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Abstract 

The Autonomous Interoffice Delivery Robot (AIDeR) is a robot 
conceived by Advanced Motion Controls (A M C) for the purpose of 
demonstrating their servo drive hardware. The AIDeR's function is to take 
orders for the pickup and delivery of various items in an office 
environment, autonomously navigating the environment to carry out these 
orders. This thesis presents the design and implementation details of the 
artificial intelligence software layer that is responsible for high-level 
navigation, scheduling, and processing of delivery orders. 
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Chapter 1: Introduction 

1.1 Introduction to the AIDeR Project 
For my graduate research project, I was given the opportunity to participate in a 

multi-team effort to design and implement the software system that would run a robot 
named the Autonomous Interoffice Delivery Robot, or AIDeR for short. The terms robot 
and AIDeR are used interchangeably throughout this document to refer to the AIDeR. 

The AIDeR was provided by a company called Advanced Motion Controls (A M C) 
that plan to use the robot for demonstrating their servo-control hardware. The robot 
required sophisticated software that would combine embedded system software, artificial 
intelligence and task scheduling software, and a user-interface. 

My responsibility was to design and implement the artificial intelligence layer of the 
software system. This thesis presents the design and implementation details including the 
rationale motivating the design and implementation decisions. 

1.2 Description of the AIDer 
Before proceeding further, a description of the AIDeR is warranted. The AIDeR is a 

robot that consists of the following hardware components: 

A front-mounted scanning-laser rangefinder for navigation and obstacle 
detection. 

• Ultrasonic rangefinders on the left, right, and rear for navigation and obstacle 
detection. 

• A display screen, keyboard, and pointing device for interacting with users 
directly at the robot 

• 6 wheels powered by servo drives, capable of fine-motor movement, and 360 
degree rotation 

• Platform that may be lowered and raised to receive or deliver payloads 

• Computer running the Gentoo G N U/Linux 2.6.26 operating system 

• Batteries to provide power for up to 16 hours of operation 

• 802.11b Wireless network interface card to support interacting with users 
remotely 



The following is a concept drawing depicting the robot: 

Figure 1 - Concept drawing of the AIDeR 

1.3 High-Level Requirements 
AIDeR was provided as a fully constructed robot with operational hardware. The 

robot's chassis, propulsion, and steering systems as well as the battery and charging 
system was designed and implemented by ME 428/481 students at California Polytechnic 
State University, with this work completed in March of 2006. 

However, the robot still required software that would breathe life into its hardware 
components. Specifically, the software would need to satisfy the following high-level 
functional requirements: 

• Accept delivery and pickup job requests from users and maintain these in a queue. 
Local and remote user interfaces are provided to allow users to submit jobs from 
the robot's user input devices and over the Web respectively. 

• Manage the scheduling of jobs based on a combination of user priority and a job 
priority level classification. The scheduling algorithm would need to account for 
potential job starvation. 

• Use path-planning to find the optimal routes between destinations in jobs. 

• Execute jobs in the queue, navigating the environment as necessary to carry out a 
job. The environment may consist of a series of interconnected hallways and 
offices. 

• The robot must travel within approximately six inches of a right wall whenever 
possible, and must drive at a safe speed. 



• The robot must detect and avoid obstacles, and must alert pedestrians to its 
presence. 

• The robot must monitor its battery power level and return to the charging station 
when the power level drops below a critical threshold. 

• Perform the above functions autonomously. 

• Use the robot's computing resources judiciously, giving priority to critical 
functions such as safety and local navigation. 

1.4 Software System 
Early in the design, it became apparent that the responsibility for the high-level 

requirements should be distributed across the following distinct software layers: 

1. User Interface 

• Local and remote user interfaces from which users are able to add/remove 
jobs, view the queue of jobs, and the current status of the robot. 

2. Artificial Intelligence 

• Manages a queue of delivery/pickup jobs 

• Manages the execution of jobs 

• Performs path planning 

3. Hardware Abstraction 

• Operates and monitors the robot's hardware. 

• Uses the robot's hardware to drive the robot safely in the environment. 
This includes obstacle detection/avoidance, travelling against a right wall 
etc. 

• Reports status and error conditions to the Artificial Intelligence layer, 
including navigation status. 

This thesis will focus on the Artificial Intelligence layer. The Artificial Intelligence 
and Hardware Abstraction layers were given the monikers of Command Task and Control 
Task respectively, terms which will be used throughout this document. 



Figure 2 - Software System Layers 

1.5 Overview of the Thesis Document 
The second chapter presents the detailed functional requirements of the Command 

Task. The functional requirements will provide a detailed description of what precisely is 
expected from the Command Task to address the high-level requirements. The 
requirements are presented iteratively starting with the concrete definition of terms such 
as a 'Job'. The functional requirements provide the framework for the detailed design 
and implementation. 

The third chapter provides an overview of the design details of the Command Task. 
The design details 'flow' from the functional requirements. The metaphors presented in 
the second chapter, such as "Job Manager" and "Job Processor" correspond with 
subsystems and classes presented in the implementation details. 

The fourth chapter discusses the navigation implementation details at a higher level, 
with less focus on the C++ classes. The chapter discusses how the Command Task 
performs path planning, and how the resulting navigation plans are executed in 
conjunction with the Control Task. It is necessary to devote a chapter to this topic 
because it is one of the primary functions of the Command Task, is reasonably complex, 
and also an interesting topic in Computer Science. 

In the fifth chapter, the inter-process communication mechanisms used by the 
Command Task are discussed. The Command Task's position as a middleware layer 
between the User Interface and Control Task required the use of different communication 
techniques. The implementation of these techniques resulted in a significant portion of 
the development effort, and are worthy of their own chapter. 



The sixth chapter discusses the testing procedures and experiments conducted with 
the robot in 'demonstration' areas. 

The seventh and final chapter will include a summary of the project's results. What 
remains unsolved and what could be added to further enhance the project will also be 
discussed. 

1.6 Key Terms 
Autonomous Interoffice Delivery Robot (AIDeR) - hereinafter referred to as 
AIDer or robot. 

Command Task - the artificial intelligence software layer. Also, the name of the 
process that implements the Command Task logic. 

Control Task - the hardware abstraction software layer. Also, the name of the 
process that implements the Control Task logic. 

Command C G I - a subsystem of the Command Task that receives and processes 
web requests from the User Interface. 

User Interface - the user interface software layer. This term refers to both the 
user interface software that is run on and displayed in a web browser and the 
software that is run on and displayed in the robot's display screen. 

User - an authorized end-user that may interact with the robot via the User 
Interface 

Job - a task submitted by a User (via the User Interface) that is to be executed by 
the Command Task on the robot. 

Job Priority Queue - a prioritized collection of Jobs submitted by Users that are 
scheduled for execution by the Command Task 

Job List - a collection of Jobs that have already been executed by the Command 
Task 

Environment - an indoor location in which the robot may operate. Typified by a 
series of interconnected hallways and offices. 

Landmark Type - a unique set of physical characteristics as recognized by the 
Control Task that define a type of location in the Environment. For example, a 
'right hallway' landmark type may exist in multiple places on the same map. 

Landmark - a unique location and point of interest in the Environment that can 
be described by a Landmark Type e.g. the right hallway entrance in front of Bob's 
office. 



Chapter 2: Functional Requirements 

2.1 Overview 
This chapter presents the functional requirements of the Command Task. These 
functional requirements describe in concrete terms how the software is expected to 
behave, as well as providing the rationale for the implementation details that follow. The 
requirements are presented from the bottom up. That is, the most elementary topics are 
described first providing the basis for the more detailed topics. 

The following diagram depicts the Command Task with respect to the other systems 
in the system architecture: 

Figure 3- System overview 

2.2 Job 
A job is a sequence of instructions to be carried out by the robot. An instruction may 

be one of: 



• Move from the current location to a specified location 

• Wait for some condition to be met, where the possible conditions are: 

Wait for a specified time period to elapse 

Wait for user feedback 

Wait for full power charge 

Each instruction in a job has an associated timeout, which may be specified by the 
user or has an appropriate (configurable) default. If the instruction cannot be completed 
before the timeout, then the entire job is aborted. A movement instruction is completed 
when the robot has arrived at the destination location. A wait instruction is completed 
when the specified condition has been met. 

A job is executed as an atomic operation and, once in progress, will not be 
interrupted or preempted unless the job is either cancelled or aborted (due to timeout). 

The most common types of jobs will be a delivery job and a movement job. 

A delivery job consists of the following sequence of steps: 

1. Move to a starting location for item pickup 

2. Wait for user acknowledgement that the item has been loaded 

3. Move to a final location for item delivery 

4. Wait for user acknowledgment that the item has been unloaded 

The movement job will consist simply of moving to a location and possibly waiting 
for some condition to be met. For example, move from the current location to the 
charging station and wait for full charge. 

2.3 Job Management 
The Job Manager maintains newly submitted jobs in a priority queue. New jobs are 

added by the local and remote user interfaces which are described. Once a job is 
assigned, it is removed from the queue and added to the robot's job list. 

2.3.1 Priority Queue 

The priority queue is a global collection of all jobs that have not yet been assigned to the 
robot for processing. Jobs in the queue are sorted in descending order of job priority (as 
described below). 

When a new job is added to the queue, it is assigned a job priority, a job id, and a job 
state. These properties are described in the following subsections. 

Job Priority 

The job priority is computed based on a combination of a given 'service level' and 
'user level'. 



The service level is a user-specified importance for the job that may be one of the 
following enumerations (with their corresponding integer values in parenthesis): 

Standard (1) 

Priority (2) 

Express (3) 

The user level is the priority level of the user that creates the job and may be one of 
the following values: 

Casual (1) 

Regular (2) 

Power (3) 

The resulting job priority is a product of the service level and user level. Jobs are 
arranged in the queue in descending order of job priority. 

The following table enumerates the job priority resulting from all combinations of 
service level and user level: 

Casual Regular Power 

Standard 1 2 3 

Rush 2 4 6 

Express 3 6 9 

Once in the queue, to avoid starvation, a job's priority level will be increased by 2 for 
every hour it remains in the queue. 

Job Id 

The job id is a unique identifier for the job that is assigned by the system when the 
job is first added to the queue. The job id is immutable. 

Job State 

The job state reflects the current state of a job with respect to its processing by the 
robot: 

Unassigned - the initial state of a job when it is added to the queue 

InProgress - the job is currently assigned to a robot 

Aborted - the job failed to be completed 

Complete - all instructions in the job were completed 



These are illustrated in the following diagram: 

Figure 4 - Job state machine 

Job Assignment 

When the robot is ready for new work, it will request the assignment of a job from 
the Job Manager. Jobs will be assigned as follows. 

The Job Manager will select from the priority queue as candidate jobs: 

the job at the front of the queue 

all jobs that have an equal priority to the front job 

the first job that has a lower priority than the front job 

Of these candidate jobs, the Job Manager will give a temporary increase in priority 
level to the job whose first (or only) destination location is closest to the current position 
of the robot. 

The Job Manager will then assign to the robot the candidate job with the highest 
priority, or default to the front job if all candidate jobs have an equal priority. 

2 .3 .2 Job List 

Jobs that have been assigned to the robot are maintained in a job list. The job list 
includes: 

the job currently being executed by the robot 

completed jobs - those jobs that have been completed successfully 

aborted jobs - those jobs that failed or were cancelled 



2.3 .3 Job Interface 

The Job Manager exposes an interface to other systems (e.g. the U I, the Job 
Processor, other Job Managers, etc.). 

The interface supports the following operations: 

Operation Description 

Add Job Submit a new job to the queue. 

Remove Job Cancel an existing job in the queue as identified by its job id. 

Fetch Jobs Obtain a list of all unassigned jobs in their current order of priority and a 
list of all assigned jobs (InProgress, Completed, and Aborted). 

Fetch Status Obtain miscellaneous status, location, and error information. 

Get Locations Get a list of all landmarks in the map. 

User Feedback Provide an acknowledgement when the Job Processor is waiting for user 
feedback. 

2.4 Job Processing 
The Job Processor: 

manages the execution of jobs and the operating state of the robot 

computes navigation paths for the traveling legs of jobs i.e. move instructions. 

interfaces with the Control module to: 

deliver movement instructions, and 

receive system status updates (e.g. positioning information, power charge 
level, etc.) 

tracks the current location of the robot on the map. 

2.4.1 Operating State 

The Job Processor maintains an operating state, which may be one of: 

Disabled - autonomous operation has been disabled. The robot will not execute 
new jobs until it is re-enabled. 

Offline - the current system time is outside of the configured operating hours of 
the robot. The robot will resume processing of jobs once the system time is again 
within operating hours. 

Waiting - the robot is idle and waiting for new jobs 



Busy - the robot is currently executing a job (e.g. charging) 

Figure 5 - Job Processor state diagram 

2.4.2 Job Execution 

When in the Waiting state, the Job Processor requests the assignment of a new job 
from the Job Manager. 

Once a job is assigned, the Job Processor enters the Busy state and begins executing 
the job instructions sequentially. Instructions are executed as follows: 

Instruction Type Execution Steps Exit Condition 

Move 1. Job Processor computes the 
navigation plan from the current 
location to the destination location. 

2. Processes navigation plan, passing 
steps to the Control module for 
execution one-at-a-time. 

• Receive position update indicating that 
the robot has arrived at the final 
destination, OR 

• Receive notification that an error has 
occurred, OR 

• Timeout expired 

Wait for condition 1. Wait for exit condition • Specified condition (e.g. power-level 
full, user-feedback received, etc.) 
evaluates to true, OR 

• Timeout expired 



If an instruction fails or times out, then the entire job fails and the job state is set to 
Aborted. If all the instructions in the job are completed successfully, then the job state is 
set to Completed. The final state of the job is reported to the Job Manager. 

At the completion of each job, if the Job Processor determines that the current time is 
outside of normal operating hours, it immediately enters the Offline state and then creates 
and assigns itself the job of returning to its 'home' location. When the current time is 
again within normal operating hours, the Job Processor enters the Waiting state and 
begins processing jobs again. Otherwise, if at the completion of a job the current time is 
still within normal operating hours, the Job Processor enters the Waiting state and 
requests a new job from the Job Manager. 

2.4.3 Event Notification 

The Job Processor receives asynchronous notifications from the Control Task for the 
following events: 

Battery/power level - the battery charge level 

Position updated - an update on the robot's current location on the map. These 
updates are provided, at a minimum, upon arriving at a map landmark. 

Error and other status information 

When the Job Processor receives notification that the power level is low, it submits a 
new high priority job to the Job Manager to return to the charging station. 

The Job Processor uses these events to evaluate the condition of any wait instructions 
that may be in progress. For example, a 'position update' event may indicate that a move 
step has been completed, or a 'power-level full' event may indicate that a wait-for-
condition instruction's exit condition has been met. 

2.4.4 Navigation 

Before delivering a movement instruction to the Control Task, the Job Processor 
computes a navigation plan that is the shortest path from the robot's current location to 
the target destination of the move. 

The navigation plan consists of a series of static landmark types that the robot must 
reach on the way to the final destination (the goal). The Control Task will be able 
recognize these landmarks from pre-recorded sensor data and will be able to determine 
the robot's orientation with respect to each landmark. 

The navigation plan does not concern itself with the finer navigation details such as 
obstacle avoidance and circumnavigation, driving through doorways, driving within X 
inches of the wall, etc. These are the responsibilities of the Control Task. 

Each step in the navigation plan consists of a: 

a. landmark - the current location, 

b. landmark type - the landmark type as recognized by the Control Task, 



An example navigation plan: 

1. From corner A, head at 90 degrees for approximately 900 centimeters to reach 
doorway B. 

2. From doorway B, head at 270 degrees for approximately 600 centimeters to reach 
doorway C. 

The navigation steps are executed one-at-a-time as follows: 

For each navigation step, the Job Processor dispatches the navigation step to the 
Control module and then waits for any of: 

Position update indicating the next landmark type has been reached. 

Failure notification - the Control module indicates that some error has 
occurred that is preventing it from reaching a landmark. An alarm is raised 
before the Job Processor moves on to the next job. 

Timeout - the robot was unable to reach the destination in a reasonable 
time period (specified by the user or configurable default) and 
consequently the job has been aborted. An alarm is raised before the Job 
Processor moves on the next job. 

If all steps in the navigation plan have been executed successfully, the Job Processor 
proceeds to the next instruction in the Job (if any). 



Chapter 3: Detailed Design 

3.1 Overview 
This chapter provides an overview of the implementation details of the Command 

Task. The chapter is organized in terms of the software subsystems (i.e. modules) - the 
units of which the Command Task is composed. These units correspond to the functional 
objects introduced and described in the preceding chapter. 

The Command Task was written in C plus plus. The choice of language was due primarily 
to preference but also because it does not require an interpreter or other run-time software 
components that might hinder performance. 

With the goal of producing a quality software product that will perform its function 
correctly and serve as the basis for future work, I attempted to apply sound software 
development practices such as: 

Object-oriented analysis and design (O O A D). 

Use of mature software design patterns such as those presented in [12]. 

Thread-safety and synchronization. 

Exceptions for error handling. 

C plus plus techniques such as those espoused in [10] and [11]. 

3.2 Examination of software tools used in the project 

3.2.1 Eclipse I D E with C D T 

I used the Eclipse Integrated Development Environment with the C/C plus plus 
Development Tools for all C plus plus software development and debugging. In addition, I 
provided make files so that all Command Task software components can be built using 
gnu make and without the use of the Eclipse I D E. 

3.2.2 C plus plus 

G N U C plus plus with the following libraries 

Standard Template Library (S T L) 

POSIX 

J SON C P P - a free, public-domain C plus plus implementation of a J SON parser 



3.2 .3 Subversion (S V N) 

Subversion is an open-source revision control system which is used for storing all 
source code for the AIDeR project. Separate folders are maintained in the repository for 
the different software components (i.e. Command Task, Control Task, etc.) In addition, 
periodic tags were taken to capture the source tree at significant project milestones. 

3.2 .4 Google Groups 

Google Groups is an online collaboration forum. The AIDeR project team used a 
members-only Google Group as a discussion and communication portal for the project. 
This proved to be a very helpful collaboration tool. 

3.2 .5 VirtualBox 

VirtualBox is a free x86 virtualization platform by Sun Microsystems. I used 
VirtualBox to host a virtual machine that was configured as much as possible like the 
configuration on the AIDeR. This machine was my development and test environment. 

3.2 .6 Gentoo G N U/Linux 2.6.26 

The operating system installed on the robot and in the virtual machine used for 
development. See Appendix B at the end of this document for a more detailed 
description. 

3.3 Subsystems 
The Command Task source code is separated into multiple discrete subsystems. The 

subsystems are separated according to their respective functions and are compiled into 
static libraries. The declarations and implementations in each subsystem are scoped by 
unique namespaces. This enhances the modularity and readability of the code, and should 
provide for ease of future maintenance. 

The Command Task is composed of the following subsystems: 

• Job Processor 

• Job Manager 

• Protocol 

• Control 

• Search 

• Command Task 

• Command C G I 

• Common - there are also a number 'common' subsystems that implement general 
functionality such as exception handling, thread synchronization, object 
serialization, T C P sockets, date and time, and string parsing. These common 
subsystems are not discussed in further detail. 



The subsystems of the Command Task are illustrated in the following layered 
diagram. The italicized elements are components of the enclosing subsystem and not 
subsystems themselves. 

Figure 6 - Command Task's primary subsystems 

The implementation details of the above subsystems are described in the following 
subsections. Each subsection begins with a static U M L diagram presenting the classes in 
the given subsystem. For brevity, the U M L diagrams omit trivial details such as class 
constructors, destructors, accessor methods, and method parameters. 



3.3.1 Job Processor 

Figure 7 - Job Processor class diagram 

The Job Processor class is the 'control center' of the Command Task. As 
described in section 2.3, it manages the operating state of the robot, executes jobs, and 
maintains status information including: 

Last known landmark 

Last known bearing (degrees) 

Current operating state 

Platform status 

Battery level 

Control task busy state 

Control task operating state 

The Job Processor logic is executed in a continuous loop in which it polls the Job 
Priority Queue for new jobs (with a 30 second sleep-wait between each interval). The 
pseudo-code for the processing loop is as follows: 



Table 1 - JobProcessor processing loop pseudo-code 

While ( Not Shutting Down ) 

Wait for 30 seconds or shutdown. 

If ( current time is within operating hours ) 

If ( current state is OFFLINE ) 

Enter WAITING state. 

End If 

Else If ( current time is outside of operating hours ) 

If ( current state is WAITING ) 

Create and execute new job to return home. 

End If 

Enter OFFLINE state. 

Continue. 

End If 

Enter BUSY state. 

Retrieve next job from the queue (if any) and execute it. 

Report outcome of last job. 

Continue. 

End While 

This loop is executed on a 'background' thread that is created, owned and managed 
by the Job Processor. The use of a background thread allows for a dedicated thread of 
execution for the processing of jobs and also frees up the 'foreground' thread (the 
process' primary thread) to perform other tasks. The background thread exits when the 
Job Processor object is destroyed. 

As demonstrated in the above pseudo-code, if the Job Processor determines that 
the current time is outside of the configured window of operating hours, then it will 
immediately process a new job that will return the robot to the home landmark (where the 
charging station is presumed to be) and will enter the OFFLINE operating state. The 
background thread will continue to run in the OFFLINE state while outside of operating 
hours. Once the current time is once again within operating hours, the operating state is 
changed to WAITING and the Job Processor will resume processing new jobs. 

When the Job Processor exits its wait cycle and is in the WAITING state, then it will 
attempt to retrieve the next Job from the queue. If there is at least one Job available, then 
the Job Processor constructs a Job Processing Agent object to execute the Job. 

The Job Processing Agent is a class that models the intelligent agent metaphor. The 
sole function of the Job Processing Agent is to execute a given Job. The Job Processing 
Agent's lifetime is scoped by the execution of a Job, which it performs on the Job 
Processor's background thread. Once execution is complete, the Job Processing Agent is 
destroyed and the Job's final status is reported back to the Job Manager. 

The PEAS (Performance, Environment, Actuators, Sensors) description for the Job 
Processing Agent is as follows: 



Type: 

• Goal-based agent 

• Learning - may consider recording the actual path traversal time for use in future path-cost 
evaluations. Not currently implemented. 

Performance Measure: 

• Finds the best path to the destination goal landmark, where best is defined as the path with the 
shortest total distance. 

Environment: 

• Partially observable - Receives indication of location at discrete landmarks 

• Deterministic - the next state is determined by the current state and the action of the agent. 

• Sequential - current decisions impact future decisions 

• Static -the map is constructed in advance and is not updated in response to changes in the 
environment. 

• Discrete - for each navigation step, either the Control Task does or does not reach the next 
landmark 

• Single agent - the agent will not be competing or cooperating with another agent 

Actuators: 

• Changes environment via navigation commands sent to the Control Task 

Sensors: 

• Receives location, status, and error updates from the Control Task 

• Receives job state updates from the Job Processor e.g. job has been cancelled 

The Job Processing Agent processes jobs by sequentially iterating and executing 
the instructions in the job. The pseudo-code is as follows: 

For each instruction in Job 

If ( instruction type is movement and destination is not current location ) 

Compute navigation plan to destination using Search::A_star 

For each step in navigation plan 

Send navigation command using Control::Client 

Wait for asynchronous result of movement or timeout 

Next 

Else If ( instruction type is wait ) 

Wait for condition (time period or user-feedback) or timeout 

End If 

Next 



Table 2 - Job Processing Agent pseudo-code 

If an instruction is a movement type instruction, then the Job Processing Agent 
uses the Search::A_star class (see section 3.3.5) to construct a navigation plan from the 
current location to the destination location of the movement. The Job Processing Agent 
then steps through the navigation plan, sending navigation commands to the Control Task 
via the Control::Client class (see section 3.3.4 below). Since the interface to the Control 
Task is asynchronous, the Job Processing Agent must wait until it receives a notification 
that the Control Task has reached the next landmark before proceeding to the next step in 
the plan. It does so by entering a conditional wait (using the POSIX condition variable 
A P I's). It exits the wait when it either times out (each instruction has an associated 
timeout) or it receives notification from the Control Task regarding the move. 

A wait type instruction is handled by simply entering a wait state for a specified 
time-period or for a signal of user-feedback (e.g. the user has acknowledged that a 
payload in the tray has been either added or removed). 

The Job Processing Agent implements the Control::NotificationReceiver interface 
and subscribes to the Control::Client class to receive asynchronous notifications from the 
Control Task (see section 3.3.4 below). Because these notifications are delivered 
asynchronously, the Job Processing Agent is able to block its own thread of execution 
while it waits. If it times-out waiting for a notification, then it aborts the job. The Job 
Processing Agent listens for the following notifications: 

• Detected landmark - signals the condition variable to unblock processing and 
proceed to the next navigation step or next instruction 

• Unable to locate landmark - signals the condition variable to unblock processing. 
The Job Processing Agent consequently aborts the job. 

• Battery level - signals the condition variable to unblock processing if the battery 
level is not low and we were waiting for full-charge. 

The Job Processor also receives asynchronous notifications from the Control Task, by 
implementing the Control::NotificationReceiver interface. The notifications that are 
handled by the Job Processor are: 

• Platform status - this is simply recorded 
• Control Task status - this is simply recorded 
• Battery level - this is recorded and if battery level is low (level 2 or 3) then a new 

job is enqueued to return the robot home 



3 .3 .2 Job Manager 

Figure 8 - Job Manager class diagram 

The Job Manager subsystem contains the Job Priority Queue and the Job List 
container classes, as described in sections 2.3.1 and 2.3.2 and presented in further detail 
in the following sub-sections. 

Job Priority Queue 

The Job Priority Queue is implemented as an STL queue of jobs. Jobs in the queue 
are sorted in descending order of job priority. When a new job is added to the queue, it is 
assigned a job priority, a job id, and a job state. 

Although the STL contains a 'priority_queue' implementation, this was not used 
because the priority of items in the queue can change based on time (i.e. due to the 
starvation avoidance requirement described in 2.3.1) and a queue was required that can 
dynamically resort its own elements. 

Sorting of the queue is performed lazily: 

a. At the time of insertion of a new job, and 

b. When the next job is requested 



The latter (b) is required to account for changes in priority due to time. The Job 
Priority Queue gives a priority boost of 2 to jobs for each successive hour they have 
remained in the queue. For example, a job that has been in the queue for 2 hours will get 
a priority boost of 4. 

The sort is implemented using the S T L sort( ) function which has an algorithmic 
complexity of O ( n log n ). 

For each job, a timestamp is recorded at the time of entry into the queue and every 
time the job's priority is updated. This allows the Job Priority Queue to determine when it 
needs to update a given job's priority. 

Future enhancements to the Job Priority Queue may consider: 

• Collect and maintain queue statistics such as the high watermark, average 
queue length, average job wait time, etc. 

• Consider using a background thread for queue maintenance 

• Add a location-based priority boost during job selection 

• Add a maximum queue length with alarming when the queue length crosses 
some threshold and becomes backlogged 

Job List 

The Job List contains two lists (implemented using S T L vectors) of Jobs that have been 
processed: 

• Completed - Jobs that were completed successfully 

• Aborted - Jobs that were aborted either due to failure or were cancelled by the 
user 



3.3 .3 Protocol 

Figure 9 - Protocol class diagram 

The protocol subsystem defines the T C P-based server stack and the messages that 
are required for inter-process communication with the Command C G I process. An 
overview of the classes is presented here and the topic is covered in further detail in 
Chapter 5:. 

The protocol stack consists of the following classes: 

Sockets. T C P ServerHandler - an interface providing a pure virtual 
HandleSocket() method which must be implemented by derived classes. 
Sockets. T C P ClientOperation - contains a pair of Sockets.TCPClientSocket and a 
reference to a Sockets.T C P ServerHandler. Has a Run() method, which when 
executed invokes the Sockets.T C P ServerHandler's HandleSocket() method. 
Sockets.OperationQueue - a FIFO queue of Sockets. T C P ClientOperations 
Sockets. T C P Server - opens a listening socket and spawns two background 
threads which perform the following respective functions: (a) listen for and 
accept new client sockets which are added to a Sockets.OperationQueue, and (b) 
process new socket operations in the queue. The processing thread invokes the 
Run() method of the operations it pops from the queue. 



ServerMessageHandler - implements the Sockets. T C P ServerHandler interface. 
Reads J SON messages from the client socket, processes the messages, and 
returns a response. Contains references to the JobList, JobPriorityQueue, 
Search::Map, and the Control::Client, which it uses to service the various 
requests. 
MessageRecognizer - marshals and unmarshals J SON messages to/from a buffer. 
Used by the ServerMessageHandler. 

The typical flow through the server stack is as follows: 

1. The T C P Server listening thread blocks on an accept( ) call waiting for new 
connections. 

2. When a client socket request is received, the client socket is packaged in a 
T C P ClientOperation object and added to the end of the OperationQueue. The 
listening thread signals the processing thread (via a POSIX condition variable) 
and then re-enters the blocking accept( ) call. 

3. The processing thread wakes from its blocking wait on the POSIX condition 
variable and reads the T C P ClientOperation from the front of the queue. The 
processing thread invokes the operation's Run( ) method. 

4. The T C P ClientOperation, which contains the client socket and a reference to a 
T C P ServerHandler, invokes the T C P ServerHandler's HandleSocket( ) method 
and passes the client socket. 

5. The ServerMessageHandler, which implements the T C P ServerHandler 
HandleSocket interface, processes the client socket request as follows: 

a. It reads an 8-byte header from the client socket which indicates the length 
of the J SON message, and the type of the J SON message (a integer 
identifier). 

b. It then reads the message (of the expected length) into a buffer and 
'extracts' the J SON message using the MessageRecognizer. The 
MessageRecognizer uses a J SON parser to deserialize the J SON message 
into a C plus plus object. 

c. The message is then processed based on its type. For instance, a new job is 
added to the Job Priority Queue. 

d. A response message is constructed and serialized as J SON into a buffer. 
The response may be a simple success code or could contain more detailed 
information such as the contents of the Job Priority Queue. 

e. The response buffer is written to the client socket. 
f. The client socket is then gracefully shutdown and closed. 
g. Done. 

6. The ServerMessageHandler then returns control to the processing thread which 
will handle the next operation in the queue, or re-enter a blocking wait on the 
condition variable. 

All messages defined in the protocol are implemented as C plus plus classes. There is a 
corresponding C plus plus class for each message. These messages classes are serialized to/from 
J SON by the MessageRecognizer, which uses the 3rd party J SON C P P library. 



3.3 .4 Control 

Figure 10 - Control class diagram 

The Control subsystem is intended to provide an abstraction of the inter-process 
communication interface with the Control Task. An overview of the classes is presented 
here and the topic is covered in further detail in Chapter 5:. 

The abstraction is accomplished with a Client class that provides asynchronous 
methods for sending commands to the Control Task and a NotificationReceiver interface 
for receiving notifications (events and alarms) from the Control Task. Notifications 
received from the Control Task are delivered using the 'publisher/subscriber' software 
design pattern, whereby consumers must implement an abstract subscriber interface and 
subscribe to a publisher to receive notifications. The publisher is the Client class which 
implements the NotificationPublisher interface. The subscriber interface is the 
NotificationReceiver class. The Client delivers notifications to all registered 
NotificationReceivers on its own background thread. 

The Control subsystem consists of the following classes: 

Notification - contains the data that is received in a notification from the Control 
Task. 
NotificationReceiver - the pure virtual interface that must be implemented by a 
class that would like to receive Control Task notifications. 
NotificationPublisher - a base class that supports the registration and 
unregistration of zero or more NotificationReceiver's that would like to receive 
Control Task notifications. 



ClientBase - the abstract interface for a Client class that declares the methods for 
sending commands. This base class is defined only to allow a drop-in substitution 
of a StubClient class, that is used for stubbing the interface to the Control Task. 
The ClientBase derives from NotificationPublisher. 
Client - Encapsulates the interface to the Control Task. Contains two POSIX 
message queue handles for sending and receiving messages respectively. Also 
owns and manages a background thread that receives Control Task notification 
messages and delivers these to all registered NotificationReceiver subscribers. 

The typical usage case is as follows: 

1. A consumer class* derives from the NotificationReceiver class, providing a 
thread-safe implementation of the ReceiveNotification() method. 

2. The consumer subscribes to the Client class (a type of NotificationPublisher) 
to begin receiving notifications. 

3. The consumer begins delivering commands to the Control Task using the 
Client class' interface. 

4. The consumer handles asynchronous notifications from the Control Task 
delivered via the NotificationReceiver interface. 

The Job Processor and Job Processing Agent both implement the 
NotificationReceiver interface and subscribe to the Client class to receive notifications. 



3.3.5 Search 

Figure 11 - Search class diagram 

The search subsystem encapsulates the path planning logic in the Command Task. 
The external interface is the A_star class which, given a current location and destination 
landmark, will compute the navigation plan using the A* search algorithm. This is 
discussed in further detail in Chapter 4:. 

The search subsystem consists of the following classes: 

Point - A class representing a Cartesian coordinate and providing methods to: 

calculate the straight-line distance between two points - using the 
Pythagorean theorem: a2 = b2 + c2 

calculate the angle between two points 

Landmark - A class representing a 'point-of-interest' in the robot's environment. The 
landmark consists of: 

Landmark id - a unique identifier for this landmark 

Landmark type id - the id assigned to this type of landmark as defined by the 
Control Task (e.g. right hallway entrance). 

Point - the Cartesian coordinates of the landmark in the map 



Neighboring landmarks 

Map - A collection of all landmarks in the map space. The map class parses the set of 
landmarks from a text file and exposes methods for obtaining and iterating the landmarks. 

Search Node - The Search Node represents a node in the search space. Contains the 
following attributes: 

f-score 

g-score 

h-score 

predecessor node 

Priority Queue - An implementation of a priority queue. This container is required for the 
'open set' variable in the algorithm i.e. to be able to retrieve the next search node with the 
highest f-score. The interface of the priority queue resembles a regular queue, supporting 
the following operations: 

Push 

Pop 

IsEmpty 

GetTop 

IsInSet 

The class uses a lazy sorting approaching, delaying sorting of the search nodes in the 
collection until GetTop is invoked. 

Navigation Plan - The Navigation Plan is the output of the search computation. It is an 
ordered sequence container that is a collection of Navigation Steps, beginning from the 
start node to the goal node. Each Navigation Step contains the following information: 

Source Landmark Id 

Destination Landmark Id 

Source Landmark Type Id 

Destination Landmark Type Id 

Distance Centimeters - distance between the source and destination. This is used 
as the 'guidance' distance communicated to the Control Task to begin looking for 
the next landmark. 

Bearing Degrees - direction of travel between the source and destination. The 
bearing is used to detect direction changes between steps. 



3.3 .6 Command Task 

The Command Task subsystem builds the binary executable that is the Command 
Task. This subsystem includes the application entry point (main) and a Command 
Processor class. 

The Command Processor constructs all the required objects that make up the 
'application stack'. This includes: 

Configuration File - reads and parses configuration parameters from a file 

Control Client 

Search Map 

Job Processor 

Notification File Log 

Protocol Server Stack 

Job Manager (Job List and Job Priority Queue) 

In addition, the Command Processor reads input from standard in to support various 
commands useful for debugging. 

The Command Task may be run in one 3 modes as determined by a command-line 
parameter: 

-normal - constructs the application stack for normal operation on the robot 
and interaction with the Control Task 

-stubbed - identical to the -normal mode, however uses a stubbed interface to 
the Control Task. This is useful for running the Command Task for 
debugging and/or testing purposes. 

-interactive - does not construct any objects. Allows for piecemeal or 
selective construction of objects via the standard input command processing. 

3.3 .7 Command CGI 

The Command CGI subsystem builds the binary executable that is the Command 
CGI. This executable uses many of the same static libraries used by the Command Task 
for T C P and J SON support. 

The Command C G I process is an intermediary between the H T T P-based User 
Interface client and the Command Task that facilitates the transfer of J SON messages 
over the two disparate transport channels (H T T P and 'raw' T C P). The C G I process is not 
however, a blind relay. It serializes and de-serializes the J SON messages, effectively 
validating the content before transmission between the two parties. 

The main() function performs the following: 



1. Reads the H T T P query string and content length from the QUERY_STRING 
and CONTENT_LENGTH environment variables respectively. 

2. Reads the H T T P request content (if any) from standard input. 
3. The received content, expected to be a J SON message, is de-serialized into a 

C plus plus message object. 
4. Establishes a T C P connection to the Command Task process' T C P server. 
5. The message object is serialized again and sent to the Command Task using 

the client socket. 
6. The response is read from the client socket and de-serialized into a response 

message object. The response message object is then serialized to J SON 
again and streamed to standard out. The standard output is the H T T P 
response content that is sent back to the H T T P client that originated the 
request. 

In the event of any exception (such as a J SON parsing error, T C P connection failure, 
etc), the error content is returned to the H T T P client. 

See section Chapter 5: for more details on the C G I and messaging interface. 



Chapter 4: Navigation 

4.1 Overview 
In this chapter, we discuss the means by which the Command Task accomplishes 

navigation of the robot in its target environment (i.e. an office or factory). Navigation is 
required to carry out those jobs that require movement to deliver a payload from one 
location to another. 

Navigation in the Command Task is a two-step process that consists of (a) path 
planning, and (b) plan execution, processes which are performed in serial. 

Path planning is the phase in which the Command Task uses a path-planning 
algorithm to produce a navigation plan. The navigation plan is an ordered sequence of 
navigation steps that will take the robot from its current location to a target destination. 
Once the navigation plan has been computed, the Command Task must then execute the 
plan step-by-step to move the robot to its target location. 

The details of these processes are described in the following subsections. 

4.2 Path Planning 
Before executing any movements the Command Task must plan how it is going to 

get from its current location to its target destination. 

All destinations are identified in terms of landmarks - unique points-of-interest in the 
environment. Landmarks may represent hallway intersections, entries to doorways, or 
other significant locations in the environment. These landmarks are pre-determined 
locations that are encoded into a static map. The map is represented as a directed graph 
with vertices representing the landmarks and edges representing the traversable paths 
between them. The edges are weighted by the distance between the landmarks (in 
centimeters). The graph must be directed because of the requirement that the robot must 
only traverse hallways with the wall on its right-hand side. 

The following is a graph corresponding to a hallway intersection in C S U C I's Bell 
Tower which served as the first demo map: 



Figure 12 - Graph for first demo map in C S U C I's Bell Tower 

Given its current location, the Command Task must determine an optimal route to 
the destination landmark of its next goal location. It must do so using an algorithm that is 
optimal with respect to both time and space. These requirements stem from the goal of 
minimizing resource conflicts with the Control Task, which has real-time operational and 
safety functions. 

The Command Task uses the A asterisk search algorithm for path planning. A asterisk is in the 
category of 'informed' best-first search strategies. I selected this algorithm because: 

1. It meets the performance requirements. According to Norvig and Russell, the A asterisk 
algorithm is "complete, optimal, and optimally efficient". 

2. The algorithm is the most "widely-known form of best first search" and 
consequently, there is an abundance of documentation and implementation 
examples. 

The A* algorithm evaluates each node in the current set of potential successors using 
the following function: 

f( n ) = g( n ) + h( n ) 

Where: 

g( n ) = the cost to reach this node 

h( n ) = the heuristic function which returns the cost to reach goal node from 
this node 

The choice of heuristic function is domain specific. The Command Task uses as its 
heuristic function: h S L D - the straight-line distance between the landmark node being 
considered and the goal landmark node. Russell and Norvig suggest this heuristic as "an 
admissible heuristic". It is an admissible heuristic because it does not overestimate the 
cost of reaching the goal, which maintains the optimality of A asterisk. 



Given two nodes (the landmark being considered in the search path and the goal 
landmark), the Command Task computes h S L D using the Pythagorean theorem: 

a2 + b2 = c2 

I based my implementation of the A asterisk algorithm on the following pseudo-code 
(adapted from a Wikipedia article on A asterisk): 



Table 3 - A* algorithm pseudo-code 

The implementation is defined in a static A_star::FindSolution( ) method which has 
the following inputs: 

[in] startLandmarkId : unsigned int 
[in] goalLandmarkId : unsigned int 
[in] searchMap : Search::Map 
[out] navigationPlan : NavigationPlan 

The output of the search is a navigation plan with an ordered sequence of navigation 
steps. Since the search path produces a tree-like structure (with successor nodes pointing 
back to their predecessor), the navigation plan must be constructed by walking back up 
the tree starting from the goal node to the starting node, and then reversing these steps to 
create a plan in the right order. Each step in the resulting navigation plan will contain: 

Source landmark id 
Destination landmark id 
Source landmark type (as understood by the Control Task) 
Destination landmark type (as understood by the Control Task) 
Distance between the source and destination in cms 
Vector difference in degrees between landmarks - this is computed using the 
arctangent function and is necessary for the Command Task to be able to 
detect changes in direction between steps. 

Nodes in the search tree consist of the following attributes 

gScore 
fScore 
hScore 
predecessor - a pointer to the predecessor node (used to be able to reconstruct 
the search path). 

Since nodes are non-trivial and are copied between data structures (i.e. open set, 
closed set), they are implemented using object reference counting, whereby only one 
instance of a given node exists in memory and copies of reference counted pointers are 
stored and copied between the various containers. 

Future work may consider the following strategies to optimize use of the algorithm: 

Use the Memory Bounded and Recursive Best-First Search (R B F S) 
adaptations of the A asterisk algorithm. 

Perform navigation computation 'in the background' while the robot is idle or 
busy performing some other task. For example, while waiting for the robot to 
reach a landmark, we could begin computation of the navigation plan for the 
next Job. 

Distribute computation across the both the robot and one or more remote 
computers using R P C. 



4.3 Navigation 
The navigation function of the Command Task is concerned with executing the plan 

computed by the path planning function described in the preceding subsection. 

Navigation in the Command Task is concerned only with 'discrete' navigation 
between landmarks. The navigation is discrete because all navigation steps begin at a 
landmark and end at a landmark. The Command Task does not concern itself with the 
details of how the Control Task moves between the landmarks e.g. obstacle detection and 
avoidance, staying within 6 inches of the wall, etc. which are the responsibilities of the 
Control Task. 

Given a navigation plan, the Command Task must execute each step using the 
Control Task's navigation interface (described in Chapter 5:), which exposes the 
following high-level navigation commands: 

Travel Against the Wall - move the robot along the right wall of a hallway for a 
specified distance 

Enter Right Hallway - at the entrance to a hallway intersection, enter the right 
hallway 

Enter Left Hallway - at the entrance to a hallway intersection, enter the left 
hallway 

Enter Front Hallway - at the entrance to a hallway intersection, proceed forward 
across the intersection, entering the hallway ahead of the robot 

U-Turn - perform a u-turn such that the robot will be positioned on the opposite 
side of the hallway and pointing in the opposite direction 

Stop 

The navigation steps provided in the navigation plan must be 'translated' into one or 
more of the above high-level navigation commands. This is accomplished by 
determining: 

If the current landmark type indicates we are at a hallway intersection which 
mandates use one of the hallway navigation commands 
If a change in direction is required - turn left, turn right, continue forward, or turn 
around. Turning left or right are only allowed at hallway intersections. 
Distance to next landmark 

The change in direction is computed from the bearing property of each navigation plan 
step (the bearing is computed using the arctangent function). The bearing is 'normalized' 
into one of the following values: 

NONE (No direction change) - if direction change is <= 5 degrees. 
TURN_AROUND - if direction change is 180 degrees (+- 5 degrees). 
LEFT - if direction change is < 180 degrees to the left 
RIGHT - if direction change is < 180 degrees to the right 



The change in direction is processed first according to the following contextually-based 
rules: 

• If we are at hallway intersection and 
direction change is LEFT, then issue Enter Left Hallway command. 
direction change is RIGHT, then issue Enter Right Hallway command. 
direction change is FORWARD, then issue Enter Front Hallway command. 
direction change is TURN_AROUND, then issue U-turn command. 

Otherwise, if 
direction change is TURN_AROUND, then issue U-turn command. 
direction change is LEFT, RIGHT, or FORWARD, then do nothing. 

After processing the direction change, a Travel-Against-Wall command is issued to 
drive the robot to the next landmark. 

After submitting a navigation command, the Command Task must wait for the 
Control Task to execute it before proceeding to the next step. The Control Task is 
expected to deliver a notification indicating it has either arrived at or cannot find the 
given landmark. In the case of a failure indicating the Control Task cannot find the 
landmark or if the Command Task times out waiting for a notification, then the 
navigation plan is aborted and the Command Task enters a failure state that requires 
manual intervention by a human operator. Manual intervention is required to tell the 
Command Task where it is and determine why the last navigation command failed. Such 
failures should be unexpected if the map has been constructed correctly. 

4.4 Map 
As previously described, the map is represented by a static graph in which the 

landmarks are vertices and the paths between them are edges. The map graph is 
represented in a dictionary structure in which there is an entry for each landmark and the 
value contains a description of the landmark including a list of the adjacent landmarks. 

The following are detailed instructions for constructing a map. Construction of the 
map is non-trivial and is nuanced by the Control Task navigation commands and the 
landmark type definitions available. Before constructing the map, the list of landmark 
types (defined by the Control Task) must be available. 

Instructions: 

1. Draw a spatial representation of the map space - the area in which the robot is to 
operate. 

2. Locate and identify all the landmark types in the map space - these are all the 
locations that the robot would identify as landmark types such as a right hallway 
entrance, doorway, etc. 

3. Demarcate these landmark types on the drawing as nodes and write the landmark 
type id (as defined by the Control Task). Place an arrow indicating the robot's 
direction of travel with respect to the landmark. This is important because the 
robot won't recognize the same landmark type when approaching from a different 
direction. 



4. Draw an edge between pairs of adjacent landmark nodes that meet all of the 
following conditions: 

the landmarks 'flow' in the same direction 
there is a right hand-side wall that the robot may travel along, or a hallway 
intersection between the landmarks 
there are no intermediate landmarks 

5. Once you are finished with step 4, the map should look like a directed graph with 
landmarks as nodes and edges representing the connecting passages (typically 
hallways). In its current form, the map may consist of multiple disconnected 
graphs, overlapping graphs, or if you're lucky, just a single connected graph. 

6. The next step is to connect disconnected graphs such that every landmark is 
reachable. 'U-turn' edges are used to connect disconnected graphs. Executing a u-
turn will cause the robot to cross from one-side of a hallway to the other, placing 
the robot in the opposite direction and on the opposite wall. The constraints are: 

The u-turn must begin at a landmark node and terminate at an edge. 
The destination edge must be heading in the opposite direction -- by 
definition this should be true since the robot can only travel with a wall on 
its right hand side (hallways excluded). 

7. Prune any disconnected graphs and edges/nodes that aren't desired or required. 
8. Write the approximate distance in cms of each edge in the graph. This should be 

reasonably accurate since this distance is used in the path-planning algorithm and 
also provided as a guideline distance to the Control Task as it looking to identify 
the next landmark. 

9. Add an x and y axis such that the entire graph appears in quadrant I. 
10. Add the coordinates ( x, y ) in c m's for each landmark with respect to the x and y 

axis. 
11. Assign a unique integer identifier (> 0 ) to each node that identifies the landmark 

(not the landmark type). 
12. Pick one node to be the 'home' landmark - the place the robot will return to when 

it goes offline (outside of operating hours) or requires a battery charge. 
13. Validate the map. Traverse the map as if you were the robot, using only the 

following movement commands to travel between landmarks: 
a. Travel along wall (wall on right hand-side) 
b. Enter right hallway 
c. Enter left hallway 
d. Enter front hallway 
e. U-Turn 

You should be able to travel between any two landmarks using these commands. 

14. Finally, encode the map as a text file. For each landmark node, add a line to the 
text file with: 

• Landmark Id (the unique identifier you assigned to each landmark) 
• Landmark Type Id - the landmark type (as defined by the Control Task) 



• The landmark coordinates 
• The list of adjacent (neighbor) landmark ids 
• A 1 or 0 indicating if the landmark is at a hallway intersection. 

Each line should have the following format: 

<LandmarkId>;<LandmarkTypeId>;<Coordinate>;<NeighborList>;<IsIntersection> 

E.g. 1;1;(100,450);{2,3,7};1 

The B N F notation for the map file content is as follows: 



Chapter 5: Inter-process Communication 

5.1 Overview 
Inter-process Communication (I P C) plays a critical role in the Command Task, 

facilitating communication with the User Interface and Control Task. Without it, the 
Command Task would be of little use. 

I P C is required for: 

Receiving job related commands from the User Interface 

Issuing navigation commands to and receiving alarm and event information from 
the Control Task 

The two channels of communication are used for very different purposes and not 
surprisingly have very different design and technology requirements. 

The following diagram provides an overview of the IPC interfaces used by the 
Control Task: 



Figure 13- Command Task IPC interfaces 

In this chapter we will discuss the nature of each interface. 

5.2 Control Task 
IPC with the Control Task is accomplished via an asynchronous 'inter-task' 

messaging protocol using POSIX message queues as the underlying transport 
mechanism. 

The inter-task message protocol, which is defined by the Control Task and exposed 
via a common header file, defines message structures that support: 

1. Sending from 1 to 15 navigation commands in a single message. A navigation 
command consists of a command type and 3 arguments, the values of which depend on 
the command type. 

The following command types are currently supported: 

Move Forward 

Rotate 

Travel Along Wall 

Stop 



Enter Left Hallway 

Enter Right Hallway 

Enter Front Hallway 

Move Tray 

Make U-Turn 

2. Receiving alarm or event data. The alarm/event message consists of: 

Timestamp 

Event type and id 

Text description 

Two arguments, which vary depending on the notification type 

The following alarms/events are currently supported: 

Alarms 

Unable to locate landmark 

Detected obstacle 

Timeout 

Battery level 

Events 

Detected landmark 

Annunciator status 

Platform status 

Current state 

Two named POSIX message queues are used to support fully duplex communication 
between the Control and Command Tasks: 

"/CONTROL T" - the outbound queue for navigation messages sent to the Control 
Task 

"/COMMAND T" - the inbound queue for alarm and event messages received 
from the Control Task 

The Command Task assumes the message queues have already been created at run-
time. 



The implementation in the Command Task abstracts the Control Task A P I as a C plus plus 
client library (described in section 3.3.4). The client provides an asynchronous interface 
to send navigation messages and receive responses. The Client hides the details of the 
message queues and the messaging protocol. 

The Client uses the publish/subscribe software design pattern to communicate alarms 
and events it receives from the Control Task. In this pattern, objects subscribe to a 
publisher to receive asynchronous message notifications. In this case, the publisher is the 
client and the messages are alarms and events. 

The Client accomplishes this mechanism by spawning a 'background' thread to 
monitor the receiving message queue. The Client's background thread polls the receive 
message queue at an interval of every 2 seconds. If no message is available, the thread re-
enters the wait cycle. Otherwise, the receiving thread reads the message from the queue, 
and publishes it to all subscribed receivers. The pattern fits well with the asynchronous 
nature of the underlying message queue transport mechanism. 

The Client sends navigation messages on the 'foreground' thread. That is, the 
message is pushed into the message queue on the caller's thread. If the message is 
successfully pushed into the message queue, the Client returns immediately. 

5.3 User Interface 
The Command Task's IPC with the User Interface is required to support a browser-

based application implemented using Web 2.0 technologies such as JavaScript, AJAX, 
H T T P, etc. 

Because the Command Task is not and does have an H T T P server, it must rely on a 
3rd party Web Server to manage the direct H T T P communication with the User Interface 
client, which is running in a browser application on an end-user's machine. Including an 
H T T P server in the Command Task is certainly possible but was not feasible in the 
context of this thesis. The Apache Web Server is a reliable and industry proven H T T P 
server and was readily available on the Linux O S distribution installed on the robot. This 
required however, some means of directing communication received by the Apache Web 
Server to the Command Task process. The Command Task process itself could not run 
using any existing C G I or scripting technologies (e.g. Ruby, Python, Perl, J S P, etc) 
because it needs to run continuously and not only in context of servicing an H T T P 
request. 

To solve this problem, a separate Command C G I application is used. This process 
handles the H T T P request from the client and then communicates with the Command 
Task using an 'internal' communication channel. T C P is used as the underlying transport 
for this internal channel; however another mechanism like pipes could also have been 
used. 

The Command C G I application functions as a hidden proxy between the User 
Interface and the Command Task. From the perspective of the User Interface, it 
communicates directly with the Command Task. 



Figure 14- Message protocol through the Command CGI 

The application message protocol (described below) is agnostic of the underlying 
transport. The message protocol is delivered to the Command C G I application through 
the Apache Web Server using H T T P which takes care of transport level details such as: 

identifying the message type (via the U R L), and 
the message length (via the H T T P Content-Length header). 

However, these details are not natively supported by the T C P channel between the 
Command C G I and Command Task. Therefore, all messages exchanged over the T C P 
channel require a message header. The header is an 8-byte prefix containing a 4-byte 
message type (a unique integer identifier) and a 4-byte byte-count. 

Figure 15 - Message format over the T C P channel 

5.4 Message Protocol 
The Command Task message protocol consists of a set of object messages that are 

exchanged between the User Interface and Command Task. The messages are encoded 
using the JavaScript Object Notation (J SON) format. 

J SON is a "lightweight data inter-change format" that is natively supported by the 
JavaScript language (as of Standard ECMA-262 3rd Edition - December 1999). J SON 
shares many of the advantages of X M L but in a more compact form. 

A unique request object message is defined for each function that the User Interface 
requires. The following request messages are defined: 

Create Job 
Fetch Jobs 
Remove Job 
Get Locations 
Fetch Status 



User Feedback 

Each request message has a corresponding response message. All responses include, 
at a minimum, the following attributes: 

responseCode : int - a server response code. 0 = Success. Any other value 
indicates failure. 
responseText : string - server response message. This may be a status 
message in the case of success or an error message in the case of failure. 

Example: 

The following sections describe the message protocol in terms of Remote Procedure 
Call (R P C) interfaces. Each interface has input parameters and output parameters defined 
which correspond to the attributes of the request message and response message 
respectively. 

5.4.1 Enumerations 

The following table lists the enumeration data types used in the interface. 

Enumeration Name Possible Values 

ServiceLevel 
Standard = 1 
Priority = 2 
Express = 3 

UserLevel 
Casual = 1 
Regular = 2 
Power = 3 

InstructionType 
Move = 1 
WaitForCondition = 2 

WaitCondition 
UserAcknowledgment = 1 
FullPower = 2 
TimePeriodElapsed = 3 

JobState 
Unassigned = 1 
InProgress = 2 
Aborted = 3 
Complete = 4 

OperatingState 
Busy 
Waiting 
Offline 
Disabled 

5.4.2 Data Types 

The following table lists the complex data types used in the interface. 



Attribute Name Attribute Type Optional Description 

Instruction 

Type Instruction Type enum No Instruction type. 

timeout Secs int Yes Instruction timeout in secs after which Job is 
aborted. Defaults to a server configurable default 
value. 

destination Location Id int Yes Destination location id. Present when instruction 
type = Move only. 

wait Condition Wait Condition enum Yes Wait condition. Applicable when instruction type = 
Wait For Condition only. 

wait Time Period int Yes Wait timeout. Present when instruction type = 
Wait For Condition only and wait Condition = 
Time Period Elapsed. 

Coordinate 

X int No 

Y int No 

Location 

Id int No Unique identifier for map location. One of the 
values returned by the Get Locations method (see 
0.0.0). 

coordinates Coordinate No Location map coordinates 

Name string Yes Optional friendly name for map location. 

Job 

Id int Yes Job id. Present in server response only. 

State Job State enum Yes Job state. Present in server response only. 

status Message string Yes May contain error and/or other diagnostic 
information about this job. Present in server 
response only. 

started Time Stamp date time string Yes. Time job was started. Present in server response 
only. 

finished Time Stamp datetime string Yes Time job finished (successful or otherwise). 
Present in server response only. 

instructions Instruction[] No Ordered list of Instructions. 



5 . 4 . 3 Messages 

Get Locations 

Returns a list of map locations that are used to identify destination locations in job 
assignments. 

U R I S t e m - forward slash c g i hyphen b i n forward slash c o m m a n d underscore c g i question mark m i d equals 9 

Attribute Name Type Optional Description 

Input Parameters 

None 

Output Parameters 

locations Location[] No List of locations. 

Example: 

Create Job 

Creates and adds a new job to the job queue. Returns a unique server-assigned job 
identifier. 

U R I S t e m - forward slash cg i hyphen b i n forward slash c o m m a n d underscore c g i question mark m i d equals 3 

Attribute Name Type Optional Description 

Input Parameters 

user I d String No User id. 



service Level Int No Job service level. 

user Level Int No User level. 

Job Job No The new job to create. 

Output Parameters 

job I d Int Yes Unique job i d for the new job. Present only if the job is 
successfully created. 

Example: 

Remove Job 

Removes an existing job from the job queue as identified by its job Id. 

U R I S t e m - forward slash c g i hyphen b i n forward slash c o m m a n d underscore c g i question mark m i d equals 7 

Attribute Name Type Optional Description 

Input Parameters 

user I d String No User i d. 

job I d Int No Unique job id for job to remove. 



Output Parameters 

None 

Fetch Jobs 

Returns a list of all jobs. 

U R I Stem - forward slash c g i hyphen bin forward slash command underscore c g i m i d equals 5 

Attribute Name Type Optional Description 

Input Parameters 

None 

Output Parameters 

unassigned Jobs Job[] No List of jobs in the queue that have not yet been assigned to a 
robot. Jobs are in descending order of their priority in the 
server queue. 

assigned Jobs Job[] No List of jobs that have been assigned to a robot and are either in 
progress, have been completed, or have been aborted. 

Example: 



Fetch Status 

Returns robot status and location details include control task alarms. 

U R I Stem - forward slash c g i hyphen bin forward slash command underscore c g i underscore m i d equals 11 

Attribute Name Type Optional Description 

Input Parameters 

None 

Output Parameters 

start Time Hour short No I d of last known location. 

start Time Minute short No 

end Time Hour short No 

end Time Minute short No 

current Operating Status string No 

home Landmark I d int No 

last Landmark I d int No 

last Heading Degrees double No 

current Job Id int No 

destination Landmark I d int No 

pending Jobs Count int No 

completed Jobs Count int No 

aborted Jobs Count int No 

platform Status int No 

battery Level int No 



control Task Busy State int No 

control Task Operating Stat int No 

notification Log string No 

trace Log string No 

exception Log string No 

User Feedback lnfo 

This message signals the Command Task that a payload has been added or removed from the tray. It 
is used to unblock the Command Task when it is executing a job instruction that requires it to 'wait for user 
feedback'. 

U R I S t e m - forward slash c g i hyphen b i n forward slash c o m m a n d underscore c g i question mark m i d equals 13 

Attribute Name Type Optional Description 

Input Parameters 

None 

Output Parameters 

None 



Chapter 6: Testing and Experiments 

6.1 Overview 
This chapter describes the procedures used for testing the Command Task as well as 

the specific experiments conducted to test the Command Task on the robot in several test 
environments. 

Testing of the Command Task included feature testing and debugging both in the 
development environment and on the robot. Feature testing was approached from the 
perspective of a quality assurance department - verifying the functional requirements are 
met and testing various scenarios and corner cases. Debugging included using debug 
trace and debugging tools (such as the debugging tools supported by the Eclipse I D E). 

Initial testing and debugging was conducted exclusively in the development 
environment (the Linux virtual machine hosted by Virtual Box). This was sufficient to 
test almost all functionality as the Linux operating system matched that of the robots and 
included all components required by the Command Task (i.e. Apache Web Server) except 
for the Control Task. 

A Control Task interface 'stubbing' mechanism allowed for execution of various 
scenarios in the development environment. The stubbing mechanism simply accepted 
navigation commands and always successfully acknowledged arrival at the requested 
landmark. This proved to be very helpful as test scenarios could be verified before 
integration on the robot and most issues could be reproduced without the need for the 
robot hardware. 

Testing of the C G I interface was facilitated by various test pages - simple H T M L 
forms that supported the addition and removal of jobs, fetching status, getting the map 
locations, etc. These pages exercised all legs of the C G I interface (see Section 5.4.3) and 
were also useful in testing the robot in general, as they could be used to add and remove 
jobs. In addition, an internal-only test page was developed to support sending low-level 
navigation commands to the Control Task outside of the context of a job. 

The following sections describe the setup and tear down processes followed when 
testing on the robot and the experiments tested with the robot to verify the Command 
Task functionality. 



6.2 Setup 
T h e f o l l o w i n g d e s c r i b e s t h e s t e p s t h a t w e r e r o u t i n e l y f o l l o w e d t o p r e p a r e f o r t e s t i n g 

a n d d e b u g g i n g o f t h e C o m m a n d T a s k o n t h e r o b o t . T h e s e s t e p s a s s u m e t h a t t h e 

C o m m a n d T a s k d e l i v e r a b l e s a r e r e a d i l y a v a i l a b l e o n t h e t e s t e r ' s l a p t o p c o m p u t e r , a n d 

t h a t t h e C o n t r o l T a s k a n d i t s d e p e n d e n c i e s ( c o n t r o l underscore t a s k , j o y s t i c k , c r e a t e underscore q u e u e s ) a r e 

a l r e a d y i n s t a l l e d o n t h e r o b o t . 

1. A t t a c h t h e t h r e e s e r v o d r i v e p o w e r c a b l e s ( a t t h e r e a r e n d o f t h e r o b o t ) . T h e s e a r e 

p u r p o s e l y l e f t d e t a c h e d d u r i n g n o n - o p e r a t i o n t o a v o i d p o w e r d r a i n . 

2 . T o g g l e t h e t w o p o w e r s w i t c h e s t o t h e o n p o s i t i o n . 

3 . D e t a c h t h e p o w e r s o u r c e p l u g ( w h i c h w o u l d o t h e r w i s e t e t h e r t h e r o b o t t o t h e 

w a l l ) . 

4 . D e p r e s s t h e m o t h e r b o a r d p o w e r s w i t c h t o p o w e r o n t h e m o t h e r b o a r d a n d b o o t u p 

t h e o p e r a t i n g s y s t e m . 

5 . O n c e t h e o p e r a t i n g s y s t e m h a s f i n i s h e d b o o t i n g , m a k e a n o t e o f t h e a s s i g n e d I P 

a d d r e s s i n s t a r t - u p t r a c e o u t p u t t e d t o t h e r o b o t ' s d i s p l a y s c r e e n 

6 . U s e W i n S C P t o e s t a b l i s h a f i l e s h a r i n g s e s s i o n w i t h t h e r o b o t . C o p y a l l 

d e l i v e r a b l e s i n t o a w o r k i n g d i r e c t o r y o n t h e r o b o t ( t y p i c a l l y t h e u s e r ' s d i r e c t o r y 

i n forward slash h o m e forward slash). S e e A p p e n d i x A f o r i n s t a l l a t i o n i n s t r u c t i o n s a n d a l i s t o f t h e 

d e l i v e r a b l e s . 

7 . P u s h t h e r o b o t t o t h e d e s i r e d s t a r t i n g l o c a t i o n i n t h e e n v i r o n m e n t . T h e r o b o t 

s h o u l d b e p o s i t i o n e d a t t h e d e s i r e d i n i t i a l l a n d m a r k ( c o n s i s t e n t w i t h t h e b e a r i n g 

a n d h o m e l a n d m a r k i d e n t i f i e d i n t h e c o n f i g u r a t i o n dot i n i f i l e ) . 

8 . U s e P u T T Y o r s o m e o t h e r t e r m i n a l e m u l a t o r t o e s t a b l i s h a r e m o t e s e s s i o n t o t h e 

r o b o t . 

9 . E n t e r s u d o - i a t t h e p r o m p t a n d b r o w s e t o t h e w o r k i n g d i r e c t o r y . 

1 0 . R u n dot forward slash c r e a t e underscore q u e u e s t o i n i t i a l i z e t h e m e s s a g e q u e u e s . 

1 1 . R u n dot forward slash c o n t r o l underscore t a s k t o r u n t h e C o n t r o l T a s k p r o c e s s . 

1 2 . N o w u s e P u T T Y t o e s t a b l i s h a n o t h e r r e m o t e s e s s i o n t o t h e r o b o t ( k e e p i n g t h e 

f i r s t a c t i v e ) . 

1 3 . R u n dot forward slash c o m m a n d underscore t a s k hyphen n o r m a l t o r u n t h e C o m m a n d T a s k p r o c e s s . 

1 4 . T h e r o b o t i s n o w r e a d y f o r t e s t i n g w i t h t h e C o m m a n d T a s k . 

6 . 3 T e a r D o w n 

T h e f o l l o w i n g s t e p s a r e f o l l o w e d t o t a k e t h e r o b o t o f f l i n e a n d m o v e i t i n t o a n o n -

o p e r a t i o n a l s t a t e . 

1. T e r m i n a t e t h e C o m m a n d T a s k p r o c e s s . T h i s i s u s u a l l y p e r f o r m e d b y e n t e r i n g t h e 

c o n t r o l - c k e y s t r o k e i n t h e r e m o t e t e r m i n a l i n w h i c h t h e c o m m a n d underscore t a s k w a s r u n . 

2 . T e r m i n a t e t h e C o n t r o l T a s k p r o c e s s . T h i s i s u s u a l l y p e r f o r m e d b y e n t e r i n g t h e 

c o n t r o l - c k e y s t r o k e i n t h e r e m o t e t e r m i n a l i n w h i c h t h e c o n t r o l underscore t a s k w a s r u n . 

3 . U s i n g W i n S C P , c o p y t h e n o t i f i c a t i o n s dot l o g a n d t r a c e . l o g f i l e f r o m t h e r e m o t e 

d i r e c t o r y t o t h e t e s t e r ' s l a p t o p . T h e s e m a y b e i n s p e c t e d o f f l i n e f o r d e b u g g i n g . 

4 . R u n t h e j o y s t i c k d r i v e r p r o c e s s b y e n t e r i n g dot forward slash j o y c t r l i n o n e o f t h e r e m o t e t e r m i n a l 

s e s s i o n s . C l i c k t h e b u t t o n a t t h e b a s e o f t h e j o y s t i c k . T h i s f r e e s t h e w h e e l s f r o m 

t h e d r i v e s , a l l o w i n g t h e r o b o t t o b e p u s h e d . T h e j o y s t i c k p r o g r a m w i l l t e r m i n a t e . 



5. Push the robot back to the storage location, where the power cord is. 
6. Enter the halt command into one of the remote terminal sessions to shutdown the 

operating system. 
7. Close the remote terminal sessions and the Win S C P session. 
8. Remove the power cables from the servo drives. 
9. Once the operating system has been shutdown, toggle the two power switches to 

the off position. 
10. Plug the robot back into the power source. 

6.4 Demo Map Area # 1 
Initial integration testing of the Command Task and Control Task on the robot was 

conducted in a 'demo' area located in the C S U C I Bell Tower. This map, while small and 
seemingly uninteresting, exercised much of the Control Task's local navigation logic as 
well as the inter-process interaction between the Command and Control Task and proved 
to be an excellent initial test environment. 

Figure 16 - Demo Map # 1 in the C S U C I Bell Tower 

As illustrated in the above diagram, the map consisted of 3 distinct landmarks 
characterized by 3 landmark types: 

Landmark # 1 - A left hallway entrance with landmark type # 1 
Landmark # 2 - A right hallway entrance with landmark type # 2 
Landmark # 3 - A doorway entrance with landmark type # 3 

The x coordinates shown in the graph correspond to the approximate distance in 
centimeters between the landmarks. The y coordinates were somewhat arbitrary and did 
not matter in this map since there are no movements along the y-axis. 

The map encoding is as follows (see Section 4.4 for map encoding details): 

1;1;(0,30);{2};1 



2;2;(900,30);{3};0 

3;3;(0,30);{2};0 

In this map, landmark # 2 and landmark # 3 are neighbors and can be reached by 
executing a u-turn followed by a travel-against-the-wall. Landmark # 1 cannot be reached 
from landmarks #2 or # 3. However it can be used as a starting point to reach landmark # 
2. 

Initial testing in this map area exercised the inter-process communication protocol 
between the Command and Control Tasks. Jobs executed in this area were jobs consisting 
of a single movement instruction such as: move from landmark # 1 to landmark # 3. 

6.5 Demo Map Area # 2 
Demo Map Area # 1 proved to be an invaluable starting point, however this did not 

fully exercise the path-finding and job processing logic of the Command Task. While 
thorough testing of the path-finding and job processing was performed in the virtual 
machine development environment using various test maps, a more complex area was 
needed to integration test the Command Task using the actual robot. 

The demo area was expanded to include another portion of the C S U C I Bell Tower 
hallway with several additional landmarks, adding for the possibility of more complex 
navigation plans and jobs. 

Figure 17 - Demo Map # 2 in the C S U C I Bell Tower 

The map encoding is as follows: 

1;1;(0,30);{2};1 

2;2;(900,30);{3,4};1 

3;3;(0,30);{2};0 

4;4;(1800,30);{3,5};1 



5;5;(1800,630);{6};0 

6;6;(1800,30);{3,4,5};1 

Note that the y coordinates for landmarks in the same hallway are identical e.g. 
landmark # 4 and landmark # 6 share the same coordinates. In the context of the real 
world environment, landmark # 4 and # 6 are really the same location but just being 
approached from different angles. The static map views these as distinct landmarks. 

Successful tests conducted in this map included multiple successive job requests 
such as the following: 

1. Move from landmark # 1 to landmark # 4 and wait for user feedback (payload 
loaded). 

2. Move from landmark # 4 to landmark # 6 and wait for user feedback (payload 
unloaded). 

In some tests, the robot veered slightly off course due to a slope in the hallway, and 
failed to recognize a landmark. This resulted in the job being aborted which required the 
robot to be manually moved back to a landmark. This underscored the need for some type 
of fault tolerance and recovery mechanism, which is beyond the scope of this thesis. 

6.6 Test Pages 
The following figures are illustrate a few of the non-trivial test pages used to verify 

the CGI interface and also used for general purpose testing of the Command Task. 

These pages contain forms that use JavaScript to submit a J SON formatted request 
message to the C G I interface and then display the corresponding response (also J SON) in 
a text box. 



Figure 18 - DeliveryJob dot h t m l C G I test page 

Figure 19 - RemoveJob dot h t m l C G I test page 



Figure 20 - SendCommand dot h t m l C G I test page 



Chapter 7: Conclusions 

7.1 Summary 
The goal of this thesis project is the completed development of an Artificial 

Intelligence software layer that would fit into the overall system architecture, and would 
meet the high level requirements documented in section 1.3. Specifically, the software 
would need to accept delivery and pickup job requests from users and maintain these in a 
queue, manage the scheduling of jobs, use path-planning to find the optimal routes 
between destinations in jobs, and execute jobs in the queue, navigating the environment 
as necessary to carry out a job. As a result of the design, implementation, and testing of 
the Command Task software, these requirements were successfully accomplished and 
demonstrated in a demo map area using the robot. 

The Command Task, as a middle-ware layer in the system architecture, was 
implemented using a variety of technologies - from the use of message queues to 
communicate with the Control Task, an implementation of the A* search algorithm for 
path planning, an intelligent agent for job execution, to the J SON-based T C P and C G I 
interfaces that are used for interaction with the local and Web-based user interfaces. 

Sound software engineering principles were applied to the design and development 
of the Command Task, which should provide a solid foundation for future maintenance 
and iteration of the software, leading to its eventual deployment to production. 
Specifically, software design specifications were written and reviewed in advance of 
development, the use of mature software design patterns were used, and the source code 
written using quality-driven industry techniques. 

There is plenty of opportunity for further enhancements and new features to the 
Command Task platform (see Section 7.2 below). Certainly, some refinement is 
necessary before the Command Task would be ready for use in a production 
environment. For example, a failure tolerance and recovery mechanism is needed to 
reduce or eliminate the need for human intervention when there are local navigation 
failures such as the failure to recognize a landmark or an obstacle that cannot be 
circumnavigated. In addition, the process of constructing the static map is tedious and has 
room for refinement to reduce the effort required by the administrator. 

In conclusion, I am very grateful for the opportunity to have contributed to this 
project and collaborated with an excellent team to create a working product. In addition 
to the learning experience, it was particularly rewarding to see the physical robot 
executing delivery jobs in response to a job requests sent from a Web browser. 



7.2 Future Work 
The following is a list of suggestions that may be considered for implementation in 

future work on the Command Task software. Some of these are functionality that was 
identified during the initial design but deferred due to scope. These suggestions are 
grouped according to their general area of functionality. 

Jobs 
Consider recycling terminated and aborted jobs, so that users could recall tasks 
that are routine. Perhaps allow for recurrence of jobs with some frequency e.g. 
regular mail pickup every weekday morning. 
Allow users to schedule jobs for execution at a later date or time, so the Job 
Manager would not consider them until at least the specified date/time. 
Preempt the current job when the robot is en route to a location with an empty bin 
and gets a higher priority job to complete. Add an administrative setting that 
could control the commitments; for example, the system might be required to 
finish a job that has already started even with an empty bin. That could avoid 
confusion of users, who would not know why the robot is not fulfilling their 
requests. If dynamic changes are allowed, then in theory user starvation may 
occur. That suggests that waiting time must be a part of the computation as well. 

Scheduling 
Evaluate queued jobs for overall (power consumption) efficiencies. i.e. estimate 
the power requirements for job and use them in the job prioritization algorithm. 
Evaluate constraint-based optimization, optimization of elevators, other options to 
determine if there is a better algorithm for job queue prioritization and selection. 

Navigation and Path-Planning 
Consider navigation plan computation as a distributed task shared between the 
robot and a remote machine, to offload some of the computational burden from 
the robot's hardware. 
Currently, the A* search heuristic function uses the straight-line distance from the 
current node to the goal. Consider factoring an 'estimated travel time' into the 
heuristic function. Initially, this estimate could be populated by an educated guess 
or based on trial runs. However, after time, this could be based on an average of 
recent actual traversal times. 
When the Control Task reports failure to reach a landmark, the Job Processor will 
abort the job and requires manual intervention to recover. The Command Task 
could incorporate intelligence to reason about its current location and attempt to 
discover where it is without human intervention. This may include interfacing 
with the Control Task to obtain data about the environment. This same reasoning 
mechanism could be used to allow the robot to discover where it is at any location 
in the environment. 
The Command Task could incorporate learning into navigation plan execution to 
handle transient failures such as obstacles in the way. The Command Task could 
compute an alternate search path that avoids the current 'problem' location. 



Currently, map construction and the subsequent verification by testing, can be a 
lengthy and very tedious process. Some level of machine learning may be 
considered to help automate this process, whereby the robot would be 'walked' 
through the environment and would discover and dynamically compile the map. 
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Appendix A - Installation Instructions 

Get all content from the command backward slash bin folder in S V N e.g. from aider backward slash 

trunk backward slash command backward slash bin. 

At present, this includes: 

command underscore c g i 
command underscore task 
configuration dot i n i 
DemoMap dot t x t 
ExtendedDemoMap dot t x t 
DeliveryJob dot h t m l 
FetchJobs dot h t m l 
FetchStatus dot h t m l 
GetLocations dot h t m l 
Index dot h t m l 
RemoveJob dot h t m l 
SendCommand dot h t m l 

SimpleJob dot h t m l UserFeedback dot h t m l Y o u c a n a l s o b u i l d t h e b i n a r i e s y o u r s e l f : 

s v n c h e c k o u t s v n plus s s h colon forward slash forward slash less than sign y o u r i d greater than sign 
ampersand o a k dot c s dot c s u c i dot e d u forward slash v a r forward slash s v n forward slash a i d e r 
c d a i d e r forward slash t r u n k forward slash c o m m a n d make 
Install the CGI application and CGI test pages (from the aider/trunk/command directory): 

I n s t a l l i n g t h e c o m m a n d underscore t a s k ( f r o m t h e a i d e r forward slash t r u n k forward slash c o m m a n d forward slash 

b i n d i r e c t o r y ) : 

1. First: 
s u d o c h m o d 7 7 5 dot forward slash c o m m a n d underscore t a s k 



2. The command underscore task depends on the following files, which it expects to find in the same 
directory as the executable: 

configuration dot ini equal sign configuration file 
ExtendedDemoMap dot t x t equal sign the map 

3. The command task will create two log files 

• trace dot log - all debug trace 
• notifications dot log - all notification messages received from the control underscore task 

Running on the robot: 

1. I n i t i a l i z e t h e m e s s a g e q u e u e s 

dot forward slash c r e a t e q u e u e s 

2 . R u n t h e c o n t r o l t a s k 

dot forward slash c o n t r o l t a s k 

3 . R u n t h e c o m m a n d t a s k ( f r o m t h e a i d e r forward slash t r u n k forward slash c o m m a n d forward slash b i n d i r e c t o r y ) 

dot forward slash c o m m a n d t a s k - n o r m a l 

Running on your V M: 

Run (from the aider/trunk/command/bin directory) 
dot forward slash command t a s k hyphen s t u b b e d 

Using the command underscore task: 

B r o w s e t o t h e t e s t p a g e s ( e . g . h t t p colon forward slash forward slash less than sign y o u r i p greater than 

sign forward slash N e w J o b dot h t m l ) t o a d d j o b s , f e t c h j o b s , e t c . 

or use the terminal interface (described below). 

Command input interface: 

T h e c o m m a n d t a s k a c c e p t s a n d p r o c e s s e s t e r m i n a l i n p u t c o m m a n d . T h e f o l l o w i n g c o m m a n d s a r e s u p p o r t e d ( a l l c a s e - i n s e n s i t i v e ) : 





Appendix B - AIDer Operating System 
and Development Environment 

The original AIDer software from California State Polytechnic University ran on 
R T Linux-Free 2.6.9, based on a custom patchset for the Linux kernel and a Red Hat 
userland. RTLinux-Free 2.6.9 included real-time scheduling capabilities, but is no longer 
actively maintained. As such, new software was chosen and installed. 

The AIDer onboard computer runs Gentoo G N U /Linux 2.6.26. G N U/Linux is a 
monolithic kernel, Unix-like operating system. Linux 2.6.26 includes real-time 
scheduling capabilities and is actively maintained. 

The Gentoo Linux distribution is a highly customizable and configurable Linux 
distribution, and was chosen as certain development software requirements were not 
chosen until well after Control Task development was under way. According to the 
Gentoo Philosophy (see http://www.gentoo.org/main/en/philosophy.xml), "The goal of 
Gentoo is to design tools and systems that allow a user to do that work as pleasantly and 
efficiently as possible, as they see fit." 

The AIDer userland includes: 

glibc 2.8 and the G N U toolchain, including G C C 4.3.2 
X.org 7.2 and X f c e 4.4.3 
Apache 2 Web Server with mod underscore python and mod underscore ruby 
Mozilla Firefox 3 
Ruby 1.8 
Perl 5.8.8 
Python 2.5.4 

For convenience, AIDer's operating system and development environment were 
replicated on a Sun VirtualBox virtual machine to allow the project's members to test 
their software without using AIDer itself. 

http://www.gentoo.org/main/en/philosophy.xml

