
Artificial Intelligence Software for the Autonomous

Interoffice Delivery Robot

A Thesis Presented to

The Faculty of the Computer Science Program

California State University Channel Islands

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

by

Derek Antonio Rodrigues

July 2009

APPROVED FOR THE COMPUTER SCIENCE PROGRAM

Advisor: Doctor Andrzej Bieszczad Date 8/10/2009

Doctor William Wolfe Date 8/10/2009

Doctor Peter Smith Date 8/10/2009

APPROVED FOR THE UNIVERSITY

Doctor Gary A. Berg Date 8/10/2009

Artificial Intelligence Software for the Autonomous

Interoffice Delivery Robot

by

Derek Antonio Rodrigues

Computer Science Program

California State University Channel Islands

Abstract

The Autonomous Interoffice Delivery Robot (AIDeR) is a robot
conceived by Advanced Motion Controls (A M C) for the purpose of
demonstrating their servo drive hardware. The AIDeR's function is to take
orders for the pickup and delivery of various items in an office
environment, autonomously navigating the environment to carry out these
orders. This thesis presents the design and implementation details of the
artificial intelligence software layer that is responsible for high-level
navigation, scheduling, and processing of delivery orders.

Acknowledgements

The author would like to thank the thesis supervisor, Doctor Andrzej
Bieszczad for his invaluable guidance, support, and management of the
project. In addition, the author thanks his fellow students and AIDeR
project team-members Ludovic Hilde, Douglas Whitesell, Andrew Wright,
and Robert Kiffe for their respective contributions to the project. Finally,
the author thanks his wife Karen Rodrigues and his children for their
unwavering patience and support.

TABLE OF CONTENT

C H A P T E R 1 : I N T R O D U C T I O N 1 1
1 . 1 INTRODUCTION TO THE A I D E R PROJECT 1 1

1 . 2 DESCRIPTION OF THE AIDER 1 1

1 . 3 HIGH-LEVEL REQUIREMENTS 1 2

1 . 4 SOFTWARE SYSTEM 1 3
1 . 5 OVERVIEW OF THE THESIS DOCUMENT 1 4

1 . 6 KEY TERMS 1 5

C H A P T E R 2 : F U N C T I O N A L R E Q U I R E M E N T S 1 6
2 . 1 OVERVIEW 1 6
2 . 2 JOB 1 6

2 . 3 JOB MANAGEMENT 1 7

2.3.1 PRIORITY QUEUE 17
2.3.2JOB LIST 19
2.3.3 JOB INTERFACE 20

2.4 JOB PROCESSING 2 0

2.4.1 OPERATING STATE 20
2.4.2JOB EXECUTION 21
2.4.3 EVENT NOTIFICATION 22
2.4.4 NAVIGATION 22

C H A P T E R 3 : D E T A I L E D D E S I G N 2 4
3 . 1 OVERVIEW 2 4

3 . 2 EXAMINATION OF SOFTWARE TOOLS USED IN THE PROJECT 2 4

3.2.1 ECLIPSE I D E WITH C D T 24
3.2.2 C PLUS PLUS 24
3.2.3 SUBVERSION (S V N) 25
3.2.4 GOOGLE GROUPS 25
3.2.5 VIRTUALBOX. 25
3.2.6 GENTOO G N U/LINUX2.6.26 25

3.3 SUBSYSTEMS 2 5

3.3.1 JOB PROCESSOR 27
3.3.2 JOB MANAGER 31
3.3.3 PROTOCOL 33
3.3.4 CONTROL. 35
3.3.5 SEARCH 37
3.3.6 COMMAND TASK. 39
3.3.7 COMMAND C G I 39

C H A P T E R 4 : N A V I G A T I O N 4 1
4 . 1 OVERVIEW 4 1

4 . 2 PATH PLANNING 4 1
4 . 3 NAVIGATION 4 5

4 . 4 MAP 4 6

C H A P T E R 5: I N T E R - P R O C E S S C O M M U N I C A T I O N 4 9
5 . 1 OVERVIEW 4 9
5 . 2 CONTROL TASK 5 0

5 . 3 USER INTERFACE 5 2

5 . 4 MESSAGE PROTOCOL 5 3

5.4.1 Enumerations. 54
5.4.2 Data Types. 54
5.4.3 Messages. 56

CHAPTER 6: TESTING AND EXPERIMENTS 6 1
6 . 1 OVERVIEW 6 1

6 . 2 SETUP 6 2

6 . 3 TEAR DOWN 6 2

6 . 4 DEMO M A P AREA # 1 6 3

6 . 5 DEMO M A P AREA # 2 6 4

6 . 6 TEST PAGES 6 5

CHAPTER 7: CONCLUSIONS 6 8
7 . 1 SUMMARY 6 8

7 . 2 FUTURE W O R K 6 9

Figure 1 - Concept drawing of the AIDeR 12

Figure 2 - Software System Layers 14

Figure 3- System overview 16

Figure 4 - Job state machine 19

Figure 5 - Job Processor state diagram 21

Figure 6 - Command Task's primary subsystems 26

Figure 7 - Job Processor class diagram 27

Table 1 - JobProcessor processing loop pseudo-code 28

Table 2 - Job Processing Agent pseudo-code 30

Figure 8 - Job Manager class diagram 31

Figure 9 - Protocol class diagram 33

Figure 10 - Control class diagram 35

Figure 11 - Search class diagram 37

Figure 12 - Graph for first demo map in C S U C I's Bell Tower 42

Table 3 - A* algorithm pseudo-code 44

Figure 13- Command Task IPC interfaces 50

Figure 14- Message protocol through the Command C G I 53

Figure 15 - Message format over the T C P channel 53

Figure 16 - Demo Map # 1 in the C S U C I Bell Tower 63

Figure 17 - Demo Map # 2 in the CSUCI Bell Tower 64

Figure 18 - DeliveryJob.html C G I test page 66

Figure 19 - RemoveJob.html C G I test page 66

Figure 20 - SendCommand.html C G I test page 67

Chapter 1: Introduction

1.1 Introduction to the AIDeR Project
For my graduate research project, I was given the opportunity to participate in a

multi-team effort to design and implement the software system that would run a robot
named the Autonomous Interoffice Delivery Robot, or AIDeR for short. The terms robot
and AIDeR are used interchangeably throughout this document to refer to the AIDeR.

The AIDeR was provided by a company called Advanced Motion Controls (A M C)
that plan to use the robot for demonstrating their servo-control hardware. The robot
required sophisticated software that would combine embedded system software, artificial
intelligence and task scheduling software, and a user-interface.

My responsibility was to design and implement the artificial intelligence layer of the
software system. This thesis presents the design and implementation details including the
rationale motivating the design and implementation decisions.

1.2 Description of the AIDer
Before proceeding further, a description of the AIDeR is warranted. The AIDeR is a

robot that consists of the following hardware components:

A front-mounted scanning-laser rangefinder for navigation and obstacle
detection.

• Ultrasonic rangefinders on the left, right, and rear for navigation and obstacle
detection.

• A display screen, keyboard, and pointing device for interacting with users
directly at the robot

• 6 wheels powered by servo drives, capable of fine-motor movement, and 360
degree rotation

• Platform that may be lowered and raised to receive or deliver payloads

• Computer running the Gentoo G N U/Linux 2.6.26 operating system

• Batteries to provide power for up to 16 hours of operation

• 802.11b Wireless network interface card to support interacting with users
remotely

The following is a concept drawing depicting the robot:

Figure 1 - Concept drawing of the AIDeR

1.3 High-Level Requirements
AIDeR was provided as a fully constructed robot with operational hardware. The

robot's chassis, propulsion, and steering systems as well as the battery and charging
system was designed and implemented by ME 428/481 students at California Polytechnic
State University, with this work completed in March of 2006.

However, the robot still required software that would breathe life into its hardware
components. Specifically, the software would need to satisfy the following high-level
functional requirements:

• Accept delivery and pickup job requests from users and maintain these in a queue.
Local and remote user interfaces are provided to allow users to submit jobs from
the robot's user input devices and over the Web respectively.

• Manage the scheduling of jobs based on a combination of user priority and a job
priority level classification. The scheduling algorithm would need to account for
potential job starvation.

• Use path-planning to find the optimal routes between destinations in jobs.

• Execute jobs in the queue, navigating the environment as necessary to carry out a
job. The environment may consist of a series of interconnected hallways and
offices.

• The robot must travel within approximately six inches of a right wall whenever
possible, and must drive at a safe speed.

• The robot must detect and avoid obstacles, and must alert pedestrians to its
presence.

• The robot must monitor its battery power level and return to the charging station
when the power level drops below a critical threshold.

• Perform the above functions autonomously.

• Use the robot's computing resources judiciously, giving priority to critical
functions such as safety and local navigation.

1.4 Software System
Early in the design, it became apparent that the responsibility for the high-level

requirements should be distributed across the following distinct software layers:

1. User Interface

• Local and remote user interfaces from which users are able to add/remove
jobs, view the queue of jobs, and the current status of the robot.

2. Artificial Intelligence

• Manages a queue of delivery/pickup jobs

• Manages the execution of jobs

• Performs path planning

3. Hardware Abstraction

• Operates and monitors the robot's hardware.

• Uses the robot's hardware to drive the robot safely in the environment.
This includes obstacle detection/avoidance, travelling against a right wall
etc.

• Reports status and error conditions to the Artificial Intelligence layer,
including navigation status.

This thesis will focus on the Artificial Intelligence layer. The Artificial Intelligence
and Hardware Abstraction layers were given the monikers of Command Task and Control
Task respectively, terms which will be used throughout this document.

Figure 2 - Software System Layers

1.5 Overview of the Thesis Document
The second chapter presents the detailed functional requirements of the Command

Task. The functional requirements will provide a detailed description of what precisely is
expected from the Command Task to address the high-level requirements. The
requirements are presented iteratively starting with the concrete definition of terms such
as a 'Job'. The functional requirements provide the framework for the detailed design
and implementation.

The third chapter provides an overview of the design details of the Command Task.
The design details 'flow' from the functional requirements. The metaphors presented in
the second chapter, such as "Job Manager" and "Job Processor" correspond with
subsystems and classes presented in the implementation details.

The fourth chapter discusses the navigation implementation details at a higher level,
with less focus on the C++ classes. The chapter discusses how the Command Task
performs path planning, and how the resulting navigation plans are executed in
conjunction with the Control Task. It is necessary to devote a chapter to this topic
because it is one of the primary functions of the Command Task, is reasonably complex,
and also an interesting topic in Computer Science.

In the fifth chapter, the inter-process communication mechanisms used by the
Command Task are discussed. The Command Task's position as a middleware layer
between the User Interface and Control Task required the use of different communication
techniques. The implementation of these techniques resulted in a significant portion of
the development effort, and are worthy of their own chapter.

The sixth chapter discusses the testing procedures and experiments conducted with
the robot in 'demonstration' areas.

The seventh and final chapter will include a summary of the project's results. What
remains unsolved and what could be added to further enhance the project will also be
discussed.

1.6 Key Terms
Autonomous Interoffice Delivery Robot (AIDeR) - hereinafter referred to as
AIDer or robot.

Command Task - the artificial intelligence software layer. Also, the name of the
process that implements the Command Task logic.

Control Task - the hardware abstraction software layer. Also, the name of the
process that implements the Control Task logic.

Command C G I - a subsystem of the Command Task that receives and processes
web requests from the User Interface.

User Interface - the user interface software layer. This term refers to both the
user interface software that is run on and displayed in a web browser and the
software that is run on and displayed in the robot's display screen.

User - an authorized end-user that may interact with the robot via the User
Interface

Job - a task submitted by a User (via the User Interface) that is to be executed by
the Command Task on the robot.

Job Priority Queue - a prioritized collection of Jobs submitted by Users that are
scheduled for execution by the Command Task

Job List - a collection of Jobs that have already been executed by the Command
Task

Environment - an indoor location in which the robot may operate. Typified by a
series of interconnected hallways and offices.

Landmark Type - a unique set of physical characteristics as recognized by the
Control Task that define a type of location in the Environment. For example, a
'right hallway' landmark type may exist in multiple places on the same map.

Landmark - a unique location and point of interest in the Environment that can
be described by a Landmark Type e.g. the right hallway entrance in front of Bob's
office.

Chapter 2: Functional Requirements

2.1 Overview
This chapter presents the functional requirements of the Command Task. These
functional requirements describe in concrete terms how the software is expected to
behave, as well as providing the rationale for the implementation details that follow. The
requirements are presented from the bottom up. That is, the most elementary topics are
described first providing the basis for the more detailed topics.

The following diagram depicts the Command Task with respect to the other systems
in the system architecture:

Figure 3- System overview

2.2 Job
A job is a sequence of instructions to be carried out by the robot. An instruction may

be one of:

• Move from the current location to a specified location

• Wait for some condition to be met, where the possible conditions are:

Wait for a specified time period to elapse

Wait for user feedback

Wait for full power charge

Each instruction in a job has an associated timeout, which may be specified by the
user or has an appropriate (configurable) default. If the instruction cannot be completed
before the timeout, then the entire job is aborted. A movement instruction is completed
when the robot has arrived at the destination location. A wait instruction is completed
when the specified condition has been met.

A job is executed as an atomic operation and, once in progress, will not be
interrupted or preempted unless the job is either cancelled or aborted (due to timeout).

The most common types of jobs will be a delivery job and a movement job.

A delivery job consists of the following sequence of steps:

1. Move to a starting location for item pickup

2. Wait for user acknowledgement that the item has been loaded

3. Move to a final location for item delivery

4. Wait for user acknowledgment that the item has been unloaded

The movement job will consist simply of moving to a location and possibly waiting
for some condition to be met. For example, move from the current location to the
charging station and wait for full charge.

2.3 Job Management
The Job Manager maintains newly submitted jobs in a priority queue. New jobs are

added by the local and remote user interfaces which are described. Once a job is
assigned, it is removed from the queue and added to the robot's job list.

2.3.1 Priority Queue

The priority queue is a global collection of all jobs that have not yet been assigned to the
robot for processing. Jobs in the queue are sorted in descending order of job priority (as
described below).

When a new job is added to the queue, it is assigned a job priority, a job id, and a job
state. These properties are described in the following subsections.

Job Priority

The job priority is computed based on a combination of a given 'service level' and
'user level'.

The service level is a user-specified importance for the job that may be one of the
following enumerations (with their corresponding integer values in parenthesis):

Standard (1)

Priority (2)

Express (3)

The user level is the priority level of the user that creates the job and may be one of
the following values:

Casual (1)

Regular (2)

Power (3)

The resulting job priority is a product of the service level and user level. Jobs are
arranged in the queue in descending order of job priority.

The following table enumerates the job priority resulting from all combinations of
service level and user level:

Casual Regular Power

Standard 1 2 3

Rush 2 4 6

Express 3 6 9

Once in the queue, to avoid starvation, a job's priority level will be increased by 2 for
every hour it remains in the queue.

Job Id

The job id is a unique identifier for the job that is assigned by the system when the
job is first added to the queue. The job id is immutable.

Job State

The job state reflects the current state of a job with respect to its processing by the
robot:

Unassigned - the initial state of a job when it is added to the queue

InProgress - the job is currently assigned to a robot

Aborted - the job failed to be completed

Complete - all instructions in the job were completed

These are illustrated in the following diagram:

Figure 4 - Job state machine

Job Assignment

When the robot is ready for new work, it will request the assignment of a job from
the Job Manager. Jobs will be assigned as follows.

The Job Manager will select from the priority queue as candidate jobs:

the job at the front of the queue

all jobs that have an equal priority to the front job

the first job that has a lower priority than the front job

Of these candidate jobs, the Job Manager will give a temporary increase in priority
level to the job whose first (or only) destination location is closest to the current position
of the robot.

The Job Manager will then assign to the robot the candidate job with the highest
priority, or default to the front job if all candidate jobs have an equal priority.

2 .3 .2 Job List

Jobs that have been assigned to the robot are maintained in a job list. The job list
includes:

the job currently being executed by the robot

completed jobs - those jobs that have been completed successfully

aborted jobs - those jobs that failed or were cancelled

2.3 .3 Job Interface

The Job Manager exposes an interface to other systems (e.g. the U I, the Job
Processor, other Job Managers, etc.).

The interface supports the following operations:

Operation Description

Add Job Submit a new job to the queue.

Remove Job Cancel an existing job in the queue as identified by its job id.

Fetch Jobs Obtain a list of all unassigned jobs in their current order of priority and a
list of all assigned jobs (InProgress, Completed, and Aborted).

Fetch Status Obtain miscellaneous status, location, and error information.

Get Locations Get a list of all landmarks in the map.

User Feedback Provide an acknowledgement when the Job Processor is waiting for user
feedback.

2.4 Job Processing
The Job Processor:

manages the execution of jobs and the operating state of the robot

computes navigation paths for the traveling legs of jobs i.e. move instructions.

interfaces with the Control module to:

deliver movement instructions, and

receive system status updates (e.g. positioning information, power charge
level, etc.)

tracks the current location of the robot on the map.

2.4.1 Operating State

The Job Processor maintains an operating state, which may be one of:

Disabled - autonomous operation has been disabled. The robot will not execute
new jobs until it is re-enabled.

Offline - the current system time is outside of the configured operating hours of
the robot. The robot will resume processing of jobs once the system time is again
within operating hours.

Waiting - the robot is idle and waiting for new jobs

Busy - the robot is currently executing a job (e.g. charging)

Figure 5 - Job Processor state diagram

2.4.2 Job Execution

When in the Waiting state, the Job Processor requests the assignment of a new job
from the Job Manager.

Once a job is assigned, the Job Processor enters the Busy state and begins executing
the job instructions sequentially. Instructions are executed as follows:

Instruction Type Execution Steps Exit Condition

Move 1. Job Processor computes the
navigation plan from the current
location to the destination location.

2. Processes navigation plan, passing
steps to the Control module for
execution one-at-a-time.

• Receive position update indicating that
the robot has arrived at the final
destination, OR

• Receive notification that an error has
occurred, OR

• Timeout expired

Wait for condition 1. Wait for exit condition • Specified condition (e.g. power-level
full, user-feedback received, etc.)
evaluates to true, OR

• Timeout expired

If an instruction fails or times out, then the entire job fails and the job state is set to
Aborted. If all the instructions in the job are completed successfully, then the job state is
set to Completed. The final state of the job is reported to the Job Manager.

At the completion of each job, if the Job Processor determines that the current time is
outside of normal operating hours, it immediately enters the Offline state and then creates
and assigns itself the job of returning to its 'home' location. When the current time is
again within normal operating hours, the Job Processor enters the Waiting state and
begins processing jobs again. Otherwise, if at the completion of a job the current time is
still within normal operating hours, the Job Processor enters the Waiting state and
requests a new job from the Job Manager.

2.4.3 Event Notification

The Job Processor receives asynchronous notifications from the Control Task for the
following events:

Battery/power level - the battery charge level

Position updated - an update on the robot's current location on the map. These
updates are provided, at a minimum, upon arriving at a map landmark.

Error and other status information

When the Job Processor receives notification that the power level is low, it submits a
new high priority job to the Job Manager to return to the charging station.

The Job Processor uses these events to evaluate the condition of any wait instructions
that may be in progress. For example, a 'position update' event may indicate that a move
step has been completed, or a 'power-level full' event may indicate that a wait-for-
condition instruction's exit condition has been met.

2.4.4 Navigation

Before delivering a movement instruction to the Control Task, the Job Processor
computes a navigation plan that is the shortest path from the robot's current location to
the target destination of the move.

The navigation plan consists of a series of static landmark types that the robot must
reach on the way to the final destination (the goal). The Control Task will be able
recognize these landmarks from pre-recorded sensor data and will be able to determine
the robot's orientation with respect to each landmark.

The navigation plan does not concern itself with the finer navigation details such as
obstacle avoidance and circumnavigation, driving through doorways, driving within X
inches of the wall, etc. These are the responsibilities of the Control Task.

Each step in the navigation plan consists of a:

a. landmark - the current location,

b. landmark type - the landmark type as recognized by the Control Task,

An example navigation plan:

1. From corner A, head at 90 degrees for approximately 900 centimeters to reach
doorway B.

2. From doorway B, head at 270 degrees for approximately 600 centimeters to reach
doorway C.

The navigation steps are executed one-at-a-time as follows:

For each navigation step, the Job Processor dispatches the navigation step to the
Control module and then waits for any of:

Position update indicating the next landmark type has been reached.

Failure notification - the Control module indicates that some error has
occurred that is preventing it from reaching a landmark. An alarm is raised
before the Job Processor moves on to the next job.

Timeout - the robot was unable to reach the destination in a reasonable
time period (specified by the user or configurable default) and
consequently the job has been aborted. An alarm is raised before the Job
Processor moves on the next job.

If all steps in the navigation plan have been executed successfully, the Job Processor
proceeds to the next instruction in the Job (if any).

Chapter 3: Detailed Design

3.1 Overview
This chapter provides an overview of the implementation details of the Command

Task. The chapter is organized in terms of the software subsystems (i.e. modules) - the
units of which the Command Task is composed. These units correspond to the functional
objects introduced and described in the preceding chapter.

The Command Task was written in C plus plus. The choice of language was due primarily
to preference but also because it does not require an interpreter or other run-time software
components that might hinder performance.

With the goal of producing a quality software product that will perform its function
correctly and serve as the basis for future work, I attempted to apply sound software
development practices such as:

Object-oriented analysis and design (O O A D).

Use of mature software design patterns such as those presented in [12].

Thread-safety and synchronization.

Exceptions for error handling.

C plus plus techniques such as those espoused in [10] and [11].

3.2 Examination of software tools used in the project

3.2.1 Eclipse I D E with C D T

I used the Eclipse Integrated Development Environment with the C/C plus plus
Development Tools for all C plus plus software development and debugging. In addition, I
provided make files so that all Command Task software components can be built using
gnu make and without the use of the Eclipse I D E.

3.2.2 C plus plus

G N U C plus plus with the following libraries

Standard Template Library (S T L)

POSIX

J SON C P P - a free, public-domain C plus plus implementation of a J SON parser

3.2 .3 Subversion (S V N)

Subversion is an open-source revision control system which is used for storing all
source code for the AIDeR project. Separate folders are maintained in the repository for
the different software components (i.e. Command Task, Control Task, etc.) In addition,
periodic tags were taken to capture the source tree at significant project milestones.

3.2 .4 Google Groups

Google Groups is an online collaboration forum. The AIDeR project team used a
members-only Google Group as a discussion and communication portal for the project.
This proved to be a very helpful collaboration tool.

3.2 .5 VirtualBox

VirtualBox is a free x86 virtualization platform by Sun Microsystems. I used
VirtualBox to host a virtual machine that was configured as much as possible like the
configuration on the AIDeR. This machine was my development and test environment.

3.2 .6 Gentoo G N U/Linux 2.6.26

The operating system installed on the robot and in the virtual machine used for
development. See Appendix B at the end of this document for a more detailed
description.

3.3 Subsystems
The Command Task source code is separated into multiple discrete subsystems. The

subsystems are separated according to their respective functions and are compiled into
static libraries. The declarations and implementations in each subsystem are scoped by
unique namespaces. This enhances the modularity and readability of the code, and should
provide for ease of future maintenance.

The Command Task is composed of the following subsystems:

• Job Processor

• Job Manager

• Protocol

• Control

• Search

• Command Task

• Command C G I

• Common - there are also a number 'common' subsystems that implement general
functionality such as exception handling, thread synchronization, object
serialization, T C P sockets, date and time, and string parsing. These common
subsystems are not discussed in further detail.

The subsystems of the Command Task are illustrated in the following layered
diagram. The italicized elements are components of the enclosing subsystem and not
subsystems themselves.

Figure 6 - Command Task's primary subsystems

The implementation details of the above subsystems are described in the following
subsections. Each subsection begins with a static U M L diagram presenting the classes in
the given subsystem. For brevity, the U M L diagrams omit trivial details such as class
constructors, destructors, accessor methods, and method parameters.

3.3.1 Job Processor

Figure 7 - Job Processor class diagram

The Job Processor class is the 'control center' of the Command Task. As
described in section 2.3, it manages the operating state of the robot, executes jobs, and
maintains status information including:

Last known landmark

Last known bearing (degrees)

Current operating state

Platform status

Battery level

Control task busy state

Control task operating state

The Job Processor logic is executed in a continuous loop in which it polls the Job
Priority Queue for new jobs (with a 30 second sleep-wait between each interval). The
pseudo-code for the processing loop is as follows:

Table 1 - JobProcessor processing loop pseudo-code

While (Not Shutting Down)

Wait for 30 seconds or shutdown.

If (current time is within operating hours)

If (current state is OFFLINE)

Enter WAITING state.

End If

Else If (current time is outside of operating hours)

If (current state is WAITING)

Create and execute new job to return home.

End If

Enter OFFLINE state.

Continue.

End If

Enter BUSY state.

Retrieve next job from the queue (if any) and execute it.

Report outcome of last job.

Continue.

End While

This loop is executed on a 'background' thread that is created, owned and managed
by the Job Processor. The use of a background thread allows for a dedicated thread of
execution for the processing of jobs and also frees up the 'foreground' thread (the
process' primary thread) to perform other tasks. The background thread exits when the
Job Processor object is destroyed.

As demonstrated in the above pseudo-code, if the Job Processor determines that
the current time is outside of the configured window of operating hours, then it will
immediately process a new job that will return the robot to the home landmark (where the
charging station is presumed to be) and will enter the OFFLINE operating state. The
background thread will continue to run in the OFFLINE state while outside of operating
hours. Once the current time is once again within operating hours, the operating state is
changed to WAITING and the Job Processor will resume processing new jobs.

When the Job Processor exits its wait cycle and is in the WAITING state, then it will
attempt to retrieve the next Job from the queue. If there is at least one Job available, then
the Job Processor constructs a Job Processing Agent object to execute the Job.

The Job Processing Agent is a class that models the intelligent agent metaphor. The
sole function of the Job Processing Agent is to execute a given Job. The Job Processing
Agent's lifetime is scoped by the execution of a Job, which it performs on the Job
Processor's background thread. Once execution is complete, the Job Processing Agent is
destroyed and the Job's final status is reported back to the Job Manager.

The PEAS (Performance, Environment, Actuators, Sensors) description for the Job
Processing Agent is as follows:

Type:

• Goal-based agent

• Learning - may consider recording the actual path traversal time for use in future path-cost
evaluations. Not currently implemented.

Performance Measure:

• Finds the best path to the destination goal landmark, where best is defined as the path with the
shortest total distance.

Environment:

• Partially observable - Receives indication of location at discrete landmarks

• Deterministic - the next state is determined by the current state and the action of the agent.

• Sequential - current decisions impact future decisions

• Static -the map is constructed in advance and is not updated in response to changes in the
environment.

• Discrete - for each navigation step, either the Control Task does or does not reach the next
landmark

• Single agent - the agent will not be competing or cooperating with another agent

Actuators:

• Changes environment via navigation commands sent to the Control Task

Sensors:

• Receives location, status, and error updates from the Control Task

• Receives job state updates from the Job Processor e.g. job has been cancelled

The Job Processing Agent processes jobs by sequentially iterating and executing
the instructions in the job. The pseudo-code is as follows:

For each instruction in Job

If (instruction type is movement and destination is not current location)

Compute navigation plan to destination using Search::A_star

For each step in navigation plan

Send navigation command using Control::Client

Wait for asynchronous result of movement or timeout

Next

Else If (instruction type is wait)

Wait for condition (time period or user-feedback) or timeout

End If

Next

Table 2 - Job Processing Agent pseudo-code

If an instruction is a movement type instruction, then the Job Processing Agent
uses the Search::A_star class (see section 3.3.5) to construct a navigation plan from the
current location to the destination location of the movement. The Job Processing Agent
then steps through the navigation plan, sending navigation commands to the Control Task
via the Control::Client class (see section 3.3.4 below). Since the interface to the Control
Task is asynchronous, the Job Processing Agent must wait until it receives a notification
that the Control Task has reached the next landmark before proceeding to the next step in
the plan. It does so by entering a conditional wait (using the POSIX condition variable
A P I's). It exits the wait when it either times out (each instruction has an associated
timeout) or it receives notification from the Control Task regarding the move.

A wait type instruction is handled by simply entering a wait state for a specified
time-period or for a signal of user-feedback (e.g. the user has acknowledged that a
payload in the tray has been either added or removed).

The Job Processing Agent implements the Control::NotificationReceiver interface
and subscribes to the Control::Client class to receive asynchronous notifications from the
Control Task (see section 3.3.4 below). Because these notifications are delivered
asynchronously, the Job Processing Agent is able to block its own thread of execution
while it waits. If it times-out waiting for a notification, then it aborts the job. The Job
Processing Agent listens for the following notifications:

• Detected landmark - signals the condition variable to unblock processing and
proceed to the next navigation step or next instruction

• Unable to locate landmark - signals the condition variable to unblock processing.
The Job Processing Agent consequently aborts the job.

• Battery level - signals the condition variable to unblock processing if the battery
level is not low and we were waiting for full-charge.

The Job Processor also receives asynchronous notifications from the Control Task, by
implementing the Control::NotificationReceiver interface. The notifications that are
handled by the Job Processor are:

• Platform status - this is simply recorded
• Control Task status - this is simply recorded
• Battery level - this is recorded and if battery level is low (level 2 or 3) then a new

job is enqueued to return the robot home

3 .3 .2 Job Manager

Figure 8 - Job Manager class diagram

The Job Manager subsystem contains the Job Priority Queue and the Job List
container classes, as described in sections 2.3.1 and 2.3.2 and presented in further detail
in the following sub-sections.

Job Priority Queue

The Job Priority Queue is implemented as an STL queue of jobs. Jobs in the queue
are sorted in descending order of job priority. When a new job is added to the queue, it is
assigned a job priority, a job id, and a job state.

Although the STL contains a 'priority_queue' implementation, this was not used
because the priority of items in the queue can change based on time (i.e. due to the
starvation avoidance requirement described in 2.3.1) and a queue was required that can
dynamically resort its own elements.

Sorting of the queue is performed lazily:

a. At the time of insertion of a new job, and

b. When the next job is requested

The latter (b) is required to account for changes in priority due to time. The Job
Priority Queue gives a priority boost of 2 to jobs for each successive hour they have
remained in the queue. For example, a job that has been in the queue for 2 hours will get
a priority boost of 4.

The sort is implemented using the S T L sort() function which has an algorithmic
complexity of O (n log n).

For each job, a timestamp is recorded at the time of entry into the queue and every
time the job's priority is updated. This allows the Job Priority Queue to determine when it
needs to update a given job's priority.

Future enhancements to the Job Priority Queue may consider:

• Collect and maintain queue statistics such as the high watermark, average
queue length, average job wait time, etc.

• Consider using a background thread for queue maintenance

• Add a location-based priority boost during job selection

• Add a maximum queue length with alarming when the queue length crosses
some threshold and becomes backlogged

Job List

The Job List contains two lists (implemented using S T L vectors) of Jobs that have been
processed:

• Completed - Jobs that were completed successfully

• Aborted - Jobs that were aborted either due to failure or were cancelled by the
user

3.3 .3 Protocol

Figure 9 - Protocol class diagram

The protocol subsystem defines the T C P-based server stack and the messages that
are required for inter-process communication with the Command C G I process. An
overview of the classes is presented here and the topic is covered in further detail in
Chapter 5:.

The protocol stack consists of the following classes:

Sockets. T C P ServerHandler - an interface providing a pure virtual
HandleSocket() method which must be implemented by derived classes.
Sockets. T C P ClientOperation - contains a pair of Sockets.TCPClientSocket and a
reference to a Sockets.T C P ServerHandler. Has a Run() method, which when
executed invokes the Sockets.T C P ServerHandler's HandleSocket() method.
Sockets.OperationQueue - a FIFO queue of Sockets. T C P ClientOperations
Sockets. T C P Server - opens a listening socket and spawns two background
threads which perform the following respective functions: (a) listen for and
accept new client sockets which are added to a Sockets.OperationQueue, and (b)
process new socket operations in the queue. The processing thread invokes the
Run() method of the operations it pops from the queue.

ServerMessageHandler - implements the Sockets. T C P ServerHandler interface.
Reads J SON messages from the client socket, processes the messages, and
returns a response. Contains references to the JobList, JobPriorityQueue,
Search::Map, and the Control::Client, which it uses to service the various
requests.
MessageRecognizer - marshals and unmarshals J SON messages to/from a buffer.
Used by the ServerMessageHandler.

The typical flow through the server stack is as follows:

1. The T C P Server listening thread blocks on an accept() call waiting for new
connections.

2. When a client socket request is received, the client socket is packaged in a
T C P ClientOperation object and added to the end of the OperationQueue. The
listening thread signals the processing thread (via a POSIX condition variable)
and then re-enters the blocking accept() call.

3. The processing thread wakes from its blocking wait on the POSIX condition
variable and reads the T C P ClientOperation from the front of the queue. The
processing thread invokes the operation's Run() method.

4. The T C P ClientOperation, which contains the client socket and a reference to a
T C P ServerHandler, invokes the T C P ServerHandler's HandleSocket() method
and passes the client socket.

5. The ServerMessageHandler, which implements the T C P ServerHandler
HandleSocket interface, processes the client socket request as follows:

a. It reads an 8-byte header from the client socket which indicates the length
of the J SON message, and the type of the J SON message (a integer
identifier).

b. It then reads the message (of the expected length) into a buffer and
'extracts' the J SON message using the MessageRecognizer. The
MessageRecognizer uses a J SON parser to deserialize the J SON message
into a C plus plus object.

c. The message is then processed based on its type. For instance, a new job is
added to the Job Priority Queue.

d. A response message is constructed and serialized as J SON into a buffer.
The response may be a simple success code or could contain more detailed
information such as the contents of the Job Priority Queue.

e. The response buffer is written to the client socket.
f. The client socket is then gracefully shutdown and closed.
g. Done.

6. The ServerMessageHandler then returns control to the processing thread which
will handle the next operation in the queue, or re-enter a blocking wait on the
condition variable.

All messages defined in the protocol are implemented as C plus plus classes. There is a
corresponding C plus plus class for each message. These messages classes are serialized to/from
J SON by the MessageRecognizer, which uses the 3rd party J SON C P P library.

3.3 .4 Control

Figure 10 - Control class diagram

The Control subsystem is intended to provide an abstraction of the inter-process
communication interface with the Control Task. An overview of the classes is presented
here and the topic is covered in further detail in Chapter 5:.

The abstraction is accomplished with a Client class that provides asynchronous
methods for sending commands to the Control Task and a NotificationReceiver interface
for receiving notifications (events and alarms) from the Control Task. Notifications
received from the Control Task are delivered using the 'publisher/subscriber' software
design pattern, whereby consumers must implement an abstract subscriber interface and
subscribe to a publisher to receive notifications. The publisher is the Client class which
implements the NotificationPublisher interface. The subscriber interface is the
NotificationReceiver class. The Client delivers notifications to all registered
NotificationReceivers on its own background thread.

The Control subsystem consists of the following classes:

Notification - contains the data that is received in a notification from the Control
Task.
NotificationReceiver - the pure virtual interface that must be implemented by a
class that would like to receive Control Task notifications.
NotificationPublisher - a base class that supports the registration and
unregistration of zero or more NotificationReceiver's that would like to receive
Control Task notifications.

ClientBase - the abstract interface for a Client class that declares the methods for
sending commands. This base class is defined only to allow a drop-in substitution
of a StubClient class, that is used for stubbing the interface to the Control Task.
The ClientBase derives from NotificationPublisher.
Client - Encapsulates the interface to the Control Task. Contains two POSIX
message queue handles for sending and receiving messages respectively. Also
owns and manages a background thread that receives Control Task notification
messages and delivers these to all registered NotificationReceiver subscribers.

The typical usage case is as follows:

1. A consumer class* derives from the NotificationReceiver class, providing a
thread-safe implementation of the ReceiveNotification() method.

2. The consumer subscribes to the Client class (a type of NotificationPublisher)
to begin receiving notifications.

3. The consumer begins delivering commands to the Control Task using the
Client class' interface.

4. The consumer handles asynchronous notifications from the Control Task
delivered via the NotificationReceiver interface.

The Job Processor and Job Processing Agent both implement the
NotificationReceiver interface and subscribe to the Client class to receive notifications.

3.3.5 Search

Figure 11 - Search class diagram

The search subsystem encapsulates the path planning logic in the Command Task.
The external interface is the A_star class which, given a current location and destination
landmark, will compute the navigation plan using the A* search algorithm. This is
discussed in further detail in Chapter 4:.

The search subsystem consists of the following classes:

Point - A class representing a Cartesian coordinate and providing methods to:

calculate the straight-line distance between two points - using the
Pythagorean theorem: a2 = b2 + c2

calculate the angle between two points

Landmark - A class representing a 'point-of-interest' in the robot's environment. The
landmark consists of:

Landmark id - a unique identifier for this landmark

Landmark type id - the id assigned to this type of landmark as defined by the
Control Task (e.g. right hallway entrance).

Point - the Cartesian coordinates of the landmark in the map

Neighboring landmarks

Map - A collection of all landmarks in the map space. The map class parses the set of
landmarks from a text file and exposes methods for obtaining and iterating the landmarks.

Search Node - The Search Node represents a node in the search space. Contains the
following attributes:

f-score

g-score

h-score

predecessor node

Priority Queue - An implementation of a priority queue. This container is required for the
'open set' variable in the algorithm i.e. to be able to retrieve the next search node with the
highest f-score. The interface of the priority queue resembles a regular queue, supporting
the following operations:

Push

Pop

IsEmpty

GetTop

IsInSet

The class uses a lazy sorting approaching, delaying sorting of the search nodes in the
collection until GetTop is invoked.

Navigation Plan - The Navigation Plan is the output of the search computation. It is an
ordered sequence container that is a collection of Navigation Steps, beginning from the
start node to the goal node. Each Navigation Step contains the following information:

Source Landmark Id

Destination Landmark Id

Source Landmark Type Id

Destination Landmark Type Id

Distance Centimeters - distance between the source and destination. This is used
as the 'guidance' distance communicated to the Control Task to begin looking for
the next landmark.

Bearing Degrees - direction of travel between the source and destination. The
bearing is used to detect direction changes between steps.

3.3 .6 Command Task

The Command Task subsystem builds the binary executable that is the Command
Task. This subsystem includes the application entry point (main) and a Command
Processor class.

The Command Processor constructs all the required objects that make up the
'application stack'. This includes:

Configuration File - reads and parses configuration parameters from a file

Control Client

Search Map

Job Processor

Notification File Log

Protocol Server Stack

Job Manager (Job List and Job Priority Queue)

In addition, the Command Processor reads input from standard in to support various
commands useful for debugging.

The Command Task may be run in one 3 modes as determined by a command-line
parameter:

-normal - constructs the application stack for normal operation on the robot
and interaction with the Control Task

-stubbed - identical to the -normal mode, however uses a stubbed interface to
the Control Task. This is useful for running the Command Task for
debugging and/or testing purposes.

-interactive - does not construct any objects. Allows for piecemeal or
selective construction of objects via the standard input command processing.

3.3 .7 Command CGI

The Command CGI subsystem builds the binary executable that is the Command
CGI. This executable uses many of the same static libraries used by the Command Task
for T C P and J SON support.

The Command C G I process is an intermediary between the H T T P-based User
Interface client and the Command Task that facilitates the transfer of J SON messages
over the two disparate transport channels (H T T P and 'raw' T C P). The C G I process is not
however, a blind relay. It serializes and de-serializes the J SON messages, effectively
validating the content before transmission between the two parties.

The main() function performs the following:

1. Reads the H T T P query string and content length from the QUERY_STRING
and CONTENT_LENGTH environment variables respectively.

2. Reads the H T T P request content (if any) from standard input.
3. The received content, expected to be a J SON message, is de-serialized into a

C plus plus message object.
4. Establishes a T C P connection to the Command Task process' T C P server.
5. The message object is serialized again and sent to the Command Task using

the client socket.
6. The response is read from the client socket and de-serialized into a response

message object. The response message object is then serialized to J SON
again and streamed to standard out. The standard output is the H T T P
response content that is sent back to the H T T P client that originated the
request.

In the event of any exception (such as a J SON parsing error, T C P connection failure,
etc), the error content is returned to the H T T P client.

See section Chapter 5: for more details on the C G I and messaging interface.

Chapter 4: Navigation

4.1 Overview
In this chapter, we discuss the means by which the Command Task accomplishes

navigation of the robot in its target environment (i.e. an office or factory). Navigation is
required to carry out those jobs that require movement to deliver a payload from one
location to another.

Navigation in the Command Task is a two-step process that consists of (a) path
planning, and (b) plan execution, processes which are performed in serial.

Path planning is the phase in which the Command Task uses a path-planning
algorithm to produce a navigation plan. The navigation plan is an ordered sequence of
navigation steps that will take the robot from its current location to a target destination.
Once the navigation plan has been computed, the Command Task must then execute the
plan step-by-step to move the robot to its target location.

The details of these processes are described in the following subsections.

4.2 Path Planning
Before executing any movements the Command Task must plan how it is going to

get from its current location to its target destination.

All destinations are identified in terms of landmarks - unique points-of-interest in the
environment. Landmarks may represent hallway intersections, entries to doorways, or
other significant locations in the environment. These landmarks are pre-determined
locations that are encoded into a static map. The map is represented as a directed graph
with vertices representing the landmarks and edges representing the traversable paths
between them. The edges are weighted by the distance between the landmarks (in
centimeters). The graph must be directed because of the requirement that the robot must
only traverse hallways with the wall on its right-hand side.

The following is a graph corresponding to a hallway intersection in C S U C I's Bell
Tower which served as the first demo map:

Figure 12 - Graph for first demo map in C S U C I's Bell Tower

Given its current location, the Command Task must determine an optimal route to
the destination landmark of its next goal location. It must do so using an algorithm that is
optimal with respect to both time and space. These requirements stem from the goal of
minimizing resource conflicts with the Control Task, which has real-time operational and
safety functions.

The Command Task uses the A asterisk search algorithm for path planning. A asterisk is in the
category of 'informed' best-first search strategies. I selected this algorithm because:

1. It meets the performance requirements. According to Norvig and Russell, the A asterisk
algorithm is "complete, optimal, and optimally efficient".

2. The algorithm is the most "widely-known form of best first search" and
consequently, there is an abundance of documentation and implementation
examples.

The A* algorithm evaluates each node in the current set of potential successors using
the following function:

f(n) = g(n) + h(n)

Where:

g(n) = the cost to reach this node

h(n) = the heuristic function which returns the cost to reach goal node from
this node

The choice of heuristic function is domain specific. The Command Task uses as its
heuristic function: h S L D - the straight-line distance between the landmark node being
considered and the goal landmark node. Russell and Norvig suggest this heuristic as "an
admissible heuristic". It is an admissible heuristic because it does not overestimate the
cost of reaching the goal, which maintains the optimality of A asterisk.

Given two nodes (the landmark being considered in the search path and the goal
landmark), the Command Task computes h S L D using the Pythagorean theorem:

a2 + b2 = c2

I based my implementation of the A asterisk algorithm on the following pseudo-code
(adapted from a Wikipedia article on A asterisk):

Table 3 - A* algorithm pseudo-code

The implementation is defined in a static A_star::FindSolution() method which has
the following inputs:

[in] startLandmarkId : unsigned int
[in] goalLandmarkId : unsigned int
[in] searchMap : Search::Map
[out] navigationPlan : NavigationPlan

The output of the search is a navigation plan with an ordered sequence of navigation
steps. Since the search path produces a tree-like structure (with successor nodes pointing
back to their predecessor), the navigation plan must be constructed by walking back up
the tree starting from the goal node to the starting node, and then reversing these steps to
create a plan in the right order. Each step in the resulting navigation plan will contain:

Source landmark id
Destination landmark id
Source landmark type (as understood by the Control Task)
Destination landmark type (as understood by the Control Task)
Distance between the source and destination in cms
Vector difference in degrees between landmarks - this is computed using the
arctangent function and is necessary for the Command Task to be able to
detect changes in direction between steps.

Nodes in the search tree consist of the following attributes

gScore
fScore
hScore
predecessor - a pointer to the predecessor node (used to be able to reconstruct
the search path).

Since nodes are non-trivial and are copied between data structures (i.e. open set,
closed set), they are implemented using object reference counting, whereby only one
instance of a given node exists in memory and copies of reference counted pointers are
stored and copied between the various containers.

Future work may consider the following strategies to optimize use of the algorithm:

Use the Memory Bounded and Recursive Best-First Search (R B F S)
adaptations of the A asterisk algorithm.

Perform navigation computation 'in the background' while the robot is idle or
busy performing some other task. For example, while waiting for the robot to
reach a landmark, we could begin computation of the navigation plan for the
next Job.

Distribute computation across the both the robot and one or more remote
computers using R P C.

4.3 Navigation
The navigation function of the Command Task is concerned with executing the plan

computed by the path planning function described in the preceding subsection.

Navigation in the Command Task is concerned only with 'discrete' navigation
between landmarks. The navigation is discrete because all navigation steps begin at a
landmark and end at a landmark. The Command Task does not concern itself with the
details of how the Control Task moves between the landmarks e.g. obstacle detection and
avoidance, staying within 6 inches of the wall, etc. which are the responsibilities of the
Control Task.

Given a navigation plan, the Command Task must execute each step using the
Control Task's navigation interface (described in Chapter 5:), which exposes the
following high-level navigation commands:

Travel Against the Wall - move the robot along the right wall of a hallway for a
specified distance

Enter Right Hallway - at the entrance to a hallway intersection, enter the right
hallway

Enter Left Hallway - at the entrance to a hallway intersection, enter the left
hallway

Enter Front Hallway - at the entrance to a hallway intersection, proceed forward
across the intersection, entering the hallway ahead of the robot

U-Turn - perform a u-turn such that the robot will be positioned on the opposite
side of the hallway and pointing in the opposite direction

Stop

The navigation steps provided in the navigation plan must be 'translated' into one or
more of the above high-level navigation commands. This is accomplished by
determining:

If the current landmark type indicates we are at a hallway intersection which
mandates use one of the hallway navigation commands
If a change in direction is required - turn left, turn right, continue forward, or turn
around. Turning left or right are only allowed at hallway intersections.
Distance to next landmark

The change in direction is computed from the bearing property of each navigation plan
step (the bearing is computed using the arctangent function). The bearing is 'normalized'
into one of the following values:

NONE (No direction change) - if direction change is <= 5 degrees.
TURN_AROUND - if direction change is 180 degrees (+- 5 degrees).
LEFT - if direction change is < 180 degrees to the left
RIGHT - if direction change is < 180 degrees to the right

The change in direction is processed first according to the following contextually-based
rules:

• If we are at hallway intersection and
direction change is LEFT, then issue Enter Left Hallway command.
direction change is RIGHT, then issue Enter Right Hallway command.
direction change is FORWARD, then issue Enter Front Hallway command.
direction change is TURN_AROUND, then issue U-turn command.

Otherwise, if
direction change is TURN_AROUND, then issue U-turn command.
direction change is LEFT, RIGHT, or FORWARD, then do nothing.

After processing the direction change, a Travel-Against-Wall command is issued to
drive the robot to the next landmark.

After submitting a navigation command, the Command Task must wait for the
Control Task to execute it before proceeding to the next step. The Control Task is
expected to deliver a notification indicating it has either arrived at or cannot find the
given landmark. In the case of a failure indicating the Control Task cannot find the
landmark or if the Command Task times out waiting for a notification, then the
navigation plan is aborted and the Command Task enters a failure state that requires
manual intervention by a human operator. Manual intervention is required to tell the
Command Task where it is and determine why the last navigation command failed. Such
failures should be unexpected if the map has been constructed correctly.

4.4 Map
As previously described, the map is represented by a static graph in which the

landmarks are vertices and the paths between them are edges. The map graph is
represented in a dictionary structure in which there is an entry for each landmark and the
value contains a description of the landmark including a list of the adjacent landmarks.

The following are detailed instructions for constructing a map. Construction of the
map is non-trivial and is nuanced by the Control Task navigation commands and the
landmark type definitions available. Before constructing the map, the list of landmark
types (defined by the Control Task) must be available.

Instructions:

1. Draw a spatial representation of the map space - the area in which the robot is to
operate.

2. Locate and identify all the landmark types in the map space - these are all the
locations that the robot would identify as landmark types such as a right hallway
entrance, doorway, etc.

3. Demarcate these landmark types on the drawing as nodes and write the landmark
type id (as defined by the Control Task). Place an arrow indicating the robot's
direction of travel with respect to the landmark. This is important because the
robot won't recognize the same landmark type when approaching from a different
direction.

4. Draw an edge between pairs of adjacent landmark nodes that meet all of the
following conditions:

the landmarks 'flow' in the same direction
there is a right hand-side wall that the robot may travel along, or a hallway
intersection between the landmarks
there are no intermediate landmarks

5. Once you are finished with step 4, the map should look like a directed graph with
landmarks as nodes and edges representing the connecting passages (typically
hallways). In its current form, the map may consist of multiple disconnected
graphs, overlapping graphs, or if you're lucky, just a single connected graph.

6. The next step is to connect disconnected graphs such that every landmark is
reachable. 'U-turn' edges are used to connect disconnected graphs. Executing a u-
turn will cause the robot to cross from one-side of a hallway to the other, placing
the robot in the opposite direction and on the opposite wall. The constraints are:

The u-turn must begin at a landmark node and terminate at an edge.
The destination edge must be heading in the opposite direction -- by
definition this should be true since the robot can only travel with a wall on
its right hand side (hallways excluded).

7. Prune any disconnected graphs and edges/nodes that aren't desired or required.
8. Write the approximate distance in cms of each edge in the graph. This should be

reasonably accurate since this distance is used in the path-planning algorithm and
also provided as a guideline distance to the Control Task as it looking to identify
the next landmark.

9. Add an x and y axis such that the entire graph appears in quadrant I.
10. Add the coordinates (x, y) in c m's for each landmark with respect to the x and y

axis.
11. Assign a unique integer identifier (> 0) to each node that identifies the landmark

(not the landmark type).
12. Pick one node to be the 'home' landmark - the place the robot will return to when

it goes offline (outside of operating hours) or requires a battery charge.
13. Validate the map. Traverse the map as if you were the robot, using only the

following movement commands to travel between landmarks:
a. Travel along wall (wall on right hand-side)
b. Enter right hallway
c. Enter left hallway
d. Enter front hallway
e. U-Turn

You should be able to travel between any two landmarks using these commands.

14. Finally, encode the map as a text file. For each landmark node, add a line to the
text file with:

• Landmark Id (the unique identifier you assigned to each landmark)
• Landmark Type Id - the landmark type (as defined by the Control Task)

• The landmark coordinates
• The list of adjacent (neighbor) landmark ids
• A 1 or 0 indicating if the landmark is at a hallway intersection.

Each line should have the following format:

<LandmarkId>;<LandmarkTypeId>;<Coordinate>;<NeighborList>;<IsIntersection>

E.g. 1;1;(100,450);{2,3,7};1

The B N F notation for the map file content is as follows:

Chapter 5: Inter-process Communication

5.1 Overview
Inter-process Communication (I P C) plays a critical role in the Command Task,

facilitating communication with the User Interface and Control Task. Without it, the
Command Task would be of little use.

I P C is required for:

Receiving job related commands from the User Interface

Issuing navigation commands to and receiving alarm and event information from
the Control Task

The two channels of communication are used for very different purposes and not
surprisingly have very different design and technology requirements.

The following diagram provides an overview of the IPC interfaces used by the
Control Task:

Figure 13- Command Task IPC interfaces

In this chapter we will discuss the nature of each interface.

5.2 Control Task
IPC with the Control Task is accomplished via an asynchronous 'inter-task'

messaging protocol using POSIX message queues as the underlying transport
mechanism.

The inter-task message protocol, which is defined by the Control Task and exposed
via a common header file, defines message structures that support:

1. Sending from 1 to 15 navigation commands in a single message. A navigation
command consists of a command type and 3 arguments, the values of which depend on
the command type.

The following command types are currently supported:

Move Forward

Rotate

Travel Along Wall

Stop

Enter Left Hallway

Enter Right Hallway

Enter Front Hallway

Move Tray

Make U-Turn

2. Receiving alarm or event data. The alarm/event message consists of:

Timestamp

Event type and id

Text description

Two arguments, which vary depending on the notification type

The following alarms/events are currently supported:

Alarms

Unable to locate landmark

Detected obstacle

Timeout

Battery level

Events

Detected landmark

Annunciator status

Platform status

Current state

Two named POSIX message queues are used to support fully duplex communication
between the Control and Command Tasks:

"/CONTROL T" - the outbound queue for navigation messages sent to the Control
Task

"/COMMAND T" - the inbound queue for alarm and event messages received
from the Control Task

The Command Task assumes the message queues have already been created at run-
time.

The implementation in the Command Task abstracts the Control Task A P I as a C plus plus
client library (described in section 3.3.4). The client provides an asynchronous interface
to send navigation messages and receive responses. The Client hides the details of the
message queues and the messaging protocol.

The Client uses the publish/subscribe software design pattern to communicate alarms
and events it receives from the Control Task. In this pattern, objects subscribe to a
publisher to receive asynchronous message notifications. In this case, the publisher is the
client and the messages are alarms and events.

The Client accomplishes this mechanism by spawning a 'background' thread to
monitor the receiving message queue. The Client's background thread polls the receive
message queue at an interval of every 2 seconds. If no message is available, the thread re-
enters the wait cycle. Otherwise, the receiving thread reads the message from the queue,
and publishes it to all subscribed receivers. The pattern fits well with the asynchronous
nature of the underlying message queue transport mechanism.

The Client sends navigation messages on the 'foreground' thread. That is, the
message is pushed into the message queue on the caller's thread. If the message is
successfully pushed into the message queue, the Client returns immediately.

5.3 User Interface
The Command Task's IPC with the User Interface is required to support a browser-

based application implemented using Web 2.0 technologies such as JavaScript, AJAX,
H T T P, etc.

Because the Command Task is not and does have an H T T P server, it must rely on a
3rd party Web Server to manage the direct H T T P communication with the User Interface
client, which is running in a browser application on an end-user's machine. Including an
H T T P server in the Command Task is certainly possible but was not feasible in the
context of this thesis. The Apache Web Server is a reliable and industry proven H T T P
server and was readily available on the Linux O S distribution installed on the robot. This
required however, some means of directing communication received by the Apache Web
Server to the Command Task process. The Command Task process itself could not run
using any existing C G I or scripting technologies (e.g. Ruby, Python, Perl, J S P, etc)
because it needs to run continuously and not only in context of servicing an H T T P
request.

To solve this problem, a separate Command C G I application is used. This process
handles the H T T P request from the client and then communicates with the Command
Task using an 'internal' communication channel. T C P is used as the underlying transport
for this internal channel; however another mechanism like pipes could also have been
used.

The Command C G I application functions as a hidden proxy between the User
Interface and the Command Task. From the perspective of the User Interface, it
communicates directly with the Command Task.

Figure 14- Message protocol through the Command CGI

The application message protocol (described below) is agnostic of the underlying
transport. The message protocol is delivered to the Command C G I application through
the Apache Web Server using H T T P which takes care of transport level details such as:

identifying the message type (via the U R L), and
the message length (via the H T T P Content-Length header).

However, these details are not natively supported by the T C P channel between the
Command C G I and Command Task. Therefore, all messages exchanged over the T C P
channel require a message header. The header is an 8-byte prefix containing a 4-byte
message type (a unique integer identifier) and a 4-byte byte-count.

Figure 15 - Message format over the T C P channel

5.4 Message Protocol
The Command Task message protocol consists of a set of object messages that are

exchanged between the User Interface and Command Task. The messages are encoded
using the JavaScript Object Notation (J SON) format.

J SON is a "lightweight data inter-change format" that is natively supported by the
JavaScript language (as of Standard ECMA-262 3rd Edition - December 1999). J SON
shares many of the advantages of X M L but in a more compact form.

A unique request object message is defined for each function that the User Interface
requires. The following request messages are defined:

Create Job
Fetch Jobs
Remove Job
Get Locations
Fetch Status

User Feedback

Each request message has a corresponding response message. All responses include,
at a minimum, the following attributes:

responseCode : int - a server response code. 0 = Success. Any other value
indicates failure.
responseText : string - server response message. This may be a status
message in the case of success or an error message in the case of failure.

Example:

The following sections describe the message protocol in terms of Remote Procedure
Call (R P C) interfaces. Each interface has input parameters and output parameters defined
which correspond to the attributes of the request message and response message
respectively.

5.4.1 Enumerations

The following table lists the enumeration data types used in the interface.

Enumeration Name Possible Values

ServiceLevel
Standard = 1
Priority = 2
Express = 3

UserLevel
Casual = 1
Regular = 2
Power = 3

InstructionType
Move = 1
WaitForCondition = 2

WaitCondition
UserAcknowledgment = 1
FullPower = 2
TimePeriodElapsed = 3

JobState
Unassigned = 1
InProgress = 2
Aborted = 3
Complete = 4

OperatingState
Busy
Waiting
Offline
Disabled

5.4.2 Data Types

The following table lists the complex data types used in the interface.

Attribute Name Attribute Type Optional Description

Instruction

Type Instruction Type enum No Instruction type.

timeout Secs int Yes Instruction timeout in secs after which Job is
aborted. Defaults to a server configurable default
value.

destination Location Id int Yes Destination location id. Present when instruction
type = Move only.

wait Condition Wait Condition enum Yes Wait condition. Applicable when instruction type =
Wait For Condition only.

wait Time Period int Yes Wait timeout. Present when instruction type =
Wait For Condition only and wait Condition =
Time Period Elapsed.

Coordinate

X int No

Y int No

Location

Id int No Unique identifier for map location. One of the
values returned by the Get Locations method (see
0.0.0).

coordinates Coordinate No Location map coordinates

Name string Yes Optional friendly name for map location.

Job

Id int Yes Job id. Present in server response only.

State Job State enum Yes Job state. Present in server response only.

status Message string Yes May contain error and/or other diagnostic
information about this job. Present in server
response only.

started Time Stamp date time string Yes. Time job was started. Present in server response
only.

finished Time Stamp datetime string Yes Time job finished (successful or otherwise).
Present in server response only.

instructions Instruction[] No Ordered list of Instructions.

5 . 4 . 3 Messages

Get Locations

Returns a list of map locations that are used to identify destination locations in job
assignments.

U R I S t e m - forward slash c g i hyphen b i n forward slash c o m m a n d underscore c g i question mark m i d equals 9

Attribute Name Type Optional Description

Input Parameters

None

Output Parameters

locations Location[] No List of locations.

Example:

Create Job

Creates and adds a new job to the job queue. Returns a unique server-assigned job
identifier.

U R I S t e m - forward slash cg i hyphen b i n forward slash c o m m a n d underscore c g i question mark m i d equals 3

Attribute Name Type Optional Description

Input Parameters

user I d String No User id.

service Level Int No Job service level.

user Level Int No User level.

Job Job No The new job to create.

Output Parameters

job I d Int Yes Unique job i d for the new job. Present only if the job is
successfully created.

Example:

Remove Job

Removes an existing job from the job queue as identified by its job Id.

U R I S t e m - forward slash c g i hyphen b i n forward slash c o m m a n d underscore c g i question mark m i d equals 7

Attribute Name Type Optional Description

Input Parameters

user I d String No User i d.

job I d Int No Unique job id for job to remove.

Output Parameters

None

Fetch Jobs

Returns a list of all jobs.

U R I Stem - forward slash c g i hyphen bin forward slash command underscore c g i m i d equals 5

Attribute Name Type Optional Description

Input Parameters

None

Output Parameters

unassigned Jobs Job[] No List of jobs in the queue that have not yet been assigned to a
robot. Jobs are in descending order of their priority in the
server queue.

assigned Jobs Job[] No List of jobs that have been assigned to a robot and are either in
progress, have been completed, or have been aborted.

Example:

Fetch Status

Returns robot status and location details include control task alarms.

U R I Stem - forward slash c g i hyphen bin forward slash command underscore c g i underscore m i d equals 11

Attribute Name Type Optional Description

Input Parameters

None

Output Parameters

start Time Hour short No I d of last known location.

start Time Minute short No

end Time Hour short No

end Time Minute short No

current Operating Status string No

home Landmark I d int No

last Landmark I d int No

last Heading Degrees double No

current Job Id int No

destination Landmark I d int No

pending Jobs Count int No

completed Jobs Count int No

aborted Jobs Count int No

platform Status int No

battery Level int No

control Task Busy State int No

control Task Operating Stat int No

notification Log string No

trace Log string No

exception Log string No

User Feedback lnfo

This message signals the Command Task that a payload has been added or removed from the tray. It
is used to unblock the Command Task when it is executing a job instruction that requires it to 'wait for user
feedback'.

U R I S t e m - forward slash c g i hyphen b i n forward slash c o m m a n d underscore c g i question mark m i d equals 13

Attribute Name Type Optional Description

Input Parameters

None

Output Parameters

None

Chapter 6: Testing and Experiments

6.1 Overview
This chapter describes the procedures used for testing the Command Task as well as

the specific experiments conducted to test the Command Task on the robot in several test
environments.

Testing of the Command Task included feature testing and debugging both in the
development environment and on the robot. Feature testing was approached from the
perspective of a quality assurance department - verifying the functional requirements are
met and testing various scenarios and corner cases. Debugging included using debug
trace and debugging tools (such as the debugging tools supported by the Eclipse I D E).

Initial testing and debugging was conducted exclusively in the development
environment (the Linux virtual machine hosted by Virtual Box). This was sufficient to
test almost all functionality as the Linux operating system matched that of the robots and
included all components required by the Command Task (i.e. Apache Web Server) except
for the Control Task.

A Control Task interface 'stubbing' mechanism allowed for execution of various
scenarios in the development environment. The stubbing mechanism simply accepted
navigation commands and always successfully acknowledged arrival at the requested
landmark. This proved to be very helpful as test scenarios could be verified before
integration on the robot and most issues could be reproduced without the need for the
robot hardware.

Testing of the C G I interface was facilitated by various test pages - simple H T M L
forms that supported the addition and removal of jobs, fetching status, getting the map
locations, etc. These pages exercised all legs of the C G I interface (see Section 5.4.3) and
were also useful in testing the robot in general, as they could be used to add and remove
jobs. In addition, an internal-only test page was developed to support sending low-level
navigation commands to the Control Task outside of the context of a job.

The following sections describe the setup and tear down processes followed when
testing on the robot and the experiments tested with the robot to verify the Command
Task functionality.

6.2 Setup
T h e f o l l o w i n g d e s c r i b e s t h e s t e p s t h a t w e r e r o u t i n e l y f o l l o w e d t o p r e p a r e f o r t e s t i n g

a n d d e b u g g i n g o f t h e C o m m a n d T a s k o n t h e r o b o t . T h e s e s t e p s a s s u m e t h a t t h e

C o m m a n d T a s k d e l i v e r a b l e s a r e r e a d i l y a v a i l a b l e o n t h e t e s t e r ' s l a p t o p c o m p u t e r , a n d

t h a t t h e C o n t r o l T a s k a n d i t s d e p e n d e n c i e s (c o n t r o l underscore t a s k , j o y s t i c k , c r e a t e underscore q u e u e s) a r e

a l r e a d y i n s t a l l e d o n t h e r o b o t .

1. A t t a c h t h e t h r e e s e r v o d r i v e p o w e r c a b l e s (a t t h e r e a r e n d o f t h e r o b o t) . T h e s e a r e

p u r p o s e l y l e f t d e t a c h e d d u r i n g n o n - o p e r a t i o n t o a v o i d p o w e r d r a i n .

2 . T o g g l e t h e t w o p o w e r s w i t c h e s t o t h e o n p o s i t i o n .

3 . D e t a c h t h e p o w e r s o u r c e p l u g (w h i c h w o u l d o t h e r w i s e t e t h e r t h e r o b o t t o t h e

w a l l) .

4 . D e p r e s s t h e m o t h e r b o a r d p o w e r s w i t c h t o p o w e r o n t h e m o t h e r b o a r d a n d b o o t u p

t h e o p e r a t i n g s y s t e m .

5 . O n c e t h e o p e r a t i n g s y s t e m h a s f i n i s h e d b o o t i n g , m a k e a n o t e o f t h e a s s i g n e d I P

a d d r e s s i n s t a r t - u p t r a c e o u t p u t t e d t o t h e r o b o t ' s d i s p l a y s c r e e n

6 . U s e W i n S C P t o e s t a b l i s h a f i l e s h a r i n g s e s s i o n w i t h t h e r o b o t . C o p y a l l

d e l i v e r a b l e s i n t o a w o r k i n g d i r e c t o r y o n t h e r o b o t (t y p i c a l l y t h e u s e r ' s d i r e c t o r y

i n forward slash h o m e forward slash). S e e A p p e n d i x A f o r i n s t a l l a t i o n i n s t r u c t i o n s a n d a l i s t o f t h e

d e l i v e r a b l e s .

7 . P u s h t h e r o b o t t o t h e d e s i r e d s t a r t i n g l o c a t i o n i n t h e e n v i r o n m e n t . T h e r o b o t

s h o u l d b e p o s i t i o n e d a t t h e d e s i r e d i n i t i a l l a n d m a r k (c o n s i s t e n t w i t h t h e b e a r i n g

a n d h o m e l a n d m a r k i d e n t i f i e d i n t h e c o n f i g u r a t i o n dot i n i f i l e) .

8 . U s e P u T T Y o r s o m e o t h e r t e r m i n a l e m u l a t o r t o e s t a b l i s h a r e m o t e s e s s i o n t o t h e

r o b o t .

9 . E n t e r s u d o - i a t t h e p r o m p t a n d b r o w s e t o t h e w o r k i n g d i r e c t o r y .

1 0 . R u n dot forward slash c r e a t e underscore q u e u e s t o i n i t i a l i z e t h e m e s s a g e q u e u e s .

1 1 . R u n dot forward slash c o n t r o l underscore t a s k t o r u n t h e C o n t r o l T a s k p r o c e s s .

1 2 . N o w u s e P u T T Y t o e s t a b l i s h a n o t h e r r e m o t e s e s s i o n t o t h e r o b o t (k e e p i n g t h e

f i r s t a c t i v e) .

1 3 . R u n dot forward slash c o m m a n d underscore t a s k hyphen n o r m a l t o r u n t h e C o m m a n d T a s k p r o c e s s .

1 4 . T h e r o b o t i s n o w r e a d y f o r t e s t i n g w i t h t h e C o m m a n d T a s k .

6 . 3 T e a r D o w n

T h e f o l l o w i n g s t e p s a r e f o l l o w e d t o t a k e t h e r o b o t o f f l i n e a n d m o v e i t i n t o a n o n -

o p e r a t i o n a l s t a t e .

1. T e r m i n a t e t h e C o m m a n d T a s k p r o c e s s . T h i s i s u s u a l l y p e r f o r m e d b y e n t e r i n g t h e

c o n t r o l - c k e y s t r o k e i n t h e r e m o t e t e r m i n a l i n w h i c h t h e c o m m a n d underscore t a s k w a s r u n .

2 . T e r m i n a t e t h e C o n t r o l T a s k p r o c e s s . T h i s i s u s u a l l y p e r f o r m e d b y e n t e r i n g t h e

c o n t r o l - c k e y s t r o k e i n t h e r e m o t e t e r m i n a l i n w h i c h t h e c o n t r o l underscore t a s k w a s r u n .

3 . U s i n g W i n S C P , c o p y t h e n o t i f i c a t i o n s dot l o g a n d t r a c e . l o g f i l e f r o m t h e r e m o t e

d i r e c t o r y t o t h e t e s t e r ' s l a p t o p . T h e s e m a y b e i n s p e c t e d o f f l i n e f o r d e b u g g i n g .

4 . R u n t h e j o y s t i c k d r i v e r p r o c e s s b y e n t e r i n g dot forward slash j o y c t r l i n o n e o f t h e r e m o t e t e r m i n a l

s e s s i o n s . C l i c k t h e b u t t o n a t t h e b a s e o f t h e j o y s t i c k . T h i s f r e e s t h e w h e e l s f r o m

t h e d r i v e s , a l l o w i n g t h e r o b o t t o b e p u s h e d . T h e j o y s t i c k p r o g r a m w i l l t e r m i n a t e .

5. Push the robot back to the storage location, where the power cord is.
6. Enter the halt command into one of the remote terminal sessions to shutdown the

operating system.
7. Close the remote terminal sessions and the Win S C P session.
8. Remove the power cables from the servo drives.
9. Once the operating system has been shutdown, toggle the two power switches to

the off position.
10. Plug the robot back into the power source.

6.4 Demo Map Area # 1
Initial integration testing of the Command Task and Control Task on the robot was

conducted in a 'demo' area located in the C S U C I Bell Tower. This map, while small and
seemingly uninteresting, exercised much of the Control Task's local navigation logic as
well as the inter-process interaction between the Command and Control Task and proved
to be an excellent initial test environment.

Figure 16 - Demo Map # 1 in the C S U C I Bell Tower

As illustrated in the above diagram, the map consisted of 3 distinct landmarks
characterized by 3 landmark types:

Landmark # 1 - A left hallway entrance with landmark type # 1
Landmark # 2 - A right hallway entrance with landmark type # 2
Landmark # 3 - A doorway entrance with landmark type # 3

The x coordinates shown in the graph correspond to the approximate distance in
centimeters between the landmarks. The y coordinates were somewhat arbitrary and did
not matter in this map since there are no movements along the y-axis.

The map encoding is as follows (see Section 4.4 for map encoding details):

1;1;(0,30);{2};1

2;2;(900,30);{3};0

3;3;(0,30);{2};0

In this map, landmark # 2 and landmark # 3 are neighbors and can be reached by
executing a u-turn followed by a travel-against-the-wall. Landmark # 1 cannot be reached
from landmarks #2 or # 3. However it can be used as a starting point to reach landmark #
2.

Initial testing in this map area exercised the inter-process communication protocol
between the Command and Control Tasks. Jobs executed in this area were jobs consisting
of a single movement instruction such as: move from landmark # 1 to landmark # 3.

6.5 Demo Map Area # 2
Demo Map Area # 1 proved to be an invaluable starting point, however this did not

fully exercise the path-finding and job processing logic of the Command Task. While
thorough testing of the path-finding and job processing was performed in the virtual
machine development environment using various test maps, a more complex area was
needed to integration test the Command Task using the actual robot.

The demo area was expanded to include another portion of the C S U C I Bell Tower
hallway with several additional landmarks, adding for the possibility of more complex
navigation plans and jobs.

Figure 17 - Demo Map # 2 in the C S U C I Bell Tower

The map encoding is as follows:

1;1;(0,30);{2};1

2;2;(900,30);{3,4};1

3;3;(0,30);{2};0

4;4;(1800,30);{3,5};1

5;5;(1800,630);{6};0

6;6;(1800,30);{3,4,5};1

Note that the y coordinates for landmarks in the same hallway are identical e.g.
landmark # 4 and landmark # 6 share the same coordinates. In the context of the real
world environment, landmark # 4 and # 6 are really the same location but just being
approached from different angles. The static map views these as distinct landmarks.

Successful tests conducted in this map included multiple successive job requests
such as the following:

1. Move from landmark # 1 to landmark # 4 and wait for user feedback (payload
loaded).

2. Move from landmark # 4 to landmark # 6 and wait for user feedback (payload
unloaded).

In some tests, the robot veered slightly off course due to a slope in the hallway, and
failed to recognize a landmark. This resulted in the job being aborted which required the
robot to be manually moved back to a landmark. This underscored the need for some type
of fault tolerance and recovery mechanism, which is beyond the scope of this thesis.

6.6 Test Pages
The following figures are illustrate a few of the non-trivial test pages used to verify

the CGI interface and also used for general purpose testing of the Command Task.

These pages contain forms that use JavaScript to submit a J SON formatted request
message to the C G I interface and then display the corresponding response (also J SON) in
a text box.

Figure 18 - DeliveryJob dot h t m l C G I test page

Figure 19 - RemoveJob dot h t m l C G I test page

Figure 20 - SendCommand dot h t m l C G I test page

Chapter 7: Conclusions

7.1 Summary
The goal of this thesis project is the completed development of an Artificial

Intelligence software layer that would fit into the overall system architecture, and would
meet the high level requirements documented in section 1.3. Specifically, the software
would need to accept delivery and pickup job requests from users and maintain these in a
queue, manage the scheduling of jobs, use path-planning to find the optimal routes
between destinations in jobs, and execute jobs in the queue, navigating the environment
as necessary to carry out a job. As a result of the design, implementation, and testing of
the Command Task software, these requirements were successfully accomplished and
demonstrated in a demo map area using the robot.

The Command Task, as a middle-ware layer in the system architecture, was
implemented using a variety of technologies - from the use of message queues to
communicate with the Control Task, an implementation of the A* search algorithm for
path planning, an intelligent agent for job execution, to the J SON-based T C P and C G I
interfaces that are used for interaction with the local and Web-based user interfaces.

Sound software engineering principles were applied to the design and development
of the Command Task, which should provide a solid foundation for future maintenance
and iteration of the software, leading to its eventual deployment to production.
Specifically, software design specifications were written and reviewed in advance of
development, the use of mature software design patterns were used, and the source code
written using quality-driven industry techniques.

There is plenty of opportunity for further enhancements and new features to the
Command Task platform (see Section 7.2 below). Certainly, some refinement is
necessary before the Command Task would be ready for use in a production
environment. For example, a failure tolerance and recovery mechanism is needed to
reduce or eliminate the need for human intervention when there are local navigation
failures such as the failure to recognize a landmark or an obstacle that cannot be
circumnavigated. In addition, the process of constructing the static map is tedious and has
room for refinement to reduce the effort required by the administrator.

In conclusion, I am very grateful for the opportunity to have contributed to this
project and collaborated with an excellent team to create a working product. In addition
to the learning experience, it was particularly rewarding to see the physical robot
executing delivery jobs in response to a job requests sent from a Web browser.

7.2 Future Work
The following is a list of suggestions that may be considered for implementation in

future work on the Command Task software. Some of these are functionality that was
identified during the initial design but deferred due to scope. These suggestions are
grouped according to their general area of functionality.

Jobs
Consider recycling terminated and aborted jobs, so that users could recall tasks
that are routine. Perhaps allow for recurrence of jobs with some frequency e.g.
regular mail pickup every weekday morning.
Allow users to schedule jobs for execution at a later date or time, so the Job
Manager would not consider them until at least the specified date/time.
Preempt the current job when the robot is en route to a location with an empty bin
and gets a higher priority job to complete. Add an administrative setting that
could control the commitments; for example, the system might be required to
finish a job that has already started even with an empty bin. That could avoid
confusion of users, who would not know why the robot is not fulfilling their
requests. If dynamic changes are allowed, then in theory user starvation may
occur. That suggests that waiting time must be a part of the computation as well.

Scheduling
Evaluate queued jobs for overall (power consumption) efficiencies. i.e. estimate
the power requirements for job and use them in the job prioritization algorithm.
Evaluate constraint-based optimization, optimization of elevators, other options to
determine if there is a better algorithm for job queue prioritization and selection.

Navigation and Path-Planning
Consider navigation plan computation as a distributed task shared between the
robot and a remote machine, to offload some of the computational burden from
the robot's hardware.
Currently, the A* search heuristic function uses the straight-line distance from the
current node to the goal. Consider factoring an 'estimated travel time' into the
heuristic function. Initially, this estimate could be populated by an educated guess
or based on trial runs. However, after time, this could be based on an average of
recent actual traversal times.
When the Control Task reports failure to reach a landmark, the Job Processor will
abort the job and requires manual intervention to recover. The Command Task
could incorporate intelligence to reason about its current location and attempt to
discover where it is without human intervention. This may include interfacing
with the Control Task to obtain data about the environment. This same reasoning
mechanism could be used to allow the robot to discover where it is at any location
in the environment.
The Command Task could incorporate learning into navigation plan execution to
handle transient failures such as obstacles in the way. The Command Task could
compute an alternate search path that avoids the current 'problem' location.

Currently, map construction and the subsequent verification by testing, can be a
lengthy and very tedious process. Some level of machine learning may be
considered to help automate this process, whereby the robot would be 'walked'
through the environment and would discover and dynamically compile the map.

References

1. "Autonomous Interoffice Delivery Robot: Software Development of the Control
Task", Master's Thesis, by Ludovic Hilde, California State University, Channel
Islands, 2009.

2. "AIDeR Local User-Interface", Capstone Project, by Andrew Wright, California
State University, Channel Islands, 2009.

3. "AIDeR Remote User-Interface", Capstone Project, by Robert Kiffe, California
State University, Channel Islands, 2009.

4. "Artificial Intelligence: A Modern Approach" 2nd Edition, by Stuart J. Russell,
Peter Norvig, Prentice Hall, New Jersey, 2003.

5. "Constructing Intelligent Agents Using Java" 2nd Edition, by Joseph P. Bigus,
Jennifer Bigus, Wiley, New York, 2001.

6. "Hybrid Control for Robot Navigation: A Hierarchical Q-Learning Algorithm",
by Chunlin Chen, Han-Xiong Li, and Daoyi Dong, IEEE Robotics and
Automation Magazine, 2008.

7. "JavaScript Object Notation" (for notation specification and definition),
http://www.json.org

8. "A*" (for search algorithm pseudo-code), http://en.wikipedia.org/wikiM*

9. "AIDeR Autonomous Interoffice Delivery Robot Phase IIDesign Document", by
Kevin Steinberg, California Polytechnic University, 2006.

10. "Effective C++: 55 Specific Ways to Improve Your Programs and Designs ", 3rd

Edition, by Scott Meyers, Addison-Wesley Professional, 2005.
11. "More Effective C++: 35 New Ways to Improve Your Programs and Designs ",

by Scott Meyers, Addison-Wesley Professional, 1996.
12. "Design Patterns: Elements of Reusable Object-Oriented Software", by Erich

Gamma, Richard Helm, Ralph Johnson, John M. Vlissides, Addison-Wesley
Professional, 1994.

13. "json-cpp library",(an open-source C++ implementation of a JSON parser), by
Baptiste Lepilleur, http://sourceforge.net/projects/jsoncpp/

http://www.json.org/
http://en.wikipedia.org/wiki/A*
http://sourceforge.net/projects/jsoncpp/

Appendix A - Installation Instructions

Get all content from the command backward slash bin folder in S V N e.g. from aider backward slash

trunk backward slash command backward slash bin.

At present, this includes:

command underscore c g i
command underscore task
configuration dot i n i
DemoMap dot t x t
ExtendedDemoMap dot t x t
DeliveryJob dot h t m l
FetchJobs dot h t m l
FetchStatus dot h t m l
GetLocations dot h t m l
Index dot h t m l
RemoveJob dot h t m l
SendCommand dot h t m l

SimpleJob dot h t m l UserFeedback dot h t m l Y o u c a n a l s o b u i l d t h e b i n a r i e s y o u r s e l f :

s v n c h e c k o u t s v n plus s s h colon forward slash forward slash less than sign y o u r i d greater than sign
ampersand o a k dot c s dot c s u c i dot e d u forward slash v a r forward slash s v n forward slash a i d e r
c d a i d e r forward slash t r u n k forward slash c o m m a n d make
Install the CGI application and CGI test pages (from the aider/trunk/command directory):

I n s t a l l i n g t h e c o m m a n d underscore t a s k (f r o m t h e a i d e r forward slash t r u n k forward slash c o m m a n d forward slash

b i n d i r e c t o r y) :

1. First:
s u d o c h m o d 7 7 5 dot forward slash c o m m a n d underscore t a s k

2. The command underscore task depends on the following files, which it expects to find in the same
directory as the executable:

configuration dot ini equal sign configuration file
ExtendedDemoMap dot t x t equal sign the map

3. The command task will create two log files

• trace dot log - all debug trace
• notifications dot log - all notification messages received from the control underscore task

Running on the robot:

1. I n i t i a l i z e t h e m e s s a g e q u e u e s

dot forward slash c r e a t e q u e u e s

2 . R u n t h e c o n t r o l t a s k

dot forward slash c o n t r o l t a s k

3 . R u n t h e c o m m a n d t a s k (f r o m t h e a i d e r forward slash t r u n k forward slash c o m m a n d forward slash b i n d i r e c t o r y)

dot forward slash c o m m a n d t a s k - n o r m a l

Running on your V M:

Run (from the aider/trunk/command/bin directory)
dot forward slash command t a s k hyphen s t u b b e d

Using the command underscore task:

B r o w s e t o t h e t e s t p a g e s (e . g . h t t p colon forward slash forward slash less than sign y o u r i p greater than

sign forward slash N e w J o b dot h t m l) t o a d d j o b s , f e t c h j o b s , e t c .

or use the terminal interface (described below).

Command input interface:

T h e c o m m a n d t a s k a c c e p t s a n d p r o c e s s e s t e r m i n a l i n p u t c o m m a n d . T h e f o l l o w i n g c o m m a n d s a r e s u p p o r t e d (a l l c a s e - i n s e n s i t i v e) :

Appendix B - AIDer Operating System
and Development Environment

The original AIDer software from California State Polytechnic University ran on
R T Linux-Free 2.6.9, based on a custom patchset for the Linux kernel and a Red Hat
userland. RTLinux-Free 2.6.9 included real-time scheduling capabilities, but is no longer
actively maintained. As such, new software was chosen and installed.

The AIDer onboard computer runs Gentoo G N U /Linux 2.6.26. G N U/Linux is a
monolithic kernel, Unix-like operating system. Linux 2.6.26 includes real-time
scheduling capabilities and is actively maintained.

The Gentoo Linux distribution is a highly customizable and configurable Linux
distribution, and was chosen as certain development software requirements were not
chosen until well after Control Task development was under way. According to the
Gentoo Philosophy (see http://www.gentoo.org/main/en/philosophy.xml), "The goal of
Gentoo is to design tools and systems that allow a user to do that work as pleasantly and
efficiently as possible, as they see fit."

The AIDer userland includes:

glibc 2.8 and the G N U toolchain, including G C C 4.3.2
X.org 7.2 and X f c e 4.4.3
Apache 2 Web Server with mod underscore python and mod underscore ruby
Mozilla Firefox 3
Ruby 1.8
Perl 5.8.8
Python 2.5.4

For convenience, AIDer's operating system and development environment were
replicated on a Sun VirtualBox virtual machine to allow the project's members to test
their software without using AIDer itself.

http://www.gentoo.org/main/en/philosophy.xml

