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A b stra c t

Finding the Unit Structure in a Factor Ring of a Quadratic Number Field 

by Marina Morales

The unit group structure of Zm is well-known in Number 

Theory, largely due to the significance of primitive roots 

modulo m whenever they exist. We investigate the analo­

gous problem for a quadratic number ring O, determining 

the unit group structure and a set of generators of the quo­

tient ring O / a  for some fixed ideal a in O.
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1. In tro du ctio n

A useful and descriptive way to represent a finite abelian group is as a 

direct product of cyclic groups. W ith this description, it is easy to deduce 

many important properties of the group, such as its order, subgroups, and 

rank. In this thesis, we investigate the structure of the group of units in 

any factor ring of a quadratic number ring.

As a motivating example we start with Zm, the ring of integers modulo 

m. This is a finite commutative ring whose units (elements having multi­

plicative inverses) form a multiplicative group which is denoted by (Zm)*. 

It is a standard fact that an element x E (Zm)* is a unit if and only if 

gcd(x,m ) =  1. Moreover, the order of (Zm)* is given by the classic Euler 

phi- function 0(m ).

We want to know the group structure of (Zm)*. To help us with this, we 

invoke the Chinese Remainder Theorem.

T h eo rem  1. Chinese Remainder Theorem.

Let m  =  p i1 p i2 ■ ■ ■ Pkk be a prime factorization fo r  m. Then,

Zm =  Zpn  X  Zp>2 X  ... X  Zpnk .

As a consequence, this induces the isomorphism

(Zm)* =  (Z„;.1 )* X (Z„,.2 )* X  ... X (Zp.-k)*.
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Therefore, it suffices to understand the structure of (Zpn )* for any prime 

p. This is given in the following theorem, whose proof can be found in many 

places, such as [9].

T h eo rem  2. Unit Structure o f (Zpn)*.

(1) For any odd prime p, we have

(Zpn)* =  (g) =  Z pn-pn-i fo r  some g E Z pn .

/

I 1} i f  n  = 1

(2) (Z2n)* =  < {±1} =  z 2 i f  n  =  2

{±1} X (5) =  Z2 X Z2n-2 i f  n  > 3.

If (Zm)* is cyclic, then any of its generators is called a p rim itiv e  ro o t 

modulo m. For example, when p is odd, g is a primitive root modulo m =  pn 

for any n E N. We can say more; by using this theorem in conjunction with 

the Chinese Remainder Theorem, it is straightforward to deduce that a 

primitive root modulo m exists if and only if m =  2 ,4,pn, 2pn for any odd 

prime p and positive integer n.

When primitive roots exist, it is often very convenient to use them in 

proofs and explicit constructions; for instance, given a primitive root mod­

ulo an odd prime p, the quadratic residues mod p are precisely the even



powers of the primitive root. Primitive roots are also important in cryp­

tological applications involving the discrete log problem, most notably the 

Diffie-Hellman key exchange, El Gamal public-key cryptosystem, and the 

Schnorr identification scheme. Finding quadratic non-residues modulo a 

prime is another interesting problem in number theory. Applications relying 

on generating quadratic non-residues include the Tonelli- Shanks algorithm 

and Cippola-Lehmer algorithm for computing square roots modulo a prime 

as well as the Goldwasser-Micali probabilistic encryption scheme. Further 

details can be found in [10].

Our second example is the ring of G aussian  in tegers

Z[i] =  {a  +  bi : a ,b  G Z }.

Note that Z[i] has similar arithmetic properties reminiscent of Z, such as 

divisibility, primes, and being a UFD (and PID).

The primes in Z[i] are different from those in Z and are described in the 

following theorem.

T h eo rem  3. Primes in Z[i].

(1) I f  p is prime in N and p  =  3 mod 4, then p is still prime in Z[i].

(2) I f  p is prime in N and p  =  1 mod 4, then p  =  nn fo r  some distinct 

primes n G Z[i].
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(3) 2 =  —i(1 +  i )2 and 1 +  i is prim e in  Z[i].

For example, 7 is still prime in Z[i], but 5 is not prime in Z[i] since 

5 =  (2 +  i)(2 — i). Instead, 2 +  i and 2 — i are primes in Z[i] that “replace” 

5.

As in Z, we can do modular arithmetic in Z[i]. We now approach this from 

a ring-theoretic point of view. Observe that since Z m =  Z / (m), arithmetic 

of Z modulo m is essentially the same as performing arithmetic in Z/(m ). 

Also observe that since Z is a PID, any ideal in Z can be written in the 

form (m) for some m G Z>0.

Now, we apply these ideas to Z[i]. Since Z[i] is a PID, any ideal in Z[i] 

can be written in the form (y) for some 7  G Z[i]. Then fixing 7  G Z[i], we 

study the quotient ring Z [i]/(Y).

Reminiscent of the case with modular arithmetic in Z, given 7  G Z[i]=0, 

what is the group structure of (Z[i]/(7 ))*? To help us with this, we use the 

following variant of the Chinese Remainder Theorem for Z[i] which can be 

found in [2].

T h eo rem  4. Chinese Rem ainder Theorem fo r  Z[i].

Let 7  =  nn2 ■ ■ ■ be a prim e factorization fo r  7  G Z[i] where n i ,n 2, .. .,n k 

are distinct prim es in  Z[i]. Then,

Z[i]/(y) =  Z[i]/(nn1) x Z[i]/(nn2) x ... x Z [ i ] / « k).
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As a consequence, the Chinese Remainder Theorem induces the isomor­

phism

(Z[i]/(y))* =  (Z[i]/(nn1 ))* x (Z[i]/(nn2))* x ... x ( Z [ i ] / « k))*.

Therefore, to understand (Z[i]/(Y))* it suffices to study the structure of 

(Z[i]/(nn))* where n is a prime in Z[i]. Cross [1] studied this problem; we 

summarize his results below.

T h eo rem  5. Group Structure fo r  (Z[i]/(nn))*.

(1) Suppose n =  p =  3 (mod 4). Let g be a prim itive root modulo pn and 

h G Zp2-1 C (Z[i]pn )* have order p2 — 1. Then,

(Z[i]pn)* =  (1 +  pi) x (g) x (h) =  Zpn-i x Zpn-i x Zp2-1 .

(2) Suppose p =  1 (mod 4) such that p =  nn fo r  some n G Z[i]. Let g be a 

prim itive root modulo pn . Then,

(Z[i]/(nn))* =  (g) =  Zpn-p„-1 .

(3) For n =  1 +  i, (Z[i]/(1 +  i))* =  {1} and (Z[i]/((1 +  i)2))* =  (i) =  Z2.

For n  > 2, we have

/

(1 +  2i) x (5) x (i) =  Z2m-1 x Z2m-2 x Z4 i f  n =  2m
(Z[i]/((1+i)n))* ^

(1 +  2i) x (5) x (i) =  Z2m-1 x Z2m-1 x Z4 i f  n =  2m +  1. 
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For our next example, we can consider the Eisenstein integers Z[w] =  

{a +  bu : a,b G Z}, where w =  e2ni/3 =  - l +*'fii . This is another example 

of a ring that possesses arithmetic properties similar to Z and Z[i]. As this 

is a special case of the results that follow, we will place its results in an 

appendix.

We instead consider the more general problem of finding the group struc­

ture and the generators for a quotient ring in any quadratic number field 

over Q. The results on the group structure exist in the literature; Kohler 

([4]) recently compiled them together (so he could use these results to explic­

itly compute characters on these groups), proving these results via intricate 

counting arguments without giving the generators. We follow Cross’ [1] ap­

proach to find the generators in any such quotient ring. We first review the 

pertinent facts about quadratic number fields in the next section. Then, 

we spend the remainder of the thesis deriving the group structure for a 

quotient ring in any quadratic number field.

2. B ackground and T erminology

2.1. Q u ad ra tic  N u m b er F ields. Here, we first will give a quick review 

of some basic concepts from algebraic number theory, as found in [6] and

[9].
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D efin ition  1. A n  algebraic number (over Q ) is a complex number that 

is a root o f a polynomial with rational coefficients.

Any algebraic number a  yields an associated algebraic  nu m b er field 

K  =  Q(a). Classic examples of such algebraic number fields are the qua­

dratic number fields Q ( d )  for any square-free integer d and the cyclotomic 

number fields Q(Zn), where (n =  e2ni/n for some integer n > 3.

D efin ition  2. A n  algebraic integer is a complex number that is a root 

of a m onic polynomial with integer coefficients.

R em ark : V5 is an algebraic integer since it is a root of the monic polyno­

mial x 2 — 5. This definition provides a generalization of the set of integers, 

because any n G Z is a root of the monic polynomial x — n. Meanwhile, 2 

is not an algebraic integer since 2x — 1 is not monic, and there is no monic 

polynomial with integer coefficients that has 1 as a root.

Any algebraic number field K  has a corresponding ring  of (a lg eb ra ic ) 

in tegers (algebraic nu m b er ring) OK, which is the set of algebraic in­

tegers in K. Whenever K  is implied without any confusion, we will write 

O for its algebraic number ring.

Now we define the ring of integers to a quadratic field Q(v^d). This is 

given in the definition.
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D efin it io n  3. Fix a square-free integer d. Then the quadratic number

ring  O associated to Q(v^d) is the set

{a +  bu : a,b G Z},

where
/

\ f d  i f  d =  1 mod 4
u  =  <

1+2̂ d if d =  1 mod 4.

R em ark : The ring of Gaussian integers Z[i] =  {a +  bi | a, b G Z} is the set 

of algebraic integers in the quadratic field Q(i) (here, d =  —1). Similarly, 

the ring of Eisenstein integers Z[u] =  {a +  bu | a, b G Z}, where u  =  -1+2v/~3, 

is the set of algebraic integers in the quadratic field Q(v^~3).

Next, we discuss the problem of factoring in O.

D efin it io n  4. Given an algebraic number ring O , we say that a nonzero 

nonunit a  G O is irreducible i f  its only factors are units and associates of 

a .

In Z, one often says that an irreducible integer is p r im e ; but in a number 

ring, we define this term differently as follows:

D efin it io n  5. Given an algebraic number ring O, we say that a nonzero 

nonunit n G O is prim e i f  fo r  any a ,^  G O such that n |a ^ , then n |a  or 

n |^ .
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N o te :  Hereafter, we refer to the primes in N as ra t io n a l  p r im e s  to dis­

tinguish these from primes in an algebraic number ring O.

R em ark : In any algebraic number ring possessing the unique factorization 

property into irreducibles, such as Z and Z[i], the previous definitions are 

equivalent. However, this is not always the case. For example, if we take 

K  =  Q(v^—5), then we have the following factorizations into irreducibles 

in OK =  Z[V=5]:

21 =  3 ■ 7 =  (1 +  2 V —5)(1 — 2V—5).

Since the factors above are all irreducible in Z[^/—5] and none of these 

factors are associates to one another, Z[^/—5] does not possess the unique 

factorization property into irreducibles. This introduces an important ques­

tion: How can we assess primality when we do not have unique factorization 

into irreducibles for each element? The key idea is to introduce prime ideals.

D efin it io n  6. Given an algebraic number ring O, we say that a proper 

ideal p C O is p r im e  if, whenever q and r are ideals in O such that qr C p, 

then q C p or r C p.

It is an important result of Dedekind that all ideals in a given algebraic 

number ring possess unique factorization into prime ideals. To illustrate

9



this point, let us return to our example in Z[^/—5], where we saw that

21 =  3 ■ 7 =  (1 +  2 V —5)(1 — 2V—5).

It can be shown that p1 =  (3, 2 + V—5), p2 =  (3, 2 —V—5), p3 =  (7, 3 + V—5) 

and p4 =  (7, 3 — y /—\5) are prime ideals in Z [ \ f—5]. Furthermore, (3) =  p1p2, 

(7) =  p3p4, (1 +  2V—5) =  p1p4, and (1 — 2V—5) =  p2p3.

Therefore, we see that the two factorizations into irreducibles give rise to 

the same prime ideal factorization of (21), namely p1 p2p3p4.

Next, we give a description of the prime ideals in O. We first introduce 

the following terminology.

D efin it io n  7. Let p be a rational prime and O be a quadratic number ring.

(1) We say that p sp li ts  in  O i f  (p) =  pp fo r  some distinct prime ideals 

p, p in O.

Note that p is the ideal whose elements are conjugates to those in p.

(2) We say that p is in e r t  in  O i f  (p) is a prime ideal in O .

(3) We say that p ra m ifie s  in  O i f  (p) =  p2 fo r  some prime ideal p in O. 

The resulting primes ideals are said to lie above p.

For example, we saw in the set of Gaussian integers Z[i], a rational prime 

p is inert when p =  3 mod 4, splits when p =  1 mod 4, and ramifies when 

p =  2.
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In the spirit of the Gaussian integers, we want to characterize the prime 

ideals in a quadratic number rings more precisely. For a quadratic number 

ring, we define the d isc r im in a n t  A as follows:

/

4d if d =  1 mod 4
A =

d if d =  1 mod 4.

Now, we can state this theorem about prime ideals in a quadratic number 

ring (see [6] for a proof).

T h e o re m  6. Behavior of rational primes in a quadratic number ring.

(a) For an odd rational prime p:

(1) p is inert in O if  (P) =  —1.

(2) p splits in O if  (d) =  1.

(3) p ramifies in O if  p | A.

(b) For the rational prime 2:

(1) 2 is inert in O if  d =  5 mod 8.

(2) 2 splits in O if  d =  1 mod 8.

(3) 2 ramifies in O if d is even, or d =  3 or 7 mod 8.

11



Mimicking the properties of Z we have a notion of ‘divides’ in the context 

of ideals (which reduces to the usual definition of divisibility of element in 

the case that all ideals are principal).

D efin ition  8. Given ideals a, b in O, we say that a d iv id e s  b, written a | b 

i f  b =  ca fo r  some ideal c in O.

For example, any prime ideal in O divides the rational prime over which 

it lies. Moreover, it follows immediately from this definition that a | b iff 

a D b.

2.2. Basic Ideas C oncern ing  Q u o tien t R ings of O. We now consider 

quotient rings in O. We fix a nonzero ideal a in O and consider O /a. (Note 

that a need not be principal.)

Again, we have a version of the Chinese Remainder Theorem for O (as 

any two distinct prime ideals are comaximal in O; see [2] for a proof):

T h eo rem  7. Chinese Rem ainder  Theorem fo r  O .

Let a =  pn1 pn2 ■ ■ ■ pnk be a prime factorization fo r  the ideal a in O where 

p^ p2, ..., pfc are distinct prim e ideals in O . Then,

O /a  =  O /pni x O/p!?2 x ... x O /p ^ .

12



As we will be interested in the unit group (O /a )* , the Chinese Remainder 

Theorem again induces the isomorphism

(O /a)* =  (O /pni)* x (O/p!?2)* x ... x (O /p ^ )*.

Hence, it suffices to study (O /pn)* for some fixed prime ideal p in O and 

n G N.

We first find a complete set of equivalence classes to O /pn. To assist us 

in this endeavor, we introduce the norm of an ideal.

D efin ition  9. The n o rm  of a nonzero ideal a in O is defined as N (a) =  

|O /a|.

R em ark  1: Note that the norm is always finite. It can be shown that 

the norm is completely multiplicative: if a, b are nonzero ideals in O, then 

N(ab) =  N (a)N (b).

R em ark  2: Since any prime ideal p is always maximal in an algebraic 

number ring O, we know that O/p is a field. In the case of a quadratic 

number ring, this implies that N(p) =  p2 if p is inert, and N(p) =  p if p is 

not inert.

The following is a generalization of one of Cross’ results: [1]

T h eorem  8. The complete set of equivalence classes to O modulo a power 

of a prime ideal p are given as follows:
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(1) I f  p splits and p lies above p, then O/pn =  {0,1,  2, ...,pn — 1}.

(2) I f  p is inert, then O/pn =  {a  +  bu|a, b =  0,1,  2, ...,pn — 1}.

(3) I f  p ramifies and p lies above p , then

• O/p2m =  {a  +  bu|a, b =  0,1,  2, ...,pm — 1}.

• O/p2m+1 =  {a  +  bu|b =  0,1,2,  ...,pm+1 — 1, b =  0,1,  2, ...,pm — 1}.

Proof. By Remarks 1 and 2, along with N(pn) =  N(p)n, we have the right 

number of equivalence classes for O/pn. Hence, it suffices to establish that 

the given equivalence classes of O/pn are distinct.

(1) Suppose that p splits and p lies above p.

If a =  b in O/pn with a, b G {0,1,  ...,pn — 1}, then pn | (a — b), and by 

conjugation we have p” | (a — b). Since gcd(p,p) =  (1), we have pnpn =  

(pn) | (a — b), which is equivalent to pn | (a — b). Since a,b G { 0 , 1, . . . ,pn — 1}, 

we conclude that a =  b.

(2) Next, suppose that p is inert (and thus p =  (p)).

Suppose that a +  bu =  c + du in O/pn for some a, b, c, d G {0,1,  ...,pn — 1}. 

Then, (a — c) +  (b — d)u =  0 in O/pn. This, in turn, implies that pn|(a — c) 

and pn|(b — d). Since a, b, c, d are between 0 and pn — 1 inclusive, we conclude 

that a =  c and b =  d.

(3) Finally, suppose that p ramifies and p lies above p.

14



If n =  2m, then the distinctness of the given equivalence classes is proved 

as in the inert case. Now, suppose that n =  2m +  1 and a +  bu =  c +  du 

in O /pn, where a, c G {0,1, ...,pm+1 — 1} and b, d G {0,1, ...,pm — 1}. Since 

pn =  (pm)p, it follows that pm | (b — d) and thus b =  d. Therefore, (pm)p | 

(a — c), or equivalently a — c =  pm ■ k for some integer k, since the only 

rational elements in O are integers. Then, p | (k). Taking norms, we find 

that p | k2 and thus p | k. Hence, pm+1 | (a — c) and by the choices of a and 

c, we conclude that a =  c.

□

Next, we generalize the Euler phi function of elementary number theory 

to algebraic number rings.

D efin itio n  10. The p h i fu n c t io n  defined on a nonzero ideal a C O  is 

defined as $(a) =  |(O/a)*|.

R em ark : It can be shown that the $  is multiplicative; if a, b are rel­

atively prime ideals in O, then $(ab) =  $(a)$(b). Hence, it suffices to 

compute $(pn) where p is a prime ideal in O and n G N. This has been 

done ([3]) as has a form reminiscent of its classical counterpart:

$(pn) =  (N(p))n — (N(p))n-1.

15



Although it will not be crucial to the work that follows, but we can now 

give a full set of equivalence classes for (O /pn)* whenever p is not ramified 

(again generalizing a result of Cross [1]).

T h e o re m  9. Equivalence classes of units.

(1) Suppose that p lies above a split rational prime p. Then, a G (O /pn)* 

i f  and only i f  gcd(a,p) =  1.

(2) Suppose that p is inert (so that p =  (p)). Then, x +  yu G (O /pn)* 

i f  and only i f  at least one of x and y is relatively prime to p.

Proof. (1) Note that a G O /pn is a unit if and only if ab = 1  for some 

b G O /pn. This is true if and only if 1 G (a) +  pn. This is equivalent to 

saying that gcd((a),pn) =  (1) or more simply gcd((a),p) =  (1). Finally, 

this is equivalent in the split case to saying gcd(a,p) =  1.

(2) As in (1), x +  yu G O /pn is a unit if and only if gcd((x +  yu), pn) =  (1). 

Hence, x +  yu G O /pn is a unit if and only if pn { (x+ yu). This is equivalent 

to saying that p { (x +  y u ), or alternately p { x or p { y. □

Mimicking results again for Z, the following notational shorthand will 

prove useful.
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D efin itio n  11. Suppose that a, ft G O and fix an ideal a in O. We say that 

a  i s  c o n g r u e n t  to  ft m o d u lo  a, written a  =  ft mod a, iff  (a — ft) G a.

From this definition, we see that a  =  ft mod a iff a  and ft belong to the 

same equivalence class in O /a.

The following proposition ([8]) is a variant of Hensel’s lifting lemma in 

Z that will prove useful in the work that follows. This allows us to ‘lift’ a 

solution to a polynomial congruence from one power of a prime ideal to the 

next power.

P ro p o s it io n  1. Suppose that f  (x) G O[x] and p is a prime ideal in O. 

I f  x =  a  G O is a solution to f  (x) =  0 mod pn-1 for some n > 2 and 

f  (a) G gcd((f'(a)), pn), then f  (x) =  0 mod pn has a solution in O.

Proof. We first establish the following claim: For any a, ft G O,

f  (a +  ft) =  f  (a) +  f tf ;(a) +  ft2Y for some y G O.

To show this, note that for any k G Z>0, the Binomial Theorem yields

(a +  ft)k =  a k +  k a k-1ft +  ft24  for some 4  G O.

17



n
Writing f  (x) =  pkx k for some pk G O  and n G N, we have

k=0
n

f  (a  +  ft) =  ^  pfc(a  +  ft )k
k=0

n

=  [̂ 3 Pfc (ak +  kak 1ft +  ft2 f̂c) +  P1(a +  f t ) +  Po 
fc=2

n n n
=  Pfcak +  ft ' kPfcak 1 +  ft2 ' Pfc4

k=0 k=1 k=0
n

=  f  (a) +  f tf '(a )  +  ft2y , where y  =  ^  Pfc4 .
fc=0

Now, we are ready to prove this proposition. Suppose that f  (a) =  0 mod 

pn-1. We want to solve f  (x) =  0 mod pn using a . To do this, we write 

x =  a  +  ft for some ft G pn-1.

Substituting this into f  (a) =  0 mod pn and using the claim yields (for 

some y  G O)

f  (a  +  ft) =  f  (a) +  f t f ; (a) +  ft2Y =  0 mod pn.

Since ft2 G p2n-2 and 2n — 2 >  n, the previous relation reduces to

f  (a) +  f t f  ; (a) =  0 mod pn.

This has a solution if and only if f  (a) G g cd ((f '(a )) ,p n).

□

18



R em ark : This version of Hensel lifting is sufficient for our purposes, be­

cause either f  '(a) =  0 mod p or n will be sufficiently large so that f  (a) G pn.

3. Unit group structure theorems

3.1. S p li t t in g  C ase . In this section, we suppose that p splits in O; that is, 

(p) =  pp for some distinct prime ideals p, p in O. Then, with little effort, we 

derive the following group structure theorem, which asserts that (O /pn)* is 

a cyclic group.

T h e o re m  10. Suppose that p lies above the split rational prime p. Then,

(O /pn)* =  (g) =  Zpn_p„-1 , 

where g is a primitive root modulo pn .

Proof. In Theorem 9, the set of elements a G (O /pn)* is formally the same 

as (Zpn)*. This leads us to consider the well-defined homomorphism ^  : 

(O /pn)* ^  (Zpn)* defined by -0(a) =  a (the fact that ^  is well-defined 

follows immediately from p | (p)). Moreover ^  is a bijection by construction; 

thus ^  is an isomorphism. Since (Zpn)* =  Zpn-pn -i, we conclude that 

(O /pn)* =  Zpn-pn-1 . □
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3.2. In e r t  Case. In this section, we assume that p is inert in O so that we 

can simply write p =  (p). Before stating the group structure theorem, we 

record a few lemmas.

L em m a 1. Let k E N.

(a) I f  p  is an odd rational prime, then (1 +  p u )pk =  1 +  p k+1u  +  pk+2y for  

some  y E O.

(b) (1 +  2w)2k =  1 +  2k+1 +  2k+2Y fo r  some y  E O.

Proof. To establish this lemma, we use the following claim.

Claim : Let E O  and r be a prime in Z. Then,

(1 +  f lr)rk =  1 +  flrk+1 +  1 2(rk -  1)rk+2 +  5rk+2

for some 5 E O.

We prove this claim by induction on k. For k = 1 , the Binomial Theorem 

yields

(1 +  flr)r =  1 +  flr2 +  1 fl2r 3(r — 1) +   ̂^  ( T ĵ flj r j-3 ■ r 3.
j=3 j

Since (r) E N and j  > 3, it follows immediately that 5 = J2r=3 (j)flj rj-3  E 

O, thereby establishing the base case.
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Now, assuming that the claim is true for k, we show that it is true for 

k +  1. By the Inductive Hypothesis,

(1 +  flr)rk+1 =  [(1 +  flr)rk ]r =  [1 +  (flrk+1 +  1 fl 2(rk — 1)rk+2 +  5rk+2) ] r .

Applying the Binomial Theorem to the right side of the equation yields 

1+ flrk+2 +  1 fl2(rk — 1)rk+3 +  5rk+3 +  ̂  Q  (fl +  1 fl2(rk — 1)r +  5 r ) j r j(k+1). 

Since j  (k +  1) >  k +  3 for all integers j  >  2 and k E N, we have:

(1 +  flr)rk+1 =  1 +  flrk+2 +  1 fl 2(rk — 1)rk+3 +  5r k+3. 

for some 5 E O.

To write this in the form to resemble the claim for k +  1, we rewrite this 

by strategically adding zero:

(1+flr)rk+1 =  1+flrk+2+ 1  fl 2(rk+1 —1)rk+3+ 1  fl 2r k r k+3 — 1 fl2r k+1r k+3+ 5r k+3.

Letting £ =  5 — 2fl2r k (r — 1) E O  allows us to establish the claim for 

k +  1 as required:

(1 +  flr)rk+1 =  1 +  flrk+2 +  1 fl 2(rk+1 — 1)rk+3 +  £rk+3.

Part (a) of the lemma follows now directly from this claim by letting 

r =  p for some odd prime p, fl =  w, and collecting like terms.
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As for part (b), we let r  =  2 and fl =  w:

(1 +  2w)2k =  1 +  2k+1(w +  (2k — 1)w2) +  2k+25

for some 5 E O.

Rearranging terms, we have

(1 +  2w)2k =  1 +  2k+1(w +  w2) +  2k+2e

for some e E O.

We can simplify this further. Since (2) being inert is equivalent to d =  5 

mod 8, we have w =  1+̂ /d. In particular, w2 +  w =  =  1 mod 2. 

Therefore,

(1 +  2w)2k =  1 +  2k+1 +  2k+2Y for some y e O.

□

The previous lemma now allows us to find the order of 1 +  pw in (O /pn)*.

L e m m a  2. Let m E N>2 and m, n E N>1 and suppose that p is inert in O.

(a) The order of 1 +  pw in (O /pn)* equals pn-1 .

(b) The order of 1 +  2w in (O /(2n))* equals 2n-1.

Proof. (a) Letting k =  n — 1 in part a of Lemma 1 yields

(1 +  pw)pn 1 =  1 +  pnw +  pn+1 y for some y e O.
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Reducing modulo pn then gives (1 +  pw)pn 1 =  1 mod pn. Thus, by La­

grange’s Theorem, the order of 1 +  pw divides pn-1.

Similarly, letting k =  n — 2 in part (a) of Lemma 1 and reducing modulo 

pn yields (1+ pw)pn 1 =  1 mod pn. Therefore, the order of 1+ pw in (O /pn)* 

equals pn-1.

(b) Letting k =  n — 1 in part b of Lemma 1 yields

(1 +  2w)2"-1 =  1 +  2n +  2n+1Y for some y e O.

Reducing modulo 2n then gives (1 +  2w)2" 1 =  1 mod 2n. Thus, by La­

grange’s Theorem, the order of 1 +  2w divides 2n-1.

Similarly, letting k =  n — 2 in part (b) of Lemma 1 and reducing modulo 

2n yields (1 +  2w)2" 1 =  1 mod 2n. Therefore, the order of 1 +  2w in 

(O /(2n))* equals 2n-1.

□

This next lemma shows that two special cyclic subgroups of (O /pn)* have 

trivial intersection.

L em m a  3. Suppose that p is inert in O. Then, i f  a E Z has order pk for  

some positive integer k in (O /pn)*, then we have (1 +  pw) fl (a) =  {1} in 

(O /pn)*.
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Proof. Note that both cyclic groups are of power of the same prime p. 

Then, (1+ pw) If (a) is also cyclic of order pk for some k =  {0,1, 2 , . . . , n  — 1}. 

We want to show that k =  0.

If k > 1, then (1 +  pw) If (a) contains a cyclic subgroup of order p.

Since 1 +  pw has order pn-1 in (O /pn)* is pn-1 by Lemma 2, it follows 

that (1 +  pw)pn 2 =  1 +  pn-1w is an element in (1 +  pw) that has order p; 

hence all others elements of order p in (1 +  pw) have the form 1 +  pn-1kw, 

where k =  {1, 2, 3 , . . . , p  — 1}. Since none of these are in (a), we conclude 

that the intersection is trivial. □

Now, we can state the group structure theorems for (O /pn)* in the case 

that p is inert. We start with the case when p is odd.

T h e o re m  11. Suppose that (p) =  p with p being an odd rational prime. 

Then, there exists a E Z and B E O such that

n_1
(O /pn)* =  (1 +  pw) x (a) x (flp ) =  Zpn-1 X Zpn-1 X Zp2-1 .

Proof. We have already examined (1 +  pw) in Lemma 2.

Now, we construct a. Consider the homomorphism ^  : (Zpn)* ^  (O /pn)* 

defined by -0(b) =  b. Since (Zpn)* is cyclic of order 0(pn) =  pn-1(p — 1), 

there exists a E (Zpn)* having order pn-1. In fact, if g is a primitive root
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mod pn, then let a =  gp 1. Consider the cyclic group (a). By Lemma 3, 

(1 +  pw) If (a) =  {1 }.

Finally, we construct fl. Since p is prime in O, and prime ideals in a 

Dedekind Domain (such as O) are maximal, O/p is a field with N(p) =  p2 

elements. Thus, (O/p)* is a cyclic group of order p2 — 1; let fl be a generator. 

Since flp2-1 =  1 mod p, we have flp2-1 =  1 +  yp for some y  E O. Using the 

techniques of Lemma 2, (flp2 — 1)pn-1 =  (1 +  y p )p" 1 =  1 +  5pn E O for some 

5 E O. Therefore, (flp2-1)pn-1 =  1 mod pn, or equivalently (flpn 1 )p2-1 =  1 

mod pn. Thus, flpn 1 has order t dividing p2 — 1. Then, fltpn 1 =  1 mod p 

implies that (p2 — 1) | tpn-1, and thus (p2 — 1) | t. Therefore, t =  p2 — 1.

Now, consider (flpn 1). Since all elements of (1 +  pw) x (a) have orders 

being powers of p, and (flpn 1) has order p2 — 1, which is relatively prime 

to p, we can conclude that ((1 +  pw) x (a)) f  (flpn 1) =  {1 } . Hence, we can 

construct the direct product (1 +  pw) x (a) x (flpn 1).

Using the ^-function, we know that the order of (O/pn)* is p2n — p2n-2 =  

p2n-2(p2 — 1). Moreover, (1 +  pw) x (a) x (flpn 1) =  p2n-2(p2 — 1). Since 

(1 +  pw) x (a) x (flpn 1) is a subgroup of (O/pn)* having the same order as 

(O/pn)*, we conclude that (O/pn)* =  (1 +  pw) x (a) x (flpn 1). □

To complete our discussion of the inert prime case, we now address the 

case when p =  2.
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T h e o re m  12. The group structure o f (O /(2n))* when 2 is inert.

(1) (O/(2))* =  (w) -  Z3.

(2) (O /(22))* =  (1 +  2w) x (—1) x (a) =  Z2 x Z2 x Z3 fo r  some a  E O.

(3) For n > 3 and fo r  some a  E O,

(O /(2n))* =  (1 +  2w) x (1 +  4w) x (—1) x (a) =  Z2n -1 x Z2n -2 x Z2 x Z3.

Proof. (1) Since O / (2) is a field with 22 elements, (O/(2))* is a cyclic group 

of order 22 — 1 =  3. Since w =  1 in O /(2 ), we conclude that w is a generator 

for (O/(2))*.

(2) Plainly, —1 is an element of order 2 in (O /(22))*. Moreover, 1 +  2w 

has order 2 in (O /(22))*, since (1 +  2w)2 =  1 +  4w +  4w2 =  1 mod 4, since 

w2 +  w +  ^  =  0 and d =  5 mod 8.

Next, we construct an element a  having order 3 in (O /(22))*. To this 

end, recall that w3 =  1 mod 2. We lift w to a solution to x3 =  1 mod 4. 

To do this, write a  =  w +  2fl for some fl E O.

Thus, we need to solve (w+2fl)3 =  1 mod 4. This reduces to w3+2w2fl =  1 

mod 4. Hence, w2fl =  ^  mod 2 (remember that ^  E O, because 

w3 =  1 mod 2). Now, multiplying both sides by w yields fl =  ^(1-^ ) mod 

2. Since a  =  w +  2fl, we obtain a  =  2w — w4 mod 4. (Alternately, we can 

apply Hensel lifting for the existence of this generator.)
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Plainly, these three subgroups have pairwise trivial intersections, and the 

product of their orders equals $(22) =  24 — 22 =  12 as required.

(3) Since 1 +  2w has order 2n-1 from Lemma 2 part 2, we have (1 +  2w) =  

Z2n - 1. Since —1 has order 2, we can take (—1) =  Z2. By Hensel lifting, we 

can inductively find an element a  such that a 3 =  1 mod 2n. (This is valid, 

because if we let f  (x) =  x3 — 1, f ' (a) =  3a2 E p.) Hence, (a) =  Z3.

For the fourth cyclic subgroup, we claim that (1 +  4w) =  Z2n - 2. This 

follows from the fact that (1 +  4w)2" 3 =  1 +  2n-1w mod 2n, which is easy 

to prove by induction.

We next observe that the four cyclic subgroups are pairwise disjoint. The 

only tricky case is showing that (1 +  4w) If (1 +  2w) =  {1}. To this end, 

note that since (1 +  4w) is cyclic of order 2n-2 and (1 +  2w) is cyclic of 

order 2n-1, if their intersection has a nontrivial element, then they both 

would share an element of order 2. This is impossible, since the two cyclic 

subgroups’ elements of order 2 are distinct, namely 1 +  2n-1w and 1 +  2n-1, 

respectively.

Finally, the product of the orders of the cyclic subgroups equals 0 (2n) =  

22n — 22n-2 =  22n-2 ■ 3 as required.

□
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3.3. R am ify in g  C ase . In this section, suppose that p ramifies in O; that 

is, (p) =  p2 for some prime ideal p in O.

First, we describe the generators of p, which we will use in our work that 

follows.

L em m a  4. Suppose p ramifies in O.

(1) I f  p is odd, then p =  (p, v^d).
/

(2, Vd) i f  d =  2 mod 4
(2) I f  p =  2, then p =  <

(2, Vd — 1) i f  d =  3 mod 4 .

Proof. Now, we assume that p is odd. Note that

(p, v ^ )2 =  (p2,pv/d, d).

Since p | d and p { d2, we know that d =  ap for some integer a not divisible 

by p. Hence, there exist integers x and y such that ax +  py =  1. So,

(p, v^d)2 =  (p2,pv^d, d, dx +  p2y).

However, dx +  p2y =  p(ax +  py) =  p. Therefore, since p | d, we conclude 

that (p, v^d)2 =  (p).

Next, assume that p =  2. If d =  2 mod 4, then 2 | d and the arguments 

in the previous paragraph go through verbatim. Now, we assume that 

d =  3 mod 4. In this case, we apply Dedekind’s Theorem [9]. The minimal
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polynomial for ( d) over Q is x 2 — d which factors as (x — 1)2 mod 2. Hence, 

Dedekind’s Theorem gives us (2) =  (2, \fd — 1)2.

□

We first address the group structure of (O/pn)* for small powers of p.

T h eo rem  13. Suppose that p lies above the ramifying rational prime p.

(1) (O/p)* =  (g) =  Zp-1, where g is a primitive root modulo p.

(1 +  Vd) x (g) =  Zp x Zp-1 i f  p is odd
(2) (O/p2)* =  ^

(1 +  V d) =  Z2 i f  p =  2 .

Here, g is a primitive root modulo p .

/

(1 +  Vd) x (g) =  Zp x (Zp-1 x Zp) i f  p is odd

(3) (O/p ) =  < (1 +  Vd) =  Z4 i f  p =  2 and d =  2 mod 4

( d )  =  Z4 i f  p =  2 and d =  3 mod 4 .

Proof. (1) Since p is prime and thus maximal, O/p is a field with N(p) =  p 

elements. Hence, (O/p)* is a cyclic group with p — 1 elements. Incidentally, 

since (O/p)* =  {1, 2, . . . ,p — 1}, we can generate this group by using a 

primitive root g modulo p.

(2) We break this down into two cases.

Assume that p is odd.
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Since v  : (Zp)* ^  (O/p2)* defined by ^(a) =  a is an injective group 

homomorphism, we see that if we set (Zp)* =  (g), then (g) is a cyclic 

subgroup of (O/p2)* having order |(Zp)*| =  p — 1.

Next, we show that 1 +  \fd has order p in (O/p2)*. To do this, we 

first prove that (1 +  v^d)k =  1 +  kv^d mod p2 by induction. This claim is 

trivially true for k =  1. Assuming that the claim is true for k, we have by 

the inductive hypothesis

(1 +  Vd)k+1 =  (1 +  Vd)k(1 +  Vd) =  (1 +  kVd)(1 +  Vd) mod p2.

This simplifies to (1 +  v^d)k+1 =  1 +  (k +  1)v^d mod p2, because p | kd due 

to p | d and p2 =  (p) .

From this claim, it is immediate that (1 +  v^d)p =  1 mod p2, but (1 +  

\fd)v-1 =  1 +  (p — 1)v^d =  1 mod p2. Therefore, the order of 1 +  \fd is 

equal to p in (O/p2)*.

Finally, we check that these two generators are sufficient. The order of 

the direct product of (g) and (1 +  v̂ d) equals p(p — 1). This matches the 

order of (O/p2)*), since it equals $ (p 2) =  N(p2) — N(p) =  p2 — p =  p(p — 1).

Next, we examine the remaining case p = 2 .  Since oI(p2) =  N(p2) — 

N(p) =  22 — 2 =  2 (which is a prime number), we deduce that (O/p2)* 

is a cyclic group with 2 elements. One such generator is 1 +  \fd, because

30



1 +  v^d =  1 and (1 +  v^d)2 =  1 +  2v^d+ d2 =  1 mod p2. The last congruence 

follows from 2 | d and p2 =  (2).

(3) First, suppose that p is odd.

Since ^  : (Zp2)* ^  (O /p3)* defined by ^(a) =  a is an injective group 

homomorphism, we see that if we set (Zp2 )* =  (g), then (g) is a cyclic sub­

group of (O /p3)* having order |(Zp2)*| =  p(p — 1). (Thus, (g) =  Zp(p-1) =  

Zp x Zp-1.)

Next, we construct a second cyclic subgroup of order p. By the Binomial 

Theorem,

(1 +  Vd)p =  1 +  pVd +  1p(p — 1)Vd +  ... +  (Vd)p.

Reducing modulo p3 and noting that p =  (p, v^d), we find that (1 +  v^d)p =  1 

mod p3. Hence, 1 +  V d  has order p in (O /p3)*.

We check that these generators is sufficient. The order of the direct 

product of (g) and (1 +  -\/d) equals p2(p — 1). This matches the order of 

(O /p3)*, since it equals oI(p3) =  N(p3) — N(p2) =  p3 — p2 =  p2(p — 1).

Finally, we examine the remaining case p = 2 .  Since oI(p3) =  N(p3) — 

N(p2) =  23 — 22 =  4, we deduce that (O /p2)* has order 4. In fact, it is a 

cyclic group.

If d =  3 mod 4, then V d  is a generator, because (v^d)2 =  d =  1 mod p3, 

but (v^d)4 =  1 mod 4 and thus (v^d)4 =  1 mod p3, since p3 | (4).
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If d =  2 mod 4, then 1 +  \ fd  is a generator, because (1 +  v^d)2 =  (1 +  

d) +  2Vd =  1 mod p3, but (1 +  Vd)4 =  1 +  4Vd +  6d +  4dVd +  d2 =  1 mod 

4 and thus (1 +  v^d)4 =  1 mod p3.

□

We next investigate higher powers of p. This has to be handled in three 

cases, depending on which rational prime p lies above: 2, 3, or any p > 5. 

We first consider the third case, as this is the easiest case to address. (The 

theorems addressing the other two cases are proved in collaboration with 

Brian Sittinger.)

T h eo rem  14. Suppose that p lies above a ramifying rational prime p > 5. 

Then for any m > 2,

(1) (O /p2m)* =  (g) x (1 +  Vd) =  (Zp-1 x Zpm -1 ) x Zpm, 

where g is a primitive root modulo pm.

(2) (O /p2m+1 )* =  (g) x (1 +  Vd) =  (Zp-1 x Zpm) x Zpm, 

where g is a primitive root modulo pm+1.

Proof. Since ^ 1 : (Zpm)* ^  (O /p2m)* defined by ^ 1(a) =  a is an injective 

group homomorphism, we see that if we set (Zp )* =  (g^ then (g) is a 

cyclic subgroup of (O /p2m)* having order |(Zpm)*| =  pm-1(p — 1). (Thus, 

(g) =  Zpm-1(p-1) =  Zpm - 1 x Zp-1.)
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Similarly, ^ 2 : (Zpm+1 )* ^  (O /p2m+1)* defined by ^ 2(a) =  a shows that 

(g) is a cyclic subgroup of (O /p2m+1)* having order pm(p — 1).

Using the same techniques from Lemma 1-3 (from the section about the 

inert case), one can check that the order of 1 +  pw in either (O /p2m)* and 

(O /p2m+ 1)* equals pm-1, and that (1 +  pw) f  (g) =  {1 }. Hence, we are 

justified to consider the direct product (g) x (1 +  v^d).

In the case of (O /p2m)*, note that

$ (p 2m) =  N (p2m) — N (p2m-1) =  p2m — p2m-1 =  p2m-1(p — 1).

This matches the order of (g) x (1 +  -\/d), and we can conclude that 

(O /p2m)* =  (g) x (1 +  Vd).

Similarly, we have (O /p2m+1)* =  (g) x (1 +  Vd).

□

Next, we address the case where p lies above (3). Observe that 3|d, but 

32 f d. So, d is an integer congruent to 1 or 2 mod 3. It turns out that the 

group structure of (O /pn)* depends on d in the aforementioned manner.

T h eorem  15. Suppose that p lies above the ramifying rational prime 3. 

Then for any m >  2:

(1) If f  =  1 mod 3, then
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(a) (O /p2m)* =  (g) x (1 +  Vd) =  (Z2 x Z3m-1) x Z3m, 

where g is a prim itive root modulo 3m.

(b) (O /p2m+1)* =  (g) x (1 +  Vd) =  (Z2 x Z3m ) x Z3m , 

where g is a prim itive root modulo 3m+1.

(2) I f  f  =  2 mod 3, then fo r  some a  G O:

(a) (O /p2m)* =  (g) x (1 +  3Vd) x (a) =  (Z2 x Z3m-1) x Z3m-1 x Z3, 

where g is a prim itive root modulo 3m.

(b) (O /p2m+1)* =  (g) x (1 +  3Vd) x (a) =  (Z2 x Z3m) x Z3m-1 x Z3, 

where g is a prim itive root modulo 3m+1.

Proof. Since ^ 1 : (Z3m)* ^  (O /p2m)* defined by ^ 1(a) =  a is an injective 

group homomorphism, we see that if we set (Z 3m )* =  (g), then (g) is a 

cyclic subgroup of (O /p2m)* having order |(Z3m)*| =  2 ■ 3m-1. (Thus, (g) =  

Z 2̂3m-1 =  Z2 x Z^m-1 .)

Similarly, ^ 2 : (Z3m+1 )* ^  (O /p2m+1)* defined by ^ 2(a) =  a shows that 

(g) is a cyclic subgroup of (O /p2m+1)* having order 2 ■ 3m. (Thus, (g) =  

Z 2-3m =  Z2 x Z^m .)

Now, it remains to address the remaining cyclic subgroups.

(1) First of all, suppose that f =  1 mod 3. We claim that 1 +  V d  has order 

3m in both (O /p2m)* and (O /p2m+1)*.
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By the Binomial Theorem, for any positive integer k,

3 k

(1 + V T  =  1 +  £  j c V e

Letting k =  m, we find that (1 +  v^d)3™ =  1 mod p2m+1 since V d  G p and 

3m G p2m. Moreover, this implies that (1 +  Vd)3™ =  1 mod p2m. Therefore, 

the order of (1 +  v^d) divides 3m in both cases.

Next, we let k =  m — 1 and rearrange terms to find that

3m -1r /qm -h  - r /qm -h  - 3__ /qm-1\
(1 +  Vd)3™-1 =  [1+ ^  2 j  d  +  [3m-1 +  (  3 J  d  Vd+  j  J  (Vd)j .

Now, we analyze each term. First of all, since f =  1 mod 3, we have 

d =  3(1 +  3 j) for some j  G N. In particular, d G p2\p 3.

Moreover, since V d  G p and 3 G p2, we have the following:

• 1 +  C T 1)^ =  2 ‘ 3m(3m-1 — 1)(1 +  3 j) G p2m\p 2m+1.

• 3m-1 +  (3™ 1)d Vd G p2m-1\p 2m, since this quantity equals 

3m-1[1 +  1 (3m-1 — 1)(3k-1 — 2)(1 +  3j)]Vd, and

x := 1 +  2(3m-1 — 1)(3k-1 — 2)(1 +  3 j) is not divisible by 3, because 

x =  2 mod 3.
om-1

• E (  ■ ) G p2m+2.
J=4 ^ j  /

Hence, it follows that (1 +  v^d)3™ 1 =  1 +  a  +  0 mod p2m+2 for some 

nonzero a  G p2m-1\p 2m and 0 G p2m\p 2m+1.
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Thus, (1 +  Vd)3™ 1 =  1 mod p2m and therefore (1 +  Vd)3™ 1 =  1 mod 

p2m+1 as well. So, we can conclude that the order of 1 +  v d̂ in both (O /p2m)* 

and (O /p2m+1)* equals 3m.

(2) Now, suppose that f  =  2 mod 3.

For one generator, we claim that the order of 1 +  3v^d equals 3m-1. By 

the Binomial Theorem, (1 +  3Vd)3™ 1 =  1 +  3mVd mod p2m+1, since all 

other terms are contained in p2m+1. Moreover, since Vd  G p and 3 G p2, it 

follows that 3mVd G p2m+1. Thus, (1 +  3Vd)3™ 1 =  1 mod p2m+1, and the 

order of 1 +  3Vd in (O /p2m+1)* (and thus (O /p2m)*) divides 3m-1.

A similar calculation shows (1 +  3v^d)3™ 2 =  1 +  3m-1v d̂ mod p2m. How­

ever, 3mVd G p2m-1. Therefore, (1 +  3Vd)3™ 2 =  1 mod p2m (and also 

modulo p2m+1). So, the order of 1 +  3Vd in both (O /p2m)* and (O /p2m+1)* 

equals 3m-1.

Note that (1 +  3v^d) f  (g) =  {1 }, since as in previous cases any positive 

power of 1 +  3v^d less than 3m-1 has a nontrivial Vd  coefficient.

For the other generator, given any integer k > 4, we need to find a G O =1 

such that a 3 =  1 mod pk. By direct calculation, when k =  4, we can let 

a =  1 +  v̂ d. For k > 4, we inductively invoke Hensel lifting. Suppose we 

have found a G O=1 such that a 3 =  1 mod pk. Letting f  (x) =  x3 — 1, note 

that f '(x )  =  3x2. Although f '(a )  G p, f  (a) G pk and f '(a )  G p2\p3 (since
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a is a unit modulo pk). Thus, indeed f  (a) G g cd (f'(a ),p k) =  pk-2 and we 

can lift a to a solution to x3 =  1 mod pk+1.

It remains to show (a) f  ((1 +  3v^d) f  (g)) =  {1 }. Again, we prove 

this inductively on k > 4. This is true for k =  4, since 1 +  Vd  and 

(1 +  v^d)2 =  1 +  2\fd mod p4 are not in (1 +  3v^d)  (g) (due to having 

coefficients \fd not divisible by 3). Assume that the claim is true for pk: 

There exist x ,y  G Z  such that (x +  yv^d)3 =  1 mod pk with 3 f y. Then, 

x +  y\fd lifts to a solution modulo pk+1 of the form (x +  yv^d) +  (r +  sv^d) 

where (r +  sv^d) G pk. Then, 3 | s and thus 3 f (y +  s), thereby establishing 

the inductive step.

□

Finally, we address the case where p lies above the ramifying rational 

prime 2. Not so surprisingly, this is the most involved case. Recall that 

(2) ramifies iff d =  2, 3 mod 4. This gives some indication how the group 

structure of (O /pn)* behaves. However, when d =  3 mod 4, it turns out 

that we have to investigate modulo 8, in which case d =  3 or 7 mod 8.

Theorem  16. Suppose that p lies above the ramifying rational prime 2. 
/

(1 +  2Vd) x (1 +  Vd) =  Z 2 x Z 4 if d =  2 mod 4,
(O /p4)* =  <

(1 +  2Vd) x (Vd) =  Z 2 x Z 4 if d =  3 mod 4.
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/

(—1) x (1 +  2Vd) x (1 +  Vd) =  Z 2 x Z 2 x Z 4 if d =  2 mod 4,
(O /p5)* =  <

(—1) x (1 +  2Vd) x (Vd) =  Z 2 x Z 2 x Z 4 if d =  3 mod 4. 

Moreover, for any m > 3, we have the following:

(1) If d =  2 mod 4, then

(a) (O /p 2m)* =  (—1) x (5) x (1 +  Vd) =  Z 2 x Z 2™ -2 x Z 2™.

(b) (O /p2m+1)* =  (—1) x (5) x (1 +  Vd) =  Z 2 x Z 2rn-1 x Z 2™.

(2) If d =  7 mod 8, then for some a G O

(a) (O /p 2m)* =  (a) x (5) x (1 +  2Vd) =  Z 4 x Z 2™-2 x Z 2™-1.

(b) (O /p2m+1)* =  (a) x (5) x (1 +  2Vd) =  Z 4 x Z 2™-1 x Z 2™-1.

(3) If d =  3 mod 8, then for some a G O

(a) (O /p 2m)* =  (—1) x (1 +  2Vd) x (a) =  Z 2 x Z 2™-1 x Z 2™-1.

(b) (O /p2m+1)* =  (—1) x (1 +  2Vd) x (a) =  Z 2 x Z 2™-1 x Z 2™.

Proof. We first consider (O /p4)*. Since p4 =  (4), it follows that (1 +  

2Vd) 2 =  1 mod p4. Thus, 1 +  2Vd has order 2 in (O /p4)*. Next, if 

d =  2 mod 4, we have (1 +  Vd ) 2 =  (1 +  d) +  2Vd =  1 mod p4, but 

(1 +  Vd )4 =  1 mod p4; so 1 +  Vd has order 4 in (O /p4)*. If d =  3 mod 4, 

we have (v^d) 2 =  d =  1 mod p4, but (v^d)4 =  1 mod p4; so Vd  has order 4 

in (O /p4)*. For both cases of d, both (v^d) 2 and (1 +  v^d) 2 are not equal
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to 1 +  2\fd in (O/p4)*. This, combined with N(p4) =  8 gives the desired 

group structure for (O/p4)*.

Next, we consider (O/p5)* Plainly —1 is an element of order 2 for both 

d =  2, 3 mod 4. Moreover, 1 +  2\fd has order 2, because when d =  2 mod 

4, (1 +  2Vd)2 =  1 +  4Vd +  4d =  1 mod p5 (since Vd G p and 2 G p2), 

and when d =  3 mod 4, (1 +  2v^d)2 =  1 +  4v^d(1 — /̂d) =  1 mod p5 (since 

1 — Vd  G p and 2 G p2).

Now, we find a generator having order 4. When d =  2 mod 4, we use 

1 +  Vd, because (1 +  Vd)2 =  (1 +  d) +  2Vd =  1 mod p5, but (1 +  Vd)4 =  

1 +  (6d +  d2) +  4Vd(1 +  d) =  1 mod p5 (since 8 | (6d +  d2)). When d =  3 

mod 4, we use /̂d, because (v^d)2 =  d =  1 mod p5, but (v^d)4 =  1 mod 

p5. In both cases, the cyclic subgroups generated by this element of order 

4 has trivial intersections with those generated by —1 and 1 +  2v^d.

Finally, since the order of the direct product of these three cyclic groups 

equals N(p5) =  16 for both cases of d, we have the desired group structure 

for (O/p5)*.

Now, we consider (O/pn)* for n > 6.

(1) Suppose that d =  2 mod 4.
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Since (Z2™)* c  (O /p2m)* (as before), and (Z2™)* =  (—1) x (5) =  Z2 x 

Z2™-2, we have our generators for Z2 x Z2™-2. Similarly, since (Z2™+1 )* c  

(O /p2m+1)*, —1 and 5, respectively, are the generators for Z2 x Z2™-1.

It remains to find an element of order 2m for both (O /p2m)* and (O /p2m+1)*. 

We claim that one such element is 1 +  -\/d. We prove this by induction on 

m > 3 by showing

(A) (1 +  Vd)2™ =  1 mod p2m+1, and

(B) (1 +  Vd)2™ 1 =  1 +  y =  1 mod p2m for some y G p2m-1\p 2m.

(Note how these readily imply that (1 +  v^d)2™ =  1 mod p2m, and

(1 +  Vd)2™ 1 =  1 mod p2m+1 as well.)

For m =  3, since V d  G p and 2 G p2, we have modulo p7

(1 +  Vd)23 =  1 +  8Vd +  28(Vd)2 +  56(Vd)3 +  70(Vd)4 +  0 

=  1 +  28(Vd)2 +  70(Vd)4 

=  1 +  7 ■ 2(Vd)2(2 +  5d)

=  1 +  7 ■ 2(Vd)2(2 +  5(2 +  4k)) since d =  2 +  4k for some integer k 

=  1 +  7 ■ 23(Vd)2(3 +  5k)

=  1 mod p7.

40



This establishes (A). For (B), working modulo p6 yields

(1 +  Vd)22 =  1 +  4Vd +  6(V d)2 +  4(V d)3 +  (Vd)4 

=  1 +  4Vd +  6( Vd)2 +  (Vd)4 

=  1 +  4v^d since d =  2 mod 4 

=  1 mod p6.

Moreover, 4v^d G p5\p6, thereby finishing the inductive step.

Now we assume the claim is true for m and show it is true for m + 1 :

To show (A), by the inductive hypothesis, (1 +  v^d)2™ =  1 mod p2m+1. 

Thus, we can write (1 +  v^d)2™ =  1 +  a  for some a  G p2m+1.

Then, (1 +  Vd)2™+1 =  (1 +  a )2 =  1 +  2a +  a 2. Reducing modulo p2m+3 

immediately yields (1 +  v^d)2™+1 =  1 mod p2m+3.

To establish (B), by the inductive hypothesis, (1 +  v^d)2™ 1 =  1 +  Y mod 

p2m for some y  G p2m-1\p2m. So, we have (1 +  Vd)2™ 1 =  1 +  y  +  8 for 

some 8 G p2m. Then, (1 +  Vd)2™ =  (1 +  y  +  8)2 =  1 +  2y  =  1 mod p2m+2, 

because 2y  G p2m+1\p2m+2, as required. This concludes the induction.

Since no nontrivial power of 1 +  \fd is an integer, we conclude that (1 +  

Vd) f  ((—1) x (5)) =  {1 } . Finally, since the order of (—1) x (5) x (1 +  Vd) 

equals N(pn) with n > 6, we have the desired unit group structure result.
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(2) Now, suppose that d =  7 mod 8.

As in the proof of (1), we know that 5 has order 2m-2 (as one of the 

generators of (Z2™)*).

It remains to find an element of order 2m-1 for both (O /p2m)* and 

(O /p2m+1)*. We claim that one such element is 1 +  2v^d. We prove this by 

induction on m > 3 by showing

(A) (1 +  2Vd)2™ 1 =  1 mod p2m+1, and

(B) (1 +  Vd)2™ 2 =  1 +  y =  1 mod p2m for some y G p2m-1\p 2m.

For m =  3, since (v^d — 1) G p and 2 G p2, we have modulo p7

(1 +  Vd)23-1 =  1 +  4(2Vd) +  6(2Vd)2 +  4(2Vd)3 +  (2Vd)4

=  1 +  16d +  8( Vd — 1)

=  1 mod p7.

This establishes (A). For (B), working modulo p6 =  (8) yields

(1 +  Vd)23-2 =  1 +  2(2Vd) +  (2Vd)2

=  1 +  4Vd(Vd — 1)

=  1 mod p6.

42



Moreover, 4v^d(v^d — 1) G p5\p6, thereby finishing the inductive step.

Now we assume the claim is true for m and show it is true for m + 1 :

To show (A), by the inductive hypothesis, (1 +  2v^d)2™ 1 =  1 mod p2m+1. 

Thus, we can write (1 +  2v^d)2™ 1 =  1 +  a  for some a  G p2m+1.

Then, (1 +  2Vd)2™ =  (1 +  a ) 2 =  1 +  2a +  a 2. Reducing modulo p2m+3 

immediately yields (1 +  2Vd)2™+1 =  1 mod p2m+3.

To establish (B), by the inductive hypothesis, (1 +  2v^d)2™ 2 =  1 +  y  mod 

p2m for some y  G p2m-1\p2m. So, we have (1 +  2Vd)2™ 1 =  1 +  y  +  8 for 

some 8 G p2m. Then, (1 +  2Vd)2™ =  (1 +  y  +  8)2 =  1 +  2y  =  1 mod p2m+2, 

because 2y  G p2m+1\p2m+2, as required. This concludes the induction.

For the third generator, we find an element of order 4. To make sure 

the cyclic subgroup generated by this element has trivial intersection with 

those generated by 5 and 1 +  2v^d, we make sure that its square equals —1. 

Hence, it suffices to solve a 2 =  —1 mod pk for k > 6. We actually begin with 

k =  4, because we can let a  =  \fd. For k > 4, we inductively invoke Hensel 

lifting. Suppose we have found a  G O such that a 2 =  — 1 mod pk. Letting 

f (x )  =  x 2 — 1, note that f '(x )  =  2x. Then, f ( a )  G pk and f '( a )  G p2\p3 

(since a  is a unit modulo pk). Thus, indeed f  (a) G g cd ((f;(a )) ,p k) =  pk-2 

and we can lift a  to a solution to x 2 =  — 1 mod pk+1.
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Now, it is routine to show that the order of (a) x (5) x (1 +  2v^d) equals 

N(pn) for n > 6.

(3) Suppose that d =  3 mod 8.

Clearly, —1 has order 2 and 1 +  2v^d has order 2m-1 (using the same proof 

as in (2)).

It remains to find a generator for Z2™-1 and Z2™, depending on m being 

even or odd, respectively. Since ± 5  has order 2m-2 and 2m-1 (as m is even 

or odd), a generator a  can be constructed to satisfy a 2 =  — 5 mod pn with 

n > 6. (Note that this cyclic subgroup generated by a  will necessarily have 

trivial intersection with those generated by —1 and 1 +  2v^d.)

Hence, it suffices to solve a 2 =  — 1 mod pk for k > 6. We begin with 

k =  6, because we can let a  =  4+v^d, because (4+v^d)2 =  16+8v^d+d =  —5 

mod 8. For k > 6, we inductively invoke Hensel lifting. Suppose we have 

found a  G O such that a 2 =  —5 mod pk. Letting f  (x) =  x2 — 1, note that 

f '(x )  =  2x. Then, f  (a) G pk and f ; (a) G p2\p3 (since a  is a unit modulo 

pk). Thus, indeed f ( a )  G g c d ((f '(a )) ,p k) =  pk-2 and we can lift a  to a 

solution to x 2 =  —5 mod pk+1.

As before, the order of (—1) x (1 +  2Vd) x (a) equals N(pn) for n > 6.

□
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4. P rim itive  R o o ts  in Q u a d ra tic  Number Rings

As an application of our work, we give a quadratic number ring general­

ization of primitive roots modulo m from Z in this section.

Definition 12. Fix an algebraic number ring O and an ideal a in O . Then 

we say that a G O is a p r im itiv e  ro o t modulo a iff gcd((a), a) =  (1) and 

a has order $(a) in (O /a)* .

Plainly, a prim itive root modulo a exists if and only if (O/a)* is a cyclic 

group. The following theorem catalogs when primitive roots exist.

Theorem  17. Suppose that O is a quadratic number ring. Then, primitive 

roots exist modulo:

(1) pn for any prime ideal p lying above a split odd rational prime with 

n G N, or lying above the split rational prime 2 with n =  1, 2.

(2) (p) for any inert rational prime p.

(3) pn for any prime ideal p lying above a ramifying odd rational prime 

with n =  1, 2, or lying above the ramifying rational prime 2 with 

n =  1, 2, 3.

(4) If 2 splits in O with p lying above 2:

(a) p(q), where q is an inert odd rational prime.
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(b) pqn, where q lies over a ramifying odd rational prime and n =  

1, 2.

(c) pqn, where q lies over a split odd rational prime and n G N.

(5) If 2 is inert:

(a) (2)pn, where p lies over a split odd rational prime =  3 and 

n G N.

(b) (2)pn, where p lies over a ramifying odd rational prime =  3 and 

n =  1, 2.

(c) (6) where 3 is also inert.

(6) If 2 ramifies in O with p lying above 2:

(a) pqn, where q lies over a split odd rational prime and n G N.

(b) p(q), where q is an inert odd rational prime.

(c) pqn, where q lies over a ramifying odd rational prime and n =  

1, 2.

Proof. Facts (1)-(3) follows immediately from our unit group structure the­

orems, while facts (4)-(6) follow from these same theorems, along with the 

fact that Z m x Zn is cyclic if and only if gcd(m, n) =  1. □

We give two corollaries of this theorem. The first of these gives the 

existence of primitive roots modulo y in the Gaussian integers (also given 

in Cross [1]).
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C oro llary  1. In Z[i], a primitive root modulo (y ) exists i f  and only if

Y =  nn, (1 +  i)nn, q, (1 +  i)q, or (1 +  i)k, where n is a factor o f an rational 

prime p =  1 mod 4, q =  3 mod 4 is a rational prime, n G N, and k =  1, 2.

Proof. This follows immediately from the previous theorem, along with the 

characterization of primes in Z[i]: A rational prime p is inert in Z[i] if p =  3 

mod 4, split in Z[i] if p =  1 mod 4, and ramifies if p =  2. □

The second corollary gives a companion result to the case of the Eisenstein 

integers Z[w].

C oro llary  2. In Z[w], a primitive root modulo (y) exists i f  and only if

Y =  nn, 2nn, q, or (1 — w)k, where n is a factor o f an rational prime p =  1 

mod 3, q =  2 mod 3 is a rational prime, n G N, and k =  1, 2 .

Proof. This follows immediately from the previous theorem, along with the 

characterization of primes in Z[w]: A rational prime p is inert in Z[w] if 

p =  2 mod 3, split in Z[w] if p =  1 mod 3, and ramifies if p =  3. □
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5. Appendix: E is e n s te in  I n t e g e r s

R e m a rk : The results in this section can be found in more detail in a 

self-contained manner in Kutin’s masters thesis [5]. We leave this as an ap­

pendix, because this case provided (along with the results for the Gaussian 

integers) motivation on how to choose the generators in the general qua­

dratic number ring case. Any proofs that are written out in this section are 

left for contrast with their generalizations.

In this section, we consider the set of E isen ste in  in tegers Z[w] =  (a  +  

bw | a, b G Z }, where w =  e2ni/3 =  -1+2a/~̂  . Note that Z[w] too has similar 

arithmetic properties reminiscent of Z and Z[i], such as divisibility, primes, 

and being a PID (and UFD).

We now identify the prime numbers in Z[w].

P ro p o sitio n  2. Primes in Z[w].

(1) I f  p =  1 mod 3, then p =  nn fo r  some n G Z[w], and n and n are 

distinct primes in Z[w].

(2) I f  p =  2 mod 3, then p remains prime in Z[w].

(3) 3 =  —w2(1 — w)2, and 1 — w is prime in Z[w].

Proof. This follows directly from Theorem 6, noting that by quadratic reci­

procity ^— j  =  (p^ equals 1 iff p =  1 mod 3 and equals —1 iff p =  2 mod 

3. Alternately, a proof without using Theorem 10 may be found in [6]. □
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Much like in Z[i], we can do modular arithmetic in Z[w]. Since Z[w] is a 

PID, any ideal in Z[w] can be written in the form (y ) for some y  G Z[u]. 

Then, for fixed nonzero y G Z[w] we consider the quotient ring Z[w]/ (y ).

As in the cases for Z  and Z[i], we want to determine the unit structure 

of the quotients rings modulo an Eisenstein integer. Since Z[w] is a UFD, 

it suffices by the Chinese Remainder Theorem to find the unit structure of 

Z[w]/ (nn) for some prime n G Z[w].

We first give the equivalence classes of Z[w]/ (nn).

P roposition  3. The equivalence classes of Z[w] modulo a power of a prime 

are given as follows:

(1) If n is a factor of a rational prime p =  1 mod 3, then

Z[w ]/(nn) =  (0 ,1 , 2, ...,pn — 1}.

(2) If n is a rational prime p =  2 mod 3, then

Z[w ]/(pn) =  (a  +  bw|a, b =  0,1, 2, ...,pn — 1}.

(3) Z[w]/((1 — w)2m) =  (a  +  bw|a, b =  0,1, 2,..., 3m — 1}.

(4) Z[w]/((1 — u )2m+1) =  (a  +  bu|a =  0 ,1 ,..., 3m+1 — 1, b =  0 ,1 ,..., 3m — 1}.

Proof. (1) Suppose that n is a factor of a rational prime p =  1 mod 3. 

We first show that any x +  yw G Z[w] is equal to one of 0,1, ...,pn — 1 in
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Z[w]/(nn). To do this, we show that w is equal to one of 0,1,  ...,pn — 1 in 

Z[u]/ (nn).

First of all, nn =  a — bw for some a, b G Z. So, a =  bw mod nn. We claim 

that gcd(p, b) =  1. If this were not the case, then p | b. Since p =  nn, it 

follows that n | b. Hence, n | a and thus n | a =  a. Since gcd(n,n) =  1 it 

follows that p | a. Therefore, p | (a — bw) =  nn. This yields a contradiction, 

because n f n.

Since gcd(p, b) =  1, there exists z G Z such that bz =  1 mod pn. Then, 

az =  (bw)z =  w mod pn (and thus we have reduced w to an integer in 

Z[w]/ (nn)). Finally, x +  yw =  x +  y ■ az mod nn which can be equivalent to 

one of 0 ,1 , ...,pn — 1 by reducing modulo pn and noting that n | p.

Now we show that these equivalence classes are distinct. Suppose that 

a =  b in Z[w]/(nn) for some a, b G ( 0 , 1 , . . .  ,pn — 1}. Then, nn | (a — b) and 

by conjugation nn | (a — b). Since gcd(n,n) =  1, it follows that (nn)n =  

pn | (a — b). Hence, a =  b, since a, b G ( 0 , 1 , . . .  ,pn — 1}.

(2) Suppose that p =  2 mod 3. Given x +  yw G Z[w], reducing x and y 

modulo pn yields an element in one of the desired equivalence classes. Now, 

suppose that a+bw =  c+dw G Z[w]/(pn) for some a, b, c, d G (0,1,  ...,pn—1}. 

Then, both pn | (a — c) and pn | (b — d), and thus a =  c and b =  d, due to 

a, b, c, d G (0,1,  ...,pn — 1}.
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(3) This is proved in the same manner as (2).

(4) Given x+yw  G Z[w], reducing x and y modulo 3m+1 yields x+yw  =  c+dw 

mod 3m+1, where c, d G (0 ,1 ,..., 3m+1 — 1}.

We want to reduce d further; by the Division Algorithm, d =  q ■ 3m +  k, 

for some q G Z>0 and k =  (0 ,1 , . . .  3m — 1}. Then, this yields c +  dw =

(c +  d — k) +  kw mod a 2m+1. By reducing c +  d — k modulo 3m+1 as needed, 

we can write x +  yw in the required form.

Now, suppose a+bw =  c+dw in Z [w ]/(a2m+1) for some a, c G (0 ,1 ,..., 3m+1 — 

1} and b, d G (0 ,1 ,..., 3m — 1}. Then, 3m|(b — d) and since b, d <  3m, we 

have b =  d. Thus, we obtain a =  c in Z [w ]/(a2m+1), which is equivalent 

to 3m(1 — w)|(a — c). Then, we have a — c =  3m ■ k for some k G Z. This 

gives us (1 — w)|k and thus (1 — w)|k. Therefore, 31k2, and so 31k. Hence, 

3m+11 (a — c), which immediately yields a =  c. □

Now, we can identify the equivalence classes that are units in their re­

spective quotient rings.

P roposition  4. Using the equivalence classes in the previous theorem:

(1) If  n is a factor of a rational prime p =  1 mod 3, then a G (Z[w ]/(nn))* 

if and only if gcd(a,p) =  1

(2) If  n is a rational prime p =  2 mod 3, then a +  bw G (Z[w]/(pn))* if and 

only if at least one of a and b is relatively prime to p .
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(3) a +  bw G (Z[w]/((1 — w)n))* i f  and only i f  a =  —b mod 3.

Proof. Fix 0 , y G Z[w]. We claim that 0  is a unit in Z[w]/(y) if and only if 

gcd(0 , Y) =  1.

To show this, note that 0  is a unit in Z[w]/(y) if and only if 0$  =  1 

mod y for some 5 in Z[w]. This is true if and only if 0$ +  nY = 1  for some 

n G Z[w]. This is equivalent to saying that gcd(0,Y) =  1 since Z[w] is a 

UFD.

Now, we can quickly prove this theorem.

(1) By the claim, a G Z[w]/(nn) is a unit if and only if gcd(a,nn) =  1. 

However, gcd(a,nn) =  1 is equivalent to gcd(a,n) =  1 and thus gcd(a,p) =  

1 since p =  nn and gcd(n, n) =  1.

(2) By the claim, a +  bw G Z[w]/(pn) is a unit if and only if gcd(a +  bw,pn) =  

1. However, p f (a +  bw) if and only if p f a or p f b.

(3) By the claim, a +  bw G Z[w]/((1 — w)n) is a unit if and only if (1 — w) f 

(a +  bw). However, a+b  ̂ =  |((2a — b) +  (a +  bw)) is in Z[w] if and only if 

a =  —b mod 3. Thus, we need a =  —b mod 3.

□

This theorem gives us the following corollary which we will use in proving 

the group structure theorems below.

C oro llary  3. Using the notation as in the previous theorem:
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(1) I f  pi is a factor o f a rational prime p =  1 mod 3, then

|(Z[w]/(nn ))* | =  pn — pn-1.

(2) I f  n is a rational prime p =  2 mod 3, then

|(Z[w]/(pn))*| =  p2n — p2n-2.

(3) |Z[w]/((1 — w)n)|* =  3n — 3n-1.

R em ark : Note that this corollary agrees with the results that the $ ­

function would have given us in the case of the Eisenstein integers.

Now, we are ready to state and prove the unit group structure theorems. 

We start with the case that p splits.

T h eo rem  18. Suppose that n is an Eisenstein prime such that nn =  p fo r  

some rational prime p =  1 mod 3. Then,

(Z[w]/(nn))* =  (g) =  Zpn _p„ - i ,

where g is a generator fo r  (Zpn)*.

Proof. This follows immediately from Theorem 10. □

Now, we consider the case where p is inert.
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Theorem  19. Suppose that p =  2 mod 3 is an odd rational prime. Then, 

there exists a G Z  and 0 G Z[w] such that

n_1
(Z[w]/(pn))* =  (1 +  pw) x (a) x (0p ) =  Z pn-i x Zpn-i x Zp2-1 .

Proof. This is proved in exactly the same manner as Theorem 11. □

Since 2 is also inert in Z[w], we state its own structure theorem.

Theorem  20. Group structure for  (Z[w ]/(2n))*.

(1) (Z[w]/(2))* =  (w) =  Z 3 .

(2) (Z [w ]/(22))* =  (1 +  2w) x (—w) =  Z 2 x Z 6.

(3) For n >  4, (Z[w]/(2n))* =  (1 +  2w) x (1 +  4w) x (—w)

=  Z 2n- 1  x Z 2n-2 x Z 6.

Proof. This is proved as we proved Theorem 12. The main difference is that 

w is an element of order 3 for any of the unit groups (Z[w ]/(2n))* (so no 

Hensel lifting is needed). □

Finally, we consider the ramifying case; this occurs for (3) =  (1 — w)2.

Theorem  21. Group structure of (Z[w]/((1 — w)n))*.

(1) (Z[w]/((1 — w)))* =  (—1) =  Z 2 .

(2) (Z[w]/((1 — w)2))* =  (—w) =  Z 6.

(3) (Z[w]/((1 — w)3))* =  (1 +  3w) x (—w) =  Z 3 x Z 6.
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(4) (Z[w]/((1 — w)2m))* =  (1 +  3w) x (g) x (—w) =  Z 3m-i x Z 2̂3m-i x Z 3, 

where g is a generator for  (Z 3m )*.

(5) (Z[w]/((1 — w)2m+1))* =  (1 +  3w) x (g) x (—w) =  Z 3m-i x Z 2̂ 3̂  x Z 3, 

where g is a generator for  (Z 3m+i)*.

Proof. This follows immediately from Theorem 15 part 1 (since d =  —3 and 

thus d =  2 mod 3). □
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