (2012, March). Windows Phone Development. Retrieved from 
http://msdn.microsoft.com/en-us/library/ff402535(v=vs.92).aspx. 

24. Microsoft Corporation. (n.d.). Membership. Retrieved from 
http://create.msdn.com/en-us/home/membership. 

25. New Urban Mechanics. (2011, February). Street Bump. Retrieved from New Urban 
Mechanics website http://www.newurbanmechanics.org/projects/streetscapes/bump/. 

26. Ojeda, D. (2012). Web-based reporting system for road kill. 

http://www.android.com/devices/detail/galaxy-nexus-4g-lte
https://accounts.google.com/ServiceLogin?service=androiddeveloper&passive=true&nui
https://play.google.com/apps/publish/&followup=https://play.google.com/
http://www.google.com/ig/api?weather=
http://developer.android.com/guide/topics/ui/declaring-layout.html
http://www.j
http://seattletimes.nwsource.com/html/fieldnotes/2017670592_animals_on_the_move_fir
http://www.microsoft.com/windowsphone/en-us/features/default.aspx
http://msdn.microsoft.com/en-
http://msdn.microsoft.com/en-us/library/ff402535(v=vs.92).aspx
http://create.msdn.com/en-us/home/membership
http://www.newurbanmechanics.org/projects/streetscapes/bump/


58 

27. Osterhues, Marlys. (2008, October). Best practices manual: wildlife vehicle collision 
reduction study. Retrieved from 
http://environment.fhwa.dot.gov/ecosystems/wvc/ch2.asp. 

28. SQLite. (2000, August). SQLite. Retrieved from SQLite website 
http://www.sqlite.org/. 

29. SQLite. (n.d.). Sqlite versus dbstar. Retrieved from 
http://www.sqlite.org/cvstrac/wiki?p=SqliteVersusDbstar. 

30. SQLite. (n.d.). Sqlite versus derby. Retrieved from 
http://www.sqlite.org/cvstrac/wiki?p=SqliteVersusDerby. 

31. SQLite. (n.d.). Sqlite versus firebird. Retrieved from 
http://www.sqlite.org/cvstrac/wiki?p=SqliteVersusFirebird. 

32. W3C. (2012, January). XML technology. Retrieved from W3C website 
http://www.w3.org/XML/. 

33. W3schools. (n.d.). JSON. Retrieved from 
http://www.w3schools.com/j son/default.asp. 

34. Wikipedia. (2012, July). Android software development. Retrieved from 
http://en.wikipedia.org/wiki/Android_software_development. 

35. Wikipedia. (2012, July). APK (file format). 
http://en.wikipedia.org/wiki/APK_(file_format). 

36. Wikipedia. (2012, July). Application software. Retrieved from 
http://en.wikipedia.org/wiki/Application_software. 

37. Wikipedia. (2012, July). C sharp (programming language). Retrieved from 
http://en.wikipedia.org/wiki/C_Sharp_(programming_language). 

38. Wikipedia. (2012, July). Cocoa touch. Retrieved from 
http://en.wikipedia.org/wiki/Cocoa_Touch. 

39. Wikipedia. (2012, July). Communications protocol. Retrieved from 
http://en.wikipedia.org/wiki/Communications_protocol. 

40. Wikipedia. (2012, July). Crowdsourcing. 
http://en.wikipedia.org/wiki/Crowdsourcing. 

41. Wikipedia. (2012, July). Database. Retrieved from 
http://en.wikipedia.org/wiki/Database. 

http://environment.fhwa.dot.gov/ecosystems/wvc/ch2.asp
http://www.sqlite.org/
http://www.sqlite.org/cvstrac/wiki?p=SqliteVersusDbstar
http://www.sqlite.org/cvstrac/wiki?p=SqliteVersusDerby
http://www.sqlite.org/cvstrac/wiki?p=SqliteVersusFirebird
http://www.w3.org/XML/
http://www.w3schools.com/j
http://en.wikipedia.org/wiki/Android_software_development
http://en.wikipedia.org/wiki/APK_(file_format
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/C_Sharp_(programming_language
http://en.wikipedia.org/wiki/Cocoa_Touch
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Crowdsourcing
http://en.wikipedia.org/wiki/Database


59 

42. Wikipedia. (2012, July). Development. Retrieved from 
http://en.wikipedia.org/wiki/Windows_Phone#Development_2. 

43. Wikipedia. (2012, July). Extensible application markup language. Retrieved from 
http://en.wikipedia.org/wiki/Extensible_Application_Markup_Language. 

44. Wikipedia. (2012, July). HTTP secure. Retrieved from 
http://en.wikipedia.org/wiki/HTTP_Secure. 

45. Wikipedia. (2012, July). iPhone. Retrieved from http://en.wikipedia.org/wiki/IPhone. 

46. Wikipedia. (2012, July). iPhone 3GS. Retrieved from 
http://en.wikipedia.org/wiki/IPhone_3GS. 

47. Wikipedia. (2012, July). iOS. Retrieved from 
http://en.wikipedia.org/wiki/IOS_(Apple). 

48. Wikipedia. (2012, July). Java (programming language). Retrieved from 
http://en.wikipedia.org/wiki/Java_(programming_language). 

49. Wikipedia. (2012, July). Mac os x. Retrieved from 
http://en.wikipedia.org/wiki/Mac_OS_X. 

50. Wikipedia. (2012, June). Mobile device. Retrieved from 
http://en.wikipedia.org/wiki/Mobile_device. 

51. Wikipedia. (2012, July). SQLite. Retrieved from http://en.wikipedia.org/wiki/SQLite. 

52. Wikipedia. (2012, July). System software. Retrieved from 
http://en.wikipedia.org/wiki/System_software. 

53. Wikipedia. (2012, July). Windows nt. Retrieved from 
http://en.wikipedia.org/wiki/Windows_NT. 

54. Wikipedia. (2012, July). Xcode. Retrieved from http://en.wikipedia.org/wiki/Xcode. 

55. Wikipedia. (2012, July). XML. Retrieved from http://en.wikipedia.org/wiki/Xml. 

56. Wikipedia. (2012, July). XNA build. Retrieved from 
http://en.wikipedia.org/wiki/Microsoft_XNA#XNA_Build. 

http://en.wikipedia.org/wiki/Windows_Phone%23Development_2
http://en.wikipedia.org/wiki/Extensible_Application_Markup_Language
http://en.wikipedia.org/wiki/HTTP_Secure
http://en.wikipedia.org/wiki/IPhone
http://en.wikipedia.org/wiki/IPhone_3GS
http://en.wikipedia.org/wiki/IOS_(Apple
http://en.wikipedia.org/wiki/Java_(programming_language
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Mobile_device
http://en.wikipedia.org/wiki/SQLite
http://en.wikipedia.org/wiki/System_software
http://en.wikipedia.org/wiki/Windows_NT
http://en.wikipedia.org/wiki/Xcode
http://en.wikipedia.org/wiki/Xml
http://en.wikipedia.org/wiki/Microsoft_XNA%23XNA_Build


60 

Appendix A: Database Entity Set 
Description 

This appendix discusses the database table and the attributes that hold the values 
for the users. 

A.1 Entity: roadkill 

1. Description: The Roadkill table holds information about the survey taken by the 
user in the Splatter Spotter app. 

2. Attributes: 

1. Name: r kid 
2. Description: Holds the identification number of each survey. 
3. Domain/Type: integer 
4. Value-Range: 0 to 9999999999 
5. Signed, Unsigned, None: None 
6. Default value: None 
7. Null Value Allowed or Not: Not 
8. Unique: Yes 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: currdate 
2. Description: Specify the date of observation. 
3. Domain/Type: varchar 
4. Value-Range: 10 
5. Signed, Unsigned, None: None 
6. Default value: '0000 hyphen 00 hyphen 00' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: currtime 
2. Description: Specify the time of observation. 
3. Domain/Type: varchar 
4. Value-Range: 8 



61 

5. Signed, Unsigned, None: None 
6. Default value: '00 colon 00 colon 00' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: latitude 
2. Description: Specify latitude location of observation. 
3. Domain/Type: varchar 
4. Value-Range: 8 to 10 
5. Signed, Unsigned, None: None 
6. Default value: '90.000000' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: longitude 
2. Description: Specify longitude location of observation. 
3. Domain/Type: varchar 
4. Value-Range: 8 to 11 
5. Signed, Unsigned, None: None 
6. Default value: '180.000000' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: segment num 
2. Description: Specify the observed distance of the segment. 
3. Domain/Type: varchar 
4. Value-Range: 3 to 5 
5. Signed, Unsigned, None: None 
6. Default value: '0.0' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 



62 

1. Name: segment type 
2. Description: Specify the unit type of the segment observed. 
3. Domain/Type: varchar 
4. Value-Range: 2 
5. Signed, Unsigned, None: None 
6. Default value: 'M I' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Max Speed num 
2. Description: Specify the cars max speed at observation. 
3. Domain/Type: varchar 
4. Value-Range: 3 to 5 
5. Signed, Unsigned, None: None 
6. Default value: '0.0' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Max Speed type 
2. Description: Specify the unit type of max speed. 
3. Domain/Type: varchar 
4. Value-Range: 3 to 4 
5. Signed, Unsigned, None: None 
6. Default value: 'M P H' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Lanes 
2. Description: Specify how many lanes existed. 
3. Domain/Type: varchar 
4. Value-Range: 1 to 2 
5. Signed, Unsigned, None: Unsigned 
6. Default value: '1' 
7. Null Value Allowed or Not: Not 



63 

8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Lane underscore Visibility 
2. Description: Specify if all or half of the lanes were visible. 
3. Domain/Type: varchar 
4. Value-Range: 3 to 4 
5. Signed, Unsigned, None: None 
6. Default value: 'All' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Surrounding 
2. Description: Specify the surrounding. 
3. Domain/Type: varchar 
4. Value-Range: 5 to 9 
5. Signed, Unsigned, None: None 
6. Default value: 'Urban' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Edge 
2. Description: Specify the edge. 
3. Domain/Type: varchar 
4. Value-Range: 4 to 12 
5. Signed, Unsigned, None: None 
6. Default value: 'Cliff 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Wildlife underscore Signs 
2. Description: Specify if there were wildlife signs. 
3. Domain/Type: varchar 



64 

4. Value-Range: 2 to 3 
5. Signed, Unsigned, None: None 
6. Default value: 'Yes' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Kill underscore Status 
2. Description: Specify if the animal is dead or alive. 
3. Domain/Type: varchar 
4. Value-Range: 2 to 3 
5. Signed, Unsigned, None: None 
6. Default value: 'Yes' 
7. Null Value Allowed or Not: Null 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: ID underscore Confidence 
2. Description: Specify the confidence level of the observation. 
3. Domain/Type: varchar 
4. Value-Range: 3 to 10 
5. Signed, Unsigned, None: None 
6. Default value: 'Definite' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Seen underscore Kill underscore Before 
2. Description: Specify if the animal has been observed before. 
3. Domain/Type: varchar 
4. Value-Range: 2 to 3 
5. Signed, Unsigned, None: None 
6. Default value: 'Yes' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 



65 

1. Name: Country 
2. Description: Specify the country where the animal was observed. 
3. Domain/Type: varchar 
4. Value-Range: 1 to 255 
5. Signed, Unsigned, None: None 
6. Default value: single quote single quote 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: State 
2. Description: Specify the state where the animal was observed. 
3. Domain/Type: varchar 
4. Value-Range: 1 to 255 
5. Signed, Unsigned, None: None 
6. Default value: single quote single quote 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: City 
2. Description: Specify the city where the animal was observed. 
3. Domain/Type: varchar 
4. Value-Range: 1 to 255 
5. Signed, Unsigned, None: None 
6. Default value: single quote single quote 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 
1. Name: Kill underscore Size 
2. Description: Specify the animal size at observation. 
3. Domain/Type: varchar 
4. Value-Range: 5 to 6 
5. Signed, Unsigned, None: None 
6. Default value: 'Small' 
7. Null Value Allowed or Not: Not 
8. Unique: No 



66 

9. Single or Multiple-Value: Single 
10. Simple or Composite: Simple 

1. Name: Kill underscore Species underscore Common underscore N a m e 
2. Description: Specify the animal's common name. 
3. Domain/Type: varchar 
4. Value-Range: 1 to 255 
5. Signed, Unsigned, None: None 
6. Default value: double quote 
7. Null Value Allowed or Not: Allowed 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Kill underscore Species underscore Latin underscore N a m e 
2. Description: Specify the animal's Latin name. 
3. Domain/Type: varchar 
4. Value-Range: 1 to 255 
5. Signed, Unsigned, None: None 
6. Default value: single quote single quote 
7. Null Value Allowed or Not: Allowed 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Kill underscore Class 
2. Description: Specify the animal's classification. 
3. Domain/Type: varchar 
4. Value-Range: 1 to 255 
5. Signed, Unsigned, None: None 
6. Default value: single quote single quote 
7. Null Value Allowed or Not: Allowed 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Weather 
2. Description: Specify the weather at observation. 
3. Domain/Type: varchar 
4. Value-Range: 3 to 23 



67 

5. Signed, Unsigned, None: None 
6. Default value: 'Clear' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Temperature 
2. Description: Specify the temperature at observation. 
3. Domain/Type: varchar 
4. Value-Range: 3 to 6 
5. Signed, Unsigned, None: None 
6. Default value: '70 F' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Photo 
2. Description: Optional photo if user wants. 
3. Domain/Type: blob 
4. Value-Range: 0 to size of data inserted 
5. Signed, Unsigned, None: Unsigned 
6. Default value: 'nil' 
7. Null Value Allowed or Not: Allowed 
8. Unique: Yes 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Comments 
2. Description: Optional comments if user wants. 
3. Domain/Type: varchar 
4. Value-Range: 1 to 255 
5. Signed, Unsigned, None: None 
6. Default value: single quote single quote 
7. Null Value Allowed or Not: Allowed 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 



68 

1. Name: All underscore Fin 
2. Description: Check if the user has input all fields. 
3. Domain/Type: tiny int 
4. Value-Range: 0 to 1 
5. Signed, Unsigned, None: None 
6. Default value: '0' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Submitted 
2. Description: Check if the user has submitted the entry. 
3. Domain/Type: tiny int 
4. Value-Range: 0 to1 
5. Signed, Unsigned, None: None 
6. Default value: '0' 
7. Null Value Allowed or Not: Not 
8. Unique: No 
9. Single or Multiple-Value: Single 

10. Simple or Composite: Simple 

1. Name: Transect underscore Points 
2. Description: Keeps origin, way, and destination points of the road 

being observed for transect. 
3. Domain/Type: text 
4. Value-Range: 0 to 65,535 
5. Signed, Unsigned, None: None 
6. Default value: single quote single quote 
7. Null Value Allowed or Not: Allowed 
8. Unique: No 
9. Single or Multiple-Value: Multiple 

10. Simple or Composite: Composite 

3. Candidate Key: r kid 
4. Primary Key: r kid 
5. Strong/Weak Entity: Strong 
6. Field to be indexed: None 


