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Control and Optimization of the Burgers IVP and applications to Traffic 

Flow

by Mayra Emperatriz Sahagun 

A b s tra c t

Conservation laws are of fundamental importance to de­

scribing the physical world. Burgers equation is a funda­

mental partial differential equation that is a conservation 

law. Burgers equation with viscosity u  > 0 is the following,

A good example where Burgers equation is applicable is 

in the area of traffic, where the main variables are density, 

traffic speed, and velocity. The density, and velocity are the 

main variables expressed as a function of x  2  R and time 

t  > 0. Our goal is to approximate solutions to the initial 

value problem (IVP) for Burgers equation in the presence of 

additional external forces and compare our numerical simula­

tions to real (actual) data collected from the Caltrans Perfor­

mance Measurement system (PeMS). The data comes from
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different sensors along the 101 South freeway from Woodland 

Hills to Universal Studio and consists of collected informa­

tion such as traffic speed, velocity, and vehicle occupancy. 

The main goal in this thesis is to design a numerical model 

in terms of the collected traffic information along with a cor­

responding optimization problem whose solutions will help 

to improve traffic conditions.

This problem is reduced to minimizing an integral quan­

tity. Specifically, we are studying the following quantity

where u ( x , t )  are solutions to Burgers equation, u d(x , t )  rep­

resents our desired state and u*(x,t) represents the external 

forces that are added to the system. The main goal for min­

imizing this integral quantity is to achieve close solutions to 

our desired state. Choosing our desired state ud(x,t), then 

computing the corresponding external forces u*(x, t), and so­

lutions u(x, t) to the forced Burgers equation helps us achieve 

our main goal -  improving traffic conditions on the 101 South 

freeway.
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1. I n t r o d u c t i o n

Burgers equation is a fundamental partial differential equation that is a 

conservation law named after Johannes Martinus Burgers (1895-1981). It 

occurs in various areas in applied mathematics, such as modeling of gas dy­

namics, traffic flow, and captures formations of shock and of rarefied waves. 

This equation arises as a one dimensional simplification of the three dimen­

sional system of equations that govern fluid dynamics. That is, Burgers 

equation is a simplified form of the Navier-Stokes equation. Elements of 

fluid flow and gas dynamics include compressibility, pressure, and velocity. 

As an example, gases are compressible fluids, unlike viscous fluids that are 

incompressible, i.e., liquids are incompressible fluids. Another example in­

cludes the velocity fields of moving gases that can be analyzed as the flow 

of air over an airplane wing or over a surface of an automobile. Burgers 

equation is a model for incompressible fluid flow and the main topic of this 

manuscript.

The initial value problem (IVP) to Burgers equation is,
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as presented in its viscid form. The function u(x ,t), is a function of two 

variables, x 2 R and t > 0. Another important concept of Burgers equation 

is viscosity, represented by the parameter u > 0. Viscosity is the property 

of a fluid that resists the force tending to cause the fluid to flow. As an 

example, imagine a styrofoam cup with a hole at the bottom of the cup. 

If we pour honey into the cup we will find that the cup drains very slowly. 

This is because of honey’s viscosity i.e., resistance is large compared to 

other liquid’s viscosity’s. If we were to fill the same cup with water, we 

will see that the water will drain much more quickly given its low viscosity. 

Burgers equation is studied in its viscous and inviscid forms, which depend 

on whether the effects of viscosity are considered i.e., ^  > 0 or ^  =  0.

The inviscid Burgers equation is defined by,

i.e., no viscosity is present.

The viscous Burgers equation can be linearized by the Cole-Hopf trans­

formation as was seen in [1,7]. In the viscous Burgers equation, x is the 

position; t is the time; u(x ,t) is a function given by its velocity, which is
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furthermore related to the fluid density; and, u > 0 is the viscosity param­

eter.

The modeling of traffic through Burgers equation is important because 

it can assist with traffic patterns and the prediction of an ideal departure 

time. We work with Burgers equation, a nonlinear conservation law that is 

used to model traffic flow. We are interested in the initial value problem 

of the Burgers equation, which can be solved analytically under certain 

circumstances. Our goal for this thesis is to stimulate traffic flow using 

numerical methods and to compare our methods to actual (real) data.

We will first introduce some important terminology and definitions that 

are used throughout this thesis.

1.1. N o ta tio n  an d  Term inology. The following notation will be used 

throughout this thesis. For the sake of simplicity, we will use subscripts to 

denote partial differentiation,

where the dependence on (x,t) will be omitted when it is clear from the 

context. The symbol /  will be used to denote integration on the real line, 

suppressing the limits of integration when it is appropriate to do so.
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Many of the definitions can be found in standard Functional analysis 

texts, for instance see the classical Rudin analysis texts or [6]. For the 

context of this thesis we will be working with function spaces that have 

important structures, namely one that admits an inner product between 

functions. We remind the reader the definition of an inner product space.

D efin ition  1. A n  i n n e r  p r o d u c t  sp a ce  is a vector space X  with an inner  

product defined on X . A n  inner product on X  is a mapping of X  x  X  into 

the scalar field K  of X  such that, fo r  every pair o f vectors x  and y  there is 

associated a scalar which is written  (x,y) and is called the inner product of 

x and y, such that V vectors x , y , z  E X  and scalars a  E K  we have,
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Next we will take a look at what it means for our function to be in the 

space L2(R).

D efin ition  2. The L 2(R) space is the space of square-integrable functions  

fo r  which the integral o f the square of the absolute value is finite. Hence, i f  

f  is a measurable function such that

then f  is in the L2(R) space.

The following remark is another way to re-write the above definition that 

will be necessary for this thesis.

R em ark  1. We are interested in R valued functions. Let L 2( I ) =  { f 2 

M  s.t. f  : I  !  K  and f  f  |f  (x)|2 dx < 1 }, where the domain I  C R and 

K  =  R. In this thesis we will consider I  =  [0,1].

The space L2(R) admits an inner product given by the next definition.

D efin ition  3. The L2(R) inner product is defined as
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The inner product presented above satisfies the conditions presented in 

definition 1. The ability to define an inner product allows us to discuss 

when functions are orthogonal or perpendicular.

D efin ition  4. Given an inner product on a vector space V , we say that two 

vectors v , u  2 V  are o r t h o n o r m a l  i f  their inner product is zero and their 

norm with respect to inner product is unitary.

Mathematically, orthonormal means we have a collection {vi, ••  ,vk} C 

H, where H  is a Hilbert space (definition 6), such that when i =  j  then 

(vj, Vj) =  0. That is, the vectors are mutually perpendicular and are require 

to have length one hence, \ J |(vi ,vi)| =  1 when i =  j.

The L2(R) space as well as L 2( I ) forms a Hilbert space with an inner 

product as given in definition 3. We now recall the definition of a Hilbert 

space for which we need to know the definition of a complete metric space.

D efin ition  5. A c o m p le te  metric space is a metric space in which every 

Cauchy sequence converges.

D efin ition  6. A H i lb e r t  sp a ce  is a complete inner product space, that is, 

it is complete in the metric defined by the inner product.

D efin ition  7. A S c h a u d e r  b a s is  is a sequence {xi }  in X , a normed vector 

space, with the property that every x i 2 X  has a unique representation of
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the form x  =  E =1 aix i for all ai 2 R, where the convergence is understood 

with respect to the norm. In other words,

Much of this thesis will be considered by working in the space L 2[0, 1] 

(recall remark 1). We highlight properties of this space below.

E xam ple  1. The space of square integrable functions on the unit interval 

L2[0,1] is complete.

For any f  2 L2[0,1] there exists {gn} that is Cauchy such that, | |f  — 

gn || l 2 [0,1] !  0 as n ! 1 .

We now direct your attention to Rolle’s Theorem that will be important 

for Theorem 2.

T h eo rem  1 (Rolle’s Theorem). I f  a real-valued function f  is continuous 

on a proper closed interval [a,b], differentiable on the open interval (a,b) 

and f  (a) =  f  (b), then there exists at least one c in the open interval (a, b) 

such that f  0(c) =  0.

An interesting phenomenon occurs when two characteristic curves be­

longing to a given PDE intersect (see definition 8). In order to understand
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this behavior, we need to remind the reader of the following fundamental 

theorems, whose proof is provided for convenience.

T h eo rem  2. The Mean Value Theorem states that i f  f  (x) is defined and 

continuous on the interval [a,b] and differentiable on (a,b), then there is at 

least one number c 2 (a, b) such that,

Proof. The equation of a secant through (a, f  (a)) and (b, f  (b)) is

Adding f  (a) to both sides we obtain,

Let g(x) =  f  (x) — [f (x — a) +  f  (a)]. Note that g(a) =  g(b) =  0, we 

know that g is continuous on [a, b] and differentiable on (a, b) since f  is. 

Using theorem 1 there exists c 2 (a,b), such that g0(c) =  0. However,
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Then,  g' (c) =  f  ' (c) — f =  0 adding f to both sides we obtain,

which is what we wanted.

Now we will state the Fudamental Theorem of Calculus whose proof will 

also be provided.

T h eo rem  3. The Fundamental Theorem of Calculus states that i f  f  is 

continuous on the closed interval [a, b] and F  is the indefinite integral o f f  

on [a,b], then f  (x )dx  =  F(b) — F(a).

Proof. Let f  be continuous and differentiable function, define F(x) with the 

property that F '(x) =  f. We are going to define

Applying the second Fundamental Theorem of Calculus, tells us that

G' (x) =  f  (x).

So F '(x) =  G'(x). Hence,

(F  — G)' =  F ' — G' =  f  — f  =  0.
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We know that if two functions have the same derivative then they differ 

only by a constant, namely

F  (x) — G(x) =  c.

Adding G(x) to both sides we obtain,

F  (x) =  G(x) +  c.

Now we are going to compute F(b) — F(a) to see if it equals the definite 

integral. We have,

(4) F  (b) — F  (a) =  (G(b) +  c) — (G(a) +  c).

Looking at the right hand side of equation (4) and distributing the (—) 

sign we have,

G(b) +  c — G(a) — c.

We now combine like terms to obtain,

G(b) — G(a).
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Substituting what G is and integrating we have,

to obtain,

Therefore, F(b) — F(a) =  f ^  f  (x)dx.

We direct the readers attention to the next corollary. It briefly mentions 

integration by parts and how this technique is preformed.

C oro llary  1. Integration by parts is a technique fo r  performing indefinite 

integration f  udv or definite integration udv by expanding the differential 

of a product of functions  d(uv) and expressing the original integral in terms 

of a known integral f  vdu.

Integration by parts can be justified by considering the product rule of 

differentiation with,

d(uv) =  udv +  vdu,

11



and integration by both sides,

d(uv) =  uv

udv + vdu.

Rearranging the top we achieve,

udv =  uv — vdu.

For the simplicity of this thesis we will be using integration by parts 

specifically, when we get to the section of discretization when we have 

boundary terms of the form,

(5) udv =  uv vdu.

Looking at equation (5) we will be interested in ensuring the boundary 

terms vanish. Later in this thesis 16, we will work with an appropriate col­

lection of functions, namely '  =  v^2sin(j^x). Since the function sin(2jpix) 

is periodic, anytime that x is 0 or 1 the quantity at the boundary would be 

0.

12



The inviscid Burgers equation (3) describes a conservation equation. 

More generally it is a quasilinear hyperbolic equation. The solutions to 

this conservation equation can be constructed by the methods of character­

istics which yields an ordinary differential equation. For readers interested 

in learning more about this methods of characteristics, see [1].

The fundamental theorems and corollaries mentioned previously will help 

us justify proposition 1, and figure out what it means for a shock wave corre­

sponding to the inviscid Burgers IVP to break. In the following proposition 

we find an exact time labeled as Tb at which a shock wave breaks.

D efin ition  8. Given a PDE, it is possible to define curves in the domain  

where the solution is constant and can be found  by solving an ODE. We call 

these c h a r a c te r is t ic  c u rv e s .

P ro p o sitio n  1. I f  we solve the solution to (2) with smooth initial data 

u0(x) fo r  which u0(x) is somewhere negative, will exhibit a wave breaking 

phenom enon at time.
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Proof. Burgers equation is ut +  u u x =  0, and can be written as an inner 

product. Namely,

The function u(x ,t) evaluated along the curve x(t), in the direction of 

(1,u) is a constant, and Vu describes the maximum rate of change. Hence, 

satisfying

Equation (2) states that u(x(t),t) is a constant, which we will call u0(x(0)). 

Since u (x(t),t) =  constant, in particular

Using 3 we get the following,

(6) x(t) =  u0(x(0))t +  ci.
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We will substitute t =  0 to (6) where,

Since t =  0 we obtain,

x(0) =  c1.

Therefore,

u0(x(0))t +  x(0) =  a,

where a  is a constant.

Consider what were to happen when two characteristic lines intersect. 

Say we have two characteristic equations:

x 1(t) =  u0(x(0))t +  x(0), 

x2(t) =  u 1(x(1))t +  x(1).

Lets observe what happens when these two equations equal each other, 

u0(x(0))t +  x(0) =  u 1 (x(1))t +  x(1).
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Solving for t is going to give us exactly the time when these two char­

acteristic equations intersect. Hence we solve for t showing the algebraic 

manipulations below,

u0(x(0))t +  x(0) =  u 1 (x(0))t +  x(1), 

u0(x(0))t +  x(0) — u 1(x(1))t — x(1) =  0,

t(u0(x(0)) — u 1(x(1))) =  x(1) — x(0),

t x(1) — x(0)
u0(x(0)) — u 1(x(1)) ’

t x(1) — x(0)
u 1(x(1)) — u0(x(0))

Applying the Mean Value Theorem to our problem there exists c 2

(x(0),x(1)) such that,

uo(x(1)) — uo(x(0))
uo (c) — , .. , .. .

x(1) — x(0)

We can see from equation (2) and (6), that t and u0(c) are negative 

reciprocals of each other. Hence,

1
t = ----------

u0(c).
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Since u0 is negative, the first instance the two lines will meet is given by 

the wave breaking time Tb, which is

T =  1Tb = -----:---- TTT.min u0(c)

In the sections that follow, we will deduce a linear system of equations by 

projecting solutions to (2) to a finite dimensional space, and then formu­

lating a corresponding linear system to solve. In order to deduce this, we 

are presented with the challenge of identifying a collection of orthonormal 

functions in L2[0,1], which we denote by G= { ' a } ae i, and I  is an index set 

that satisfies some basic properties. When a finite collection contained in 

G is considered, $ N= { '1, ..., ' N} we formulate (2) in the span of $ N.

We now briefly mention the Conjugate Gradient Method that will be the 

main tool for solving linear systems of equations.

Definition 9. In mathematics, the Conjugate Gradient Method is an

algorithm for the numerical solution of particular systems of linear equa­

tions, namely those whose matrix is positive-definite.

Originally the conjugate gradient method was developed as a direct method 

that later became popular for its properties. The conjugate gradient method
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can be used to solve unconstrained optimization problems, such as the mini­

mization problem presented in this thesis. The use of the conjugate gradient 

method for these types of problems was studied in [1] and are not the central 

focus of this thesis. In this work we expand its use to solve traffic control 

problems.

This is essential because without the theorems and propositions that 

were mentioned previously, we would not have been able to understand this 

thesis.

2. D e d u c i n g  B u r g e r s  E q u a t i o n  a s  a  m o d e l  f o r  t r a f f i c  f l o w

Traffic is something that everyone does not like to be in. Other people 

find traffic to be the time to reflect on what they did throughout the day, 

or reflect on things that they have planned to do during the week. In this 

section, we will be deriving Burgers equation as a traffic flow model with 

the aim of developing numerical methods that give insight as to improving 

traffic conditions.

In mathematics, traffic flow is the study of interactions between vehicles, 

drivers, pedestrians, cyclists, travelers, and infrastructures. W ith the aim 

of understanding and developing an optimal road network with efficient 

movement of traffic, and minimal traffic congestion problems. However, in 

this thesis traffic flow is generally treated as a one dimensional pathway
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(travel lane). In fact, multiple lanes traveling in one direction are treated 

as a single lane. There are two important dependent variables to analyze 

and visualize in a traffic flow: speed, and density. The speed at which the 

vehicle is driving which we will denote as v(x, t), and density of cars we will 

denote as p(x, t).

The speed in traffic flow is defined as the distance covered per unit time. 

The speed of every vehicle is impossible to track on a roadway however, the 

average speed is based on the sampling of vehicles over a period of time. 

The density is defined as the number of vehicles per unit length. The flow 

is the number of vehicles that are passing a reference point per unit of time.

2.1. D eriving a m odel for traffic flow using Burgers equation. We

will begin by considering the density of cars instead of looking at individual 

cars. As we said before, the density of vehicles is the number of vehicles per 

unit length (distance) and should be measured at a point in the lane for a 

specific moment in time. Mathematically, this leads to the density function 

p(x,t) such that, the number of cars between x 1 and x2 at time t0 is the 

following,

r x2
(7) / p (x ,t0)dx.

J  Xl
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F i g u r e  1. Depicting the flow of cars

Velocity will be v(x,t) at which the vehicles are traveling. Let’s consider 

the quantity p(x ,t)v(x ,t) as the number of cars which passes through a 

point in space call it x, at a given time t.

We are interested in establishing a relationship between p and v. We 

will choose a fixed interval [x1,x 2] that measures the number of cars which 

are in the interval, and also figure out how the quantity is changing over 

time. Since the vehicles are flowing on an interval, the quantity changes as 

vehicles enter or exit the interval. (See figure 1.)

We can represent these facts as a mathematical equation that later can 

formally be used,
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Considering equation (8) means we have expressed the the rate at which 

number of cars between x 1 and x 2 changes by considering the number of 

cars exiting and taking away the number of cars entering.

Integration on (9) over an interval of time implies the following,

Using the Fundamental Theorem of Calculus we obtain,

Since the integral of these functions are equal over arbitrary interval, we 

can conclude that

which implies,
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(10) pt(x, t) +  (p(x, t) v(x, t))X =  0.

Equation (10) is interesting because it almost looks like Burgers equation 

without viscosity!

If the road is empty, meaning p =  0 the cars are traveling a maximum 

speed of vmaX; however, if the maximum density pmaX is reached, the cars 

are bumper to bumper meaning that drivers are going to reduce their speed 

eventually to zero. We will introduce an equation that will model the facts 

mentioned above, and provides a linear relation between the velocity and 

density function namely,

By adding an initial condition to equation (9) and using v as a function 

of p by equation (11), we can deduce our main initial value problem. We 

define the conservation of cars problem as given by
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We want to establish (12) in regards to its conservative behavior, that the 

quantity of cars on the road is constant over time. This establishes the 

following proposition.

Proposition 2. The Burgers IV P  is conservative. Given a function p such 

that is satisfies (11) and has compact support, then the quantity

is a constant over time.

Proof. To begin, we need to show that the quantity does not change over 

time. We can deduce that its derivative is zero. Differentiating with respect 

to time we have,

This follows from (11) and the compact support of p.
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C oro llary  2. The initial amount of cars is conserved over time. That is,

p(x, t) dx = p0(x) dx.

Readers interested in more details about the conservative nature of equa­

tion (12) are directed to [7]. We now consider the minimization problem 

arising from the traffic flow PDE that recently derived, because this is the 

main goal for this thesis.

3. S t a t e m e n t  o f  t h e  M i n i m i z a t i o n  P r o b l e m

The minimization problem related to the optimal control problem that 

will be stated in this section motivated by avoiding the wave breaking time, 

Tb presented in proposition 1, associated with Burgers equation. Applica­

tions consist of introducing numerically computed force terms to apply to 

the Burgers model. Moreover, the solutions to the control problem may 

give insight to controlling undesirable traffic situations.

Specifically, our goals for this minimization problem are related to the fol­

lowing integral quantity over an appropriate class of functions. The associ­

ated control problem to Burgers equation is given to us by the minimization 

problem stated below,
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subject to the condition that

(14) u *(x,t) ut ^UXX +  UUX,

where ud represents the desired state, and u* is the external (control) forc­

ing term. Noted above is the parameter for viscosity e > 0, alluding to the 

choice of small viscosity, as in the traditional vanishing viscosity method. 

For any given u* we want to approximation a solution to (14). Overall our 

objective is to figure out a way to approximate a solution to the optimization 

problem for Burgers equation, namely, by finding the appropriate minimum 

u* using equation (13). The first thing that we will do is discretize the the 

domain of u so we can arrive to a finite dimensional formulation correspond­

ing to (13). Then we will use the conjugate gradient method (see Definition 

9) to approximate these solutions. Recall that =  { ' 1, ••• , }. In this 

chapter, we will often refer to the following contrained initial value problem,
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In definition 7 we presented what a Schauder basis is and the properties 

that have to hold. For j  2  Z we introduce an important collection of 

functions given by,

(16) ' j =  v/2sin(jpix),

and ' j (0) =  0, ' j (1) =  0.

Moreover, the collection G =  { 'n} for n 2  Z, and G C  L2[0,1] will 

serve as a basis for solutions to (15). That is, if f  2  L2[0,1] then, | |f  —  

En=1 a ^ 'i ||L2 !  0 as n and 2  R. An important property of G is

summarized in the following proposition.

P ro p o sitio n  3. The collection ' n are orthogonal where ' n(x) =  v/2sin(n^x). 

Moreover,
/

1 i f  n =  m,
( ' ^ ' m )  <

0 otherwise

with respect to L2[0,1] inner product.

Proof. We are looking at the case where n =  m  and n, m  2  Z,

^v^2sin(n^x)]^V/2sin(m^x)] dx.
J  0
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We can take the constant out to have,

[sin(n^x)][sin(m^x)] dx.

We will be using a trig identity that is,

(17) sin(a) sin(fi) =  ^[cos(a — fi) — cos(a +  fi),

where a  =  nnx and fi =  mnx. Using equation (17) we have, 

f 1 12 -[cos(nnx — mnx) — cos(nnx +  mnx)]dx,
0 2

|  =  [cos(nnx — mnx) — cos(nnx +  mnx)]dx.
0

Using u- substitution on the second part of the integral we are going to let 

u =  x(nn +  mn) and du =  nn +  mndx to have the following:

=  I cos(nnx — m n x )---------------[  cos(u) du,
Jo nn +  mn J o

f 1 ( ) sin(u) 1=  / cos(nnx — m n x )---------------.
J 0 n n  +  mn o
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Now looking at the first part of the integral, we are going to use another 

u-substitution. Let s =  x(nn — mn) and ds =  nn — mndx to obtain,

1 f 1 ( )d sin(u) 1= ------------ / cos(s)ds--------------- ,
nn — mn J0 n n  +  mn o

sin(s) sin(u) 1 
nn — mn nn +  mn 0

Completing our substitution we get,

sin(xnn — xmn) sin(xnn +  xmn) 1 
n(n — m) n(n +  m) 0

Finding a common denominator we have,

(n +  m) sin(xnn — xmn) — (n — m) sin(xnn +  xmn) 1 
n (n2 — m 2) 0

n sin(xnn — xmn) +  m sin(xnn — xmn) — [n sin(xnn +  xmn) — m sin(xnn +  xmn) 1
n(n2 — m 2) 0

(n +  m)[sin(xnn — xmn)] — (n +  m)[sin(xnn +  xmn)] 1 
n (n2 — m2) 0

=  0.
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Lets look at the case where n =  m. We have the following,

2 j  sin2(nnx) dx =  2 j  -[1  — cos(2mnx)] dx
J0 J0 2

=  1 — cos(2mnx) dx 
0

=  1 dx — / cos(2mnx) dx 
0 0

sin(2mnx) 1
=  x -------------------.

2mn 0

From which we deduce,

sin(2mn)
1 — -------------  =  1,2mn

where m 2 Z, and m =  0. Hence we conclude,

2 sin2(nnx)dx =  0.
0

Since we have shown both cases when n =  m and n =  m, we can con­

clude that ' n(x)x =  v^2sin(nnx) is orthogonal with respect to the L2 inner 

product. □

Here are some special identities that we encountered when we started to 

discretized the control problem, which are mentioned below.
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Observe this integral quantity ' i (x) ' j (x)dx.  We are going to look at 

the case when i =  j, where i, j  2 Z+. We turn our attention to,

V^jn cos(inx)v^2in cos(jnx) dx =  2(i jn2) / cos(inx)cos(jnx)dx 
0 0

=  2(jn)2 / cos(jnx))2dx 
0

• \2 f 1 cos(2jnx) +  1 ,
=  2 ( j n ) ^  ------------------dx

(jn)2 sin(2jnx) 1
= ------- ^ --------- +  x2jn 0

=  1.

Now lets take a look at the case where i =  j ,  we have,

-\Z2jn cos(jnx)v^2in cos(inx) dx =  2 i j n2 cos(jnx)cos(inx) dx 
0 0

=  2i jn2 / cos(jnx) cos(inx) dx 
0
/■1 1

=  2 ijn2 / -(cos(jnx +  inx) +  cos(jnx — inx)) dx 
0 2

2 — sin(j +  i)nx sin(j — i)nx
=  j n [— --------------r — ^— ](j  +  i)n (j  — i)n

=  0.
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Lastly, looking at the integral — ' j (x) ' i (x)  dx, it follows immediately 

from Proposition 3. For completeness, we mention some of the details of 

the computations. When i =  j  we have,

— -\/2sin(jnx)v^2sin(jnx) dx =  — 2 sin2(jnx) dx
0 0

=  —2 r  1[1 -  CQS(2j n x ) | dx
0 2

=  — 1 / [1 — cos(2jnx)] dx 
0

=  —1[1 — sin (2jnx) 1 
j n  0

=  —1.

When i =  j  we have the following,

— *\/2sin(jnx)v/2sin(inx)dx =  — 2 sin(jnx)sin(inx)dx 
0 0

/■1 1
=  — 2 [— cos((j — i)nx) — cos((j +  i)nx)]dx 0 2

=  — 1 / cos((j — i)nx) — cos((j +  i)nx)dx 
0

1 [sin(j — i)nx sin(j +  i)nx ] 1 
(j — i)n (j +  i)n 0

=  0.
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3.1. D iscretization o f  the C ontrol problem . In order to begin the dis­

cretization lets recall a family of test functions that we mentioned earlier 

in this section, G =  { ' j } such that '( 0 )  =  '( 1 )  =  0 for j  2 Z. Looking at 

(14) and multiply ' ( x )  to each term we obtain,

(18) u*(x, t ) '(x )  =  ut(x, t ) '(x )  +  u(x, t)ux(x, t ) '(x )  — euxx (x, t ) '(x ) .

Next, we will integrate from 0 to 1 to obtain the following,

(19)

/ u*(x, t ) '(x )d x  =  ut( x , t ) '( x ) +  u(x, t)ux(x, t ) '(x )d x  — / euxx(x, t ) '(x )d x . 
0 0 0

Rem ark 2. We are strictly working with the domain form  [0,1] in the case 

of traffic we can think o f [0,1] as the start of the freeway to the end o f the 

freeway.

We will now separate (19) into three separate parts. For convenience, we 

label these integrals as the following,

(A) I u*(x, t ) '(x )  dx 
( 0

(B) / ut( x , t ) '( x ) +  u(x,t)ux(x ,t ) '(x )  dx 
0 (

(C) — e uxx(x ,t)'(x ) dx.
0

32



Lets take a look at (B ) we have,

f 1 f 1 f 1 @ ( u (x ,t )2 \
ut( x , t ) ' ( x )  +  u (x ,t )u x(x , t ) ' ( x )d x  =  ut' ( x )d x  +  —  ( — ^—  ) ' ( x )  dx

.70 ./0 .70 @x '  2 /

d f f 1 / x / x , 1 u(x, t )2 , . 1
=  dt U o  U(X, ^ ' (x ) j  +  — 2—  ' (x ) 0

— f 1 u ^ ' ( x )  dx.
0 2

Looking at (C ) and using integration by parts we have,

-e /o uxx(x, t ) ' ( x )  dx =  —e ^ux(x, t ) ' ( x )   ̂— (  ux(x, t ) ' 0(x ) dx^j

=  e l  ux( x , t ) ' 0(x ) dx 
(20) ( 0

f 1  \ d , s ,=  e / — u (x ,t ) — ' ( x )  dx.
o x dx

Looking at (20) and noting the vanishing behavior at the boundary we 

have,

f 1 f 1 5 d
—e uxx( x , t ) ' ( x )  dx =  e — u (x ,t ) —  ' ( x )  dx.

 x dx

Here is a brief explanation on how we obtain the right hand side of

the integral. We first apply the chain rule and lastly do integration by
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parts together with the properties of G that ensures the boundary terms to 

disappear.

Substituting (A), (B), and (C) to (19) we have,

(21)

d f 1 f 1 u (x ,t)2 , f 1 d
— u (x ,t ) '(x )d x  — — -—  '  (x) dx +  e / — u(x,t) —  '(x )d x
dt Jo  0 2  0 5x dx

=  u*(x, t ) '(x )d x .
0

Moving forward we take a finite sub-collection of G denoted $ N =  { '] _ , . . . ,  ' N}. 

We will approximate u by uh and u* by functions of the form,

N
(22) uh(x,t) =  X  uj (t)' j (x )’

j=1

N
(23) u*(x,t) =  ^  u*j ( t ) 'j  (x).

j=1

Recall, ' j ( x )  =  v ^ s in j^ x ). We set « (t) =  [u1(t),u2(t),....,uN(t)], and 

u*(t) =  [u1(t),u2(t ) ,..., un(t)] where i =  1, 2, 3, ....N. Then, ' 1(x) =  \f2sin(^x), 

' 2(x) =  v̂ 2 sin(27rx),..., ' N(x) =  -\/2sin(NVx).
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We fix a member of { oIN}, '* , for i fixed. Typically, the functions are 

called test functions and we may refer to them as such for the remainder of 

this work.

Looking at (C) we are now going to substitute the projection and fix the 

index i to obtain the following,

We define the matrix,

With this notation presented we write (C) as,

A question that we can ask ourselves is what are the best choices for 

the coefficients u1(t),...un(t). Working with (21) and plugging the finite 

projections into the first part of (B) we have the coefficients in the expansion 

of (22) satisfying,
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All we did was substitute what the projection of uh(x, t) is to (24). When, 

i =  1 we have that,

Then when i =  2 we have,

For each i we have that, i =  n,

We define the matrix,
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With the notation above we can rewrite (24) as,

At the second part of (B), we are now going to substitute the projection 

and fix index i to obtain the following,

Rem ark 3. The following identity is noted,

We can pull E =1 E k=1 (uj (t)uk(t)j because it is in terms of t and not 

n terms of x to have the following,

Looking at (25) we have,
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We can define the vector (only depends on i),

That is equation (26) can be expressed as ( Nh(u(t)) j   ̂ for each i =  

1, ••• ,N.

We are going to approximate (23). That is, we substitute the following 

integral,

with its projection, where i =  1, 2, 3... to obtain,

We can pull N=1 u*j (t) because it is in terms of t and not in terms of x 

to have the following,

We can define the matrix to be,
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where «*(t) =  •• ■ ,uN*(t)j, with this notation (27) can be expressed

by B hu *(t).

Putting all matrices together we obtain a system of ordinary differential 

equations. Hence,

where Mh,A h 2 R(ra-1)x(ra-1),B h 2 R(n-1)x(ra+1) and Nh(u(t)) 2 Rn-1 are 

the matrices and t 2 (0,1).

Inserting the approximations (22), (23) into (13) and performing calcu­

lations like those applied to terms (A), (B), (C), we arrive at the semi­

discretization given by,

The matrix and vector entries are the following,

Since u2d >  0, we are interested mainly in the following,
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where u (t) is the solution of to,

and u0 =  (u0( h) , . . .  , u0(1 — h))T, and h >  0 determines the domain the 

step size.

In order to approximate the entries to (gh(t))i we apply the composite 

trapezoid rule. This is a numerical algorithm that approximates a definite 

integral since ud and ' i are known functions; recall (13) and (16). See [2].

Below we state the fully discretized problem which is given by,

where u 1, ■■■ , uN+1 is a solution to,
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i =  0, ■■■ , N  and u0 is given.

For more details on the fully discretization problem you may look at [1]. 

We direct your attention to the conjugate gradient method that is very 

useful and important. It is what we used to discretized our problem. On 

the next section, we will be mentioning the conjugate gradient method and 

how it is so useful.

3.2. C onjugate Gradient M ethod . The purpose of this section is to be 

able to understand the Conjugate Gradient Method. Once we understand 

this method, the connection between finite dimensional space and M ATLAB 

program will be a lot easier.

The conjugate gradient method was originally developed as a direct to 

solve n x  n positive definite linear system. The conjugate gradient method 

is useful when employed as an iterative approximation method for solving 

large sparse system with nonzero entries occurring in predictable patterns.
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We will use the inner product notation as 

(31) {x, y )  =  x*y,

x  and y  are n-dimensional vectors.

T h eorem  4. The vector x* is a solution to the positive definite linear A x  =  

b if and only if x* produces the minimal value of g(x)  =  {x ,A x )  — 2{x, b).

Proof. To begin, x  must be chosen. This x  is an approximate solution to 

Ax* =  b, and x  =  0. Let m  =  b — A x  be the residue vector associated 

with x  and

{v, b — A x)  
t {v ,A v ) .

If m  =  0 and if v and m  are not orthogonal, then x  +  m v  gives a smaller 

value for g than g(x), hence it is closer to x* than x.

Thus the following method is used. Let x (0) be an initial approximation 

to x * , and also let v (1) = 0  be an initial direction. When k =  1, 2, 3, ■■■ , 

we compute,

{v (k),b  — A x (fc-1)) 
k {v (k) ,A v (k))

x (k) =  x (k-1) +  tk v (k)

42



and choose a new search d irection  for v (fc+1). T he ob jective  is to  make this 

selection so that the sequence o f  approxim ations { x (k)}  converges rapidly 

to  x * . T o  choose the search direction , we are going to  view  g  as a function  

o f  the com ponents o f  x  =  ( x 1, x 2,x 3, ■■■ , x n ) t . Thus,

g (x  1, x 2 , x 3 , ■■■ ,x n ) =  {x , A x )  — 2 {x , b)

Taking partial derivatives w ith respect to  x k gives us,

which is the kth com ponent o f  the vector 2 (A x  — b). Hence, the gradient o f 

g is

R ecall that the vector m  is the residual vector for x . T he direction  o f the 

residual m ,  is the d irection  given by —V g (x ) .  W e know this by calculus, as
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the direction of greatest decrease, the value of g(x). We will use the method 

of steepest descent which is,

v (k+1) =  m (k) =  b — A x (k).

An alternative approach can be to use a set of nonzero direction vectors 

{ v (1), v (2), ■■■ , v (n)} that satisfy {v (i),A v (j)) =  0 if i =  j .  This is called the 

A-orthogonality condition and the set of vectors { v (1), v (2), ■■■ , v (n)} is said 

to be A-orthogonal. This is the set of search directions gives us,

{v (k), b — A x (k-1)) {v (k), r (k-1)) 
tk {v (k),A v (k)) {v (k),A v (k)) ,

and x (k) =  x (k-1) +  tkv (k). This concludes the proof of this theorem. □

R em ark  4. This theorem shows the choice of search directions provides 

convergence and also can be written as matrix multiplication just like in the 

section of discretization.

For more details on the conjugate gradient method the, reader is referred 

to definition 7. We now have arrive at the end the section where lastly, we 

will be talking about an algorithm that we implemented in MATLAB using 

a black box.

44



(1) We first start the main function named ‘optimization driver’ and 

that sets the problem data.

(2) We now go to ‘problem generator’ finite matrices that we have de­

rived in chapter 2 are constructed.

(3) Once ‘problem generator’ is done, we go to ‘derivative checks’ where 

it uses global variables to help solve the minimization problem.

(4) ‘X new’ is where the state (solution to the PDE) is being computed 

and it approximates solutions to fully discretized Burgers equation.

(5) ‘F val’ is where the discretized problem is being fully solved and it 

also performs the optimization.

(6) Running results from ‘optimization driver’ gives us nice images where 

we can analyze them and draw conclusions.

3.3. O verview  of N um erica l M eth o d s of N u m erical C hallenges.

The code was originally written by Mathias Henkenschloss [4,5] and uses 

the conjugate gradient method from the previous chapter. The figures and 

images in the next section that the code generates are approximate solu­

tions to the minimization of the optimal control problem that we discused 

throughout this chapter. Understanding Henkenschloss’ code proved to be 

very challenging. The code calls upon MATLAB files which are exactly 

twenty-five files in order to compile.
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Thus, in order to complete the goal of alternating the code, we use differ­

ent desired states, initial conditions, and the traffic data collected through 

PeMS. A combination of both trial and error were used as well as simple 

examples by hand.

Modifications to the code are now discussed. We choose different types 

of functions as well as use the data that we collected through PeMS to set 

initial and desired states. The term N x represents the number of spatial 

intervals used in the discretization, which is the spatial mesh points. The 

term N t is the time steps intervals that are also used in the discretization. 

Viscosity, mu is a parameter that is constantly used throughout this set of 

code, and Omega is a penalty parameter for the control.

Contributions made to the code are presented below. The following was 

added to the prob-gen.m file, and determines the desired state.
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The following was added to the state.m file and determines the initial 

state. This set of code represents the initial state of different functions, as 

well as, the information regarding traffic that was collected through PeMS. 

This code is from a state file that uses variables u and user param eter. 

What user param eter does is that it is a defined parameter that is used to 

pass problem specific information.
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In the following chapter we talk about Caltrans Perfomance Measurement 

System on how data is collected through sensors on the 101 South freeway, 

as well as, the images that were compiled through MATLAB.

4. A p p l i c a t i o n :  T r a f f i c  C o n t r o l  f r o m  W o o d l a n d  H i l l s  

t o w a r d s  U n i v e r s a l  S t u d i o s

Caltrans Performance Measurement System known as PeMS is a cen­

tralized traffic warehouse that includes data collected through automated 

detection. It is a system that enables system monitoring and evaluation. 

Over 37,000 detectors are deployed on urban freeways throughout Califor­

nia. The detectors that are on the freeway measures the number of vehicles 

(flow or volume) and how long they remain over the detector (occupancy) 

on a facility for each lane.
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Detectors on the road measure flow, occupancy, and sometimes speed. 

The vehicle detector stations are sets of detectors that converts all lanes in 

one direction of travel, and it monitors one type of facility. There is either 

on-ramp, off-ramp, or the mainline on the freeway (highway). The collected 

data that we got through PeMS is represented by the following,

(3 2 ) p occupancy
Pmax 100

F i g u r e  3. Detectors

PeMS allows planners, engineers, and policy makers to track system per­

formance across most urban freeways and other facilities. Travelers can 

obtain the current shortest route and travel time estimates. Researchers

49



can validate their theory and collaborate simulation models. PeMS appli­

cations are accessed over the world wide web, and custom applications can 

be worked directly with the PeMS database.

4.1. N u m erical R esu lts  (Im ages). This section is dedicated to the fig­

ures from MATLAB files mentioned from the previous chapter.

F i g u r e  4. Sine Function

Figure 4 represents an approximate solution with viscosity of 0.01, where 

the sine wave is provided as the initial condition. Our desired state is set to 

be at 0. Solving the minimization problem having our initial state, desired 

state, and adding external forces depicts figure 4.
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F i g u r e  5. Cosine Function 

Figure 5 depicts a cosine graph that is interesting. We can observe a few 

ripples on the image that are getting closer to 0. Figure 5 has viscocity to 

be set as 0.01. Our initial state is the cosine and our desired state is set to 

be 0, i.e. u0(x) =  cos(4pix) and ud(x,t) =  0.
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F i g u r e  6. linear function 

In figure 6, we observe a linear function being controlled. The initial 

condition is our linear function and our desired state is set to be 0. Specif­

ically we are looking at 2x +  4 to be the linear function having viscosity of 

0.01. Having our initial state, desired state and adding external forces and 

solving the minimization problem we get a hold of figure 6.

52



F i g u r e  7. Logarithmic Function

Figure 7 is a logarithmic function that was implemented to the code. 

In this simulation viscosity is set to be 0.50. Our initial condition is the 

logarithmic function and our desired state is at 0. The highest point that 

this function has is at 1. Substituting our initial state, desired state and 

adding external force to the minimization problem we achieve image 7.



F i g u r e  8. Exponential Function

Figure 8 is an exponential function that is being controlled. Once it 

reaches its maximum value it starts to decrease and go to 0. The initial 

state is the exponential function and our desired state is set to be 0. The 

viscosity of this function is set at 0.01, which is pretty low.
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F i g u r e  9. Linear Function with Different Desired State 

In figure 9 our initial state is set to be cos (4^x), and our desired state 

is set to be a linear function, 2x +  4. The viscosity is set to be 0.1. This 

is an approximation to the minimization optimal control problem that we 

mentioned in the previous chapters.
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F i g u r e  10. Sine Function with Different Desired State 

In figure 10 we have the desired state to be cos (4^x) and the initial 

state to be sin(2^x). The viscosity is set to be 0.1, in this case it appears 

favorable to select ^  =  0.1. Figure 10 represents an approximation to the 

minimization optimal control problem that was mentioned in the previous 

chapter.
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F i g u r e  11. Sine Function with Different Desired State and Viscosity

In figure 11 we have the desired state to be the same as figure 10. The 

initial state is the same as figure 10, which is sin(2^x). The difference be­

tween figure 10 and 11 is the viscosity. Recall in figure 10 the viscosity 

was set to be 0.1, in figure 11 the viscosity is set to be 0.01. In this image 

we do notice that control was achieved more closely! Figure 11 represents 

an aproximation to the minimization problem that was mentioned in the 

previous chapter.
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F i g u r e  12. Raw Data

The following images are related to traffic. We collected information 

from Caltrans Performance Management System (PeMS). Once we have 

the information we implement that information to the code in MATLAB. 

Again our information is from January 11, 2016 to January 17, 2016. The 

specific time that we are looking at is from 6am — 1pm. We are on the 101 

South freeway from Woodland Hills to Universal Studios.

Figure 12 is the raw data that we collected from Caltrans Performance 

Management System. This represents the amount of cars (density) at a 

given time where there was traffic. The steep peaks represents the amount 

of traffic there was at specific moment of day and time. Implementing these 

values into the MATLAB, renders an interesting surface.

Observing figure 12, we can see many peaks that are either going up or 

down. The peaks that are dramatically increasing means there is traffic on
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F i g u r e  13. u Data

the 101 South freeway, and the reason why is because the occupancy is very 

high.

Figure 13 looks familiar to figure 12; however, the difference between 

these images is that image 13 is facing downwards.

Recall in the previous chapter, how we have to do a change of variables 

(see equation (32)) to our original data and convert it to “u” data. The 

change of variable that we used is the following,

(33) u(x , t )  = 1 -  2 .
pmax

Observing figure 13 we can see many peaks that are either going up or 

down. There are a couple of peaks that are dramatically decreasing, which 

means that at a specific day and time on the 101 South freeway there was 

traffic.
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F i g u r e  14. Specific State 1

Describing this mathematically means that the density of vehicles at a 

given day and time was very high were the lowest peaks occur.

Figure 14 represents a specific state of day and time on the 101 South 

freeway as an initial condition to the optimization problem. We notice on 

this figure that there are not so many peaks that are dramatically decreas­

ing, than figure 16. We can observe that the density of vehicles on image 

14 was very good.

We pick an initial state and a desired state as well as introducing ex­

ternal forces. Once we pick our states we substitute those values into the 

minimization problem. Once the minimization problem is solved we can 

conclude traffic conditions. As we see figure 14 we realize that traffic condi­

tions are improved, which means good traffic flow. Mathematically adding 

external forces to the 101 South will alleviate traffic conditions.
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F i g u r e  15. Specific State 2

Figure 15 represents a specific state of day and time on the 101 freeway. 

We observe, that there are a couple of low peaks that are decreasing. How­

ever, these peaks are relatively low. This means that a given day and time 

the density of cars was not so high. Furthermore, there was traffic at those 

given time, but not like image 16.

We pick an initial state and a desired state and introduce external forces 

to solve the minimization problem that was stated in the previous chap­

ters. By solving the minimization problem we have figure 15 which we can 

conclude certain situations.

We can observe that there are some values that are trying to go to -1 . 

What that means is that there is traffic at that given time. Even though 

we have these peaks on this image we can observe that traffic conditions 

are alleviated by adding external forces to the freeway.
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F i g u r e  16. Specific State 3

Figure 16 shows an initial condition taken from a specific day and time 

on the 101 south freeway. We notice that there are a couple of peaks that 

are pointing downward. This means that at a time and day the traffic was 

really bad. The density of vehicles on the 101 South freeway were high. 

Compared to the other peaks that are not as low, the density of cars would 

be high, meaning there is traffic.

We pick an initial state and a desired state which solves the minimization 

problem by introducing external forces. Once that is done, we have figure 

16 which we can observe that traffic conditions were improved by adding 

external forces to the 101 freeway.

5. C o n c l u s i o n  a n d  F u t u r e  W o r k

This thesis concludes with an overview of what has been accomplished 

and future goals that can be later pursued.
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Everything now a days is being analyzed through an app. Whether its 

looking for great deals at Target, or browsing to see what movies are out 

using Fandango. Future work consist of developing an app for traffic flow 

on cell phones. If someone can make an app specifically for traffic flow, it 

could be great and beneficial for the people that have to commute to work, 

school, or have a long road trip plan.

We can also consider other applications where Burgers equation is used 

as a model for gas dynamics, fluid flow and other applications. Moreover, 

working with an engineer that can design and interpret external forces in a 

physical way to monitor traffic flow would be interesting to work with.

There are many partial differential equations out there. It will be inter­

esting if future students can work with optimization problems adapted to 

other PDEs. It would be interesting to see what numerical solutions they 

come to and the images they would render using MATLAB.
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