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A b stra ct

The study of prime numbers has been an area of interest in mathematics 

since antiquity. One natural question one may ask is “How many primes 

are there less than or equal to some positive integer?” The first attempts to 

answering this were in the late 1700s, culminating in the celebrated Prime 

Number Theorem. We investigate how this may be generalized to primes in 

an imaginary quadratic number rings in a given sector of the complex plane.
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1. Introduction

1.1. H istorica l C on tex t. Prime numbers have been of interest dating back to Euclid 

in the year 300 BC. In particular, he originally proved that there are infinitely many primes. 

Since then, much progress has been made in trying to understand the behavior of prime 

numbers.

The next natural question to consider is how many primes are there up to a given positive 

number x. For instance, one find that there are 25 prime numbers less than or equal to 100. 

Assuming that this pattern continues, one might then try to hypothesize that there must be 

50 primes less than 200. This is not quite true, because the answer is actually 46.

The P rim e N u m ber T h eorem  allows us to accurately estimate n(x), the number of 

primes less than or equal to some x >  0, by calculating the limit

Originally proved by Hadamard and de la Vallee Poussin in 1898 [1], this tells us that n(x)
x

is approximately equal to -------  for sufficiently large x with diminishing error as x ^  ro.
log x

In fact, this theorem can be stated more strongly. In order to do this, we first give a brief 

introduction into the use of “Big O Notation” .

D efin ition  1.1. We say that f  (x) =  O(g(x))  if there exists a constant C >  0 such that 

I f (x)| <  C|g(x)| for all sufficiently large x.

As a consequence, f  (x) =  g(x) +  O(h(x))  signifies that ( f  — g)(x) =  O (h(x)). Now, we can 

state the Prime Number Theorem with O-term as given by de la Vallee Poussin in 1899 [21].
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T h eorem  1.2. (Prime Number Theorem) Let n(x) denote the the number of primes less 

than or equal to some positive number x. Then, we have for some constant a >  0

where Li (x) = denotes the logarithmic integral.

Integrating by parts on Li (x) gives us the following weaker version of this theorem:

That is, we can think of jogy as a good approximation for n(x), whose error is at most 

x e-«Vlogx for sufficiently large x. Dividing both sides by joggy and letting x ^  ro yields (*).

Similar statements to the Prime Number Theorem were proven for certain subsets of 

primes. In 1837, Dirichlet proved that for any given relatively prime integers a and d, there 

are infinitely many primes of the form a +  nd. Moreover, there is a variant to the prime 

number theorem to this result [1]; if na,d(x) denotes the number of primes of the form a +  nd 

less than or equal to x, then

where 0(d) denotes the Euler 0-function.

In 1847, Gabriel Lame tried to solve the ever-elusive Fermat’s Last Theorem [23]. In 

doing so, his work had spawned the use of “adjoining values to the familiar integers.” In 

other words, Lame took the integers and added powers of an nth root of unity (giving what 

is today known as a ring of Cyclotomic integers). His work, along with other pioneers such
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as Dedekind and Dirichlet, led to the branch of mathematics known as Algebraic Number 

Theory [10].

We now review the pertinent concepts that will allow us to formulate analogues of the 

Prime Number Theorem and Dirichlet’s Theorem that incorporate these “new” numbers.

1.2. T erm in ology  from  A lg eb ra ic  N u m ber T h eory . We recall basic concepts and re­

sults from Algebraic Number Theory. Further background can be found in [20] and [23].

D efin ition  1.3. We say that a number a is an algebraic num ber (over Q) if a is the zero 

of a polynomial with rational coefficients.

Given an algebraic number a, we consider the associated a lgebraic num ber field K  =  

Q (a ), a finite field extension of Q. Note that i =  \f—1 is an algebraic number, because i is 

a zero of x 2 +  1. This element gives rise to Q (i) =  {a  +  bi : a,b E Q }, the field of Gaussian 

rational numbers.

D efin ition  1.4. An a lgebraic integer is a complex number that is the zero of a monic 

polynomial with integer coefficients.

E xam ple 1.5. We see that i, —i are algebraic integers since they are zeroes of the monic 

polynomial x 2 +  1. However, 1 is not an algebraic integer, since any polynomial with integer 

coefficients having 1 as a zero would have to have a factor of 2x — 1 (thus making it not 

monic).

For any algebraic number field K , the set of algebraic integers in K  forms a ring known as 

an algebraic num ber ring, denoted as O K (or more briefly as O when K  is understood). 

In particular, we are interested in algebraic number rings arising from a field extension of
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degree 2, i.e, those numbers a that are given by a polynomial of degree 2. Furthermore, we 

remark that Q is to Z  as an algebraic number field K  is to O.

D efin ition  1.6. A field extension of degree 2 over Q is called a qu adratic  field  and has 

the form Q(v^d) =  {a +  bVd : a,b G Q }, where d is a square-free integer. If d <  0, we say 

that it is an im aginary quadratic  field.

The qu adratic  num ber ring O associated to Q (V d) is the set of elements of the form 

a +  bu, where a,b G Z  and

E xam ple 1.7. The ring Z[i], whose elements are of the form a +  bi, is commonly referred to 

as the Gaussian integers. Furthermore, letting (  =  -1+2v/~3 , we call Z[Z] the ring of Eisenstein 

integers.

Each quadratic field has the usual properties of a field, along with the operation of con ­

ju ga tion , that is for a =  a +  bVd, we define a =  a — b̂ /d. We call the product of an element 

a and its conjugate a the norm , denoted N (a) =  aa.

Next, we discuss prime elements in an algebraic number ring.

D efin ition  1.8. We say that an element p is p rim e in O if whenever p divides ab for some 

a,b G O, then p divides a or p divides b. Furthermore, p must be non-zero and a non-unit.

D efin ition  1.9. We say that an element p is irredu cib le  in O if it cannot be written as 

the product of two non-units in O.
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Although these definitions hold in Z, this is not generally the case in an algebraic number 

ring. We give an example from [2] to highlight this concept.

E xam ple 1.10. Consider Z[yf—5], here we see that 6 factors as the product of 2 ■ 3, and 

also as (1 +  yf—5)(1 — yf—5). However, neither 2, 3, nor 1 ±  yf—5, are units, and none are 

associates of one another.

It is known that Z[yJ—5] is not a unique factorization domain. We note that in general, 

unique factorization into irreducible elements is not guaranteed in a quadratic number ring. 

In fact, there are only nine instances where an imaginary quadratic number ring possesses 

unique factorization! However, it turns out that we can bypass this difficulty by considering 

ideals.

D efin ition  1.11. We say that a proper ideal p of a commutative ring R is a prim e ideal 

if for a,b E R such that ab E p, then either a E p or b E p.

In fact, if the algebraic number ring is a principal ideal domain (PID), then we have unique 

factorization into irreducible elements (see [23]). Otherwise, we content ourselves with the 

following key result that gives us an analogue for the Fundamental Theorem of Arithmetic, 

but for prime ideals.

T h eorem  1.12. Every non-zero ideal of O can be written as a product of prime ideals, that 

are unique up to the order of the factors.

When working with ideals, we may also take the norm of an ideal a. This is computed 

by N (a) =  |O/a|. For our purposes, we observe that the norm of an ideal satisfies two key 

properties:
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• If a =  (a ) for some a £ O, then N(a) =  |N(a)|.

• For any a, b £ O, we have N(ab) =  N (a)N (b).

From now on, unless otherwise explicitly stated, we are exclusively concerned with imag­

inary quadratic number rings.

The following is Edmund Landau’s algebraic number theoretic extension of the Prime 

Number Theorem, known as the P rim e Ideal T h eorem  [14].

T h eorem  1.13. Let n K(x) denote the number of prime ideals in a number field K  with 

norm at most x. Then,

where n =  [K : Q], and b is a positive constant independent of K .

Our goal is to prove an analogue of Dirichlet’s Theorem in the case of an imaginary 

quadratic number ring that gives the number of prime ideals in a given sector in the complex 

plane. We start with a way to assign an angle to a prime ideal using Hecke’s concept of a 

prime ideal number in the next section.

1.3. P rim e Ideal N um bers. In [6], Erdos and Hall studied the angular distribution of 

Gaussian Integers with a fixed norm, which, geometrically, is the same as studying the 

distribution of points with integral coordinates in a circle. This notion can be extended to 

other quadratic extensions. In a general quadratic extension, the ring of integers might not 

be a principal ideal domain, but, Hecke introduced the concept of ideal numbers (see [8], 

[9]). This concept consists allows us to represent ideals with specific algebraic integers.
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D efin ition  1.14. Given an imaginary quadratic number ring O, suppose that its class group 

has order h >  1. Thus, we have a basis B\, B2,..., Bh, with respective orders c\, c2, ..., ch. In 

each class B,, we choose one ideal b,. By definition of a basis, every ideal is equivalent to a 

unique product bm1 ■ ■ ■ bmk with 0 <  m, <  cj. Therefore, for any ideal a, there exists c E K  

such that

a = c b r  ••• bm .

Now, bC =  [fa,] for each 1 <  i <  k, with fa E OK . Define where we fix some

choice of c,-th root of fa. Then, a =  c^m1 ■ ■ ■ is called an ideal num ber associated to 

the ideal a.

D efin ition  1.15. We say that an ideal number a is integral if a is an algebraic integer. 

Furthermore, a is called a prim e ideal num ber if the corresponding ideal is prime.

E xam ple 1.16. Consider K  =  Q ( ^ - 5) with O =  Z[fa—5]. We previously showed that O 

is not a UFD. In fact, it can be shown that O has class group {[1], [(2,1 +  fa—5)]}. Since 

(2 ,1 W —5])2 =  (2) , we can take -\/2 as a (prime) ideal number representing [(2,1 +  fa—5)]. 

Being the only nontrivial class, we conclude that any ideal a has a corresponding ideal 

number a of the form a =  c(fa2)m for some c E Q(v^—5) and m E {0 ,1 }.

R em a rk : Using ideal numbers allows us to associate an angle to a given prime ideal, even 

when it is not principal.

Following ideas of Dias [5], we give a definition of how to associate an angle to an ideal.

D efin ition  1.17. Let p be a prime ideal. Define the angle of the ideal p as dp =  arg a' (also 

written as arg p), where a ' is the unique associate of the prime ideal number a associated to 

p satisfying — ̂  <  arg a ' <  W, where w denotes the number of units in O.
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Following [18], we generalize the prime ideal counting function. 

D efin ition  1.18. Fix -  -  < 6 1 < 62 < - .  Then we definew  ̂1 r 2 — w

That is, n (x ; <̂1, 02) denotes the number of prime ideals in a number field K  with norm at 

most x and whose angle dp lies between 0 1 and 02, inclusive. With this function, we state 

the A n gu lar P rim e Ideal T h eorem  [18].

T h eorem  1.19. We have

We give the proof of this result in Section 2.4.

R em ark : The result, like its predecessors, essentially follows from the non-vanishing of a 

special function in a specific region in the complex plane, in this case a Hecke L-function. We 

first define the specific Hecke L-function with which we prove this result and establish results 

culminating in its functional equation (analogous to that of the Riemann zeta function). 

We then establish non-vanishing results culminating in growth estimates to sums of Hecke 

characters. Finally, we employ Fourier Analysis to establish the desired Angular Prime 

Number Theorem.

2. T he road to proving the A ngular Prime Ideal Theorem

2.1. H ecke L -fu n ction  and its fun ction a l equation . For the remainder of this thesis, 

we will assume that we are working in an imaginary quadratic number field.

All results in this section follow the methods of [18].
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The Riemann zeta function

can be generalized to a ring of algebraic integers O. This is called the D edek in d  zeta  

fu n ction  and is defined as

where it is understood that we are summing over all nonzero ideals a of O. In the case where 

O =  Z, we obtain the classic Riemann zeta function [20].

The Hecke L-function is a further generalization of the Dedekind zeta function. Now, we 

introduce H ecke characters (modulo (1)) for an imaginary quadratic ring. As its definition 

is rather involved, we fix the following notation. Let w denote the number of units of O. 

In order to compute the Hecke character for a non-principal ideal, we use the ideal numbers 

introduced in the previous section.

D efin ition  2.1. Fix an integer a. Given an ideal a with corresponding ideal number a, the 

Hecke character x wa of a is defined as x wa(a) =  ( |f|)wa.

R em ark : The Hecke character is a well-defined group homomorphism x wa : O ^  S *, 

because it returns the same value for any associate of ^. Moreover, for a principal ideal 

a =  (^) in O, we have x wa(a) =  (p ) wa.

D efin ition  2.2. (H ecke L -fu n ction )
xwa(a)

For s G C, we define L(s, xwa) =  > — - ^ ,  where a varies over nonzero ideals of O.’ v ; la ! N (a )s

R em ark : Like the Riemann and Dedekind zeta functions, the Hecke L-function has an 

analogous product expansion and region of convergence.
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In the following theorem, we state where the series representation of the Hecke L-function 

converges.

T h eorem  2.3. The L-series L( s , xwa) is absolutely convergent when a >  1 and uniformly 

convergent for a >  1 +  8 for all 8 >  0. In particular, L(s, x wa) is analytic for a >  1. 

Moreover, one has

where the product varies over the prime ideals p of O.

Proof: The idea for this proof comes from [18]. Convergence for the series representation for 

L( s , xwa) directly follows upon comparing the absolute value of the series with the familiar 

p-series.

Next, we consider the convergence of the infinite product

By using the Maclaurin series for Log(1 +  z), we have

To show the convergence of the infinite product, observe that the absolute value of the

latter expression is bounded above by
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(The last inequality follows from N(p) >  2 for any prime ideal p.) Hence, the absolute value 

of the infinite product is bounded above by

the latter of which converges for a >  1 due to the presence of the Dedekind zeta function. 

Therefore, the infinite product converges absolutely for a >  1.

Finally, we show that infinite series and product representations of the L-series are equal. 

To this end, note that for any x >  0, we have

where * denotes that we are summing over all nonzero ideals a whose prime ideal factors 

each have norm at most x. In particular, letting a =  0 and s =  a >  1 in our result, we see 

that

Thus, we have that ^  converges. This in turn implies that
a

as x —— <x>, thereby establishing the equality of the series and product representations. ■  

The next theorem gives a series representation for the logarithmic derivative of the L-series.
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Proposition 2.4. Let s =  a +  i r . Then, when a >  1

/ xw a ( p ) \  1
Proof: By the previous theorem, we know that L( s , xwa) =  H  (1 — %7pirJ . Moreover, we

p
established in the proof of the previous theorem that

Thus for any a >  1, we have

Finally by applying logarithmic differentiation, we find that for a >  1:

Now we introduce notation and terminology to define our version of the “Theta Func­

tion.” Furthermore, we also provide tools and insight into better understanding the Hecke 

L-function. See [18].

D efin ition  2.5. A function f  e  C ^ (R 2) is called a Schwartz function if it approaches zero 

faster than any negative power of x  e  R 2 as |x| ^  ro, as do all of its derivatives.

We recall the traditional inner product.
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D efin ition  2.6. ([18]) Let (•, •) denote the standard inner product in R 2:

{x,y)  :=  xiyi +  X2V2 .

Then for a Schwartz function f , we define its Fourier transform f  as

We now give a brief definition of a quadratic form to be a homogeneous polynomial of 

degree two in a number of variables.

R em ark : Let Q (x) be a positive definite quadratic form given by a symmetric matrix A 

(that is, Q (x) =  (A x ,x )).

We have the following lemma.

L em m a 2.7. ([18], Lemma 9) Define / q (x ) =  e-nQ(x), where Q(x)  is a positive definite 

quadratic form. Then, f<g(y) =  — / q (y),  where Q '(x) =  (A -1 x ,x ).

Proof: Since A is positive definite, there exists a real matrix B  such that B 2 =  A. Then 

Q (x) =  (A x ,x ) =  (B x ,B x ), and thus we have / q (x ) =  (x), where h(x) =  e-n (x,x). Thus

by our remark

f Q(y) =  hB (y) =  T  h(B -1 y) =  ^ h(B -1 y) =  ^  e-nQ'<y>. ■

Now we introduce the Poisson summation formula. This equation allows us to rewrite 

Fourier coefficients of a function to the values of its Fourier transform.

T h eorem  2.8. (Poisson Summation formula, [17]) Let f  be a Schwartz function. Then for 

every x E R 2 we have

^  f  (x +  m) =  ^  /(m )e 2ni<m’x).
Z2 Z2
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Since /q (x ) is a Schwartz function, we can apply the Poisson summation formula to obtain 

the following abstraction of [18].

T h eorem  2.9. Let x\,x2 G R and define

U\ =  X\ +  wX2
<

U2 =  Xi +  ^X2-

(Recall that {1, w} is an integral basis for O.) Then, for t >  0 we have the following formula:

(  t \r— \\ (  1 \ (  2n|v |2 2ni(—vu1 +  vu2) \
> exH  — 2nt(h +  u i ) (y  +  u2H =  -------=y > exp 77----- — 2 ------ = 1-------  •
^ O  V /  V- it (w  -  w )/  ^O  Vt(w -  w)2 (w -  w) '

Proof: Let / q (x ) =  e-nQ(x), where Q(y) is the positive definite quadratic form

Q (v) =  2t|yi +  y2w|2 =  2t{ y l  +  T  r(w)yiy2 +  N  (w)y ^ ,

where Tr(w) =  w +  w and N(w) =  ww. Then Q(y) =  (Ay,y), where

1 2 Tr(w)
A =  2t •

|Tr(w) N(w)

Since |A| =  4t2N(w) — t2Tr(w)2, we have

1 2N (w) —Tr(w)

A -  =  | _ T r (w, 2 •

Then, it follows that

Q ' (y) =  (A_1y' y) =  4tN (w) —1 tTr(w)* ( 2N (w)y? — 2Tr(w)yiy2 +  2y2)  •

14



Now, consider

F  (x) =  £  e-2nt(^+Mi)(^+M2) =  £  £ g-2nt|^+«i|2 
^ea ^ea

Observe that the second equality follows from x i ,x 2 E R  and u  =  u2. Then, letting 

^ =  m 1 +  m 2w, we obtain

F (x ) =  £  e-2nt|mi+m2w+xi+x2w|2 =  £  e-nQ(x+m) =  £  f Q(x +  m).
meZ2 meZ2 meZ2

Using Poisson summation and Lemma 2.8, we get

F (x ) =  £  fQ(m)e2nt{m,x} =  - ^ =  £  exp( - nQ/(m ) +  2ni(m,x } ) .
meZ2 v A  meZ2

Solving

Ui =  xi +  Wx 2
<

u2 =  x 1 +  Wx2

for x 1, x 2, we get

wu2 — Wui 
x 1 = ----------= —

W — W
u1 — u2 

x2 =  ------- — .W — W

Therefore,

, . ( Wu2 — Wu1 \ ( u1 — u2 \
(m, x) =  mU ---------= —  +  m 2 -------- —

V w — w /  V w — w /

=  ^ w 1 ^(m2 — m1w)u1 +  (m1W — m 2 )u ^  .

To conclude this proof, set v =  m 1 w — m 2. Then,

(m, x) = ------ =  ( vu1 — vu2 ).
w — w \ J

15



Moreover,

Q' (m) =  4( n (—) -  f f r (—)2 ( 2 N ( —)m2 -  2Tr(w )m im 2 +  2m2)  

=  t( - 2-Y 2 > I2•t(— — — )2

As m runs through Z 2, v runs through O. Hence, we can conclude that

/  1 \ (  2n|v|2 2ni _  \
F (x ) =  — - ------- —  > exp ( - -------— 2 +  7------- = 7 (—vu1 +  vu2) ) • ■\ —it(— — —) /  Vt(— — —)2 (— — —) /

The next two results extend the series from the previous theorem to x 1 ,x 2 E C. 

We now give an abstraction of Proposition 11 from [18].

T h eorem  2.10. The series

F  (x) =  E  e- 2nt(̂ +Mi)(̂ +M2)
neo

and

\ (  2n|v|2 2ni _
G(x) =  > exp —----- — - +--------- =  ■ (—vui +  vu2)

Vt(— — — )2 — — — Jveo y '

are absolutely convergent for all x =  (x 1 ,x 2) E C 2 , and are uniformly convergent for all 

R >  0 in the region QR =  { ( x 1 , x 2) E C 2| max{|x1 |, |x2|} <  R}.

Proof: We first establish the convergence properties for F (x ). Let PM(x) =  2nt(^+u 1) (^ + u 2)

so that F (x ) =  e-PM(x). Since PM(x) =  2nt(|p|2 +  pu2 +  p u  +  u 1u2), substituting
^eo

u 1 =  x 1 +  —x 2 and u2 =  x 1 +  —x 2 into PM(x) yields

PM(x) =  2nt( |p|2 +  (p +  p )x 1 +  (p— +  p—)x 2 +  x 1 +  (— +  —)x 1x 2 +  |—|2x|).
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Therefore in QR, we have for all sufficiently large \h\:

Re(PM(x)) >  2nt(\h\2 — R\h +  h\ — R\^u +  p.u\ — R2 — R2\u +  u\ — R 2\u\2) 

=  2nt [\̂ \2 — R(\h +  h\ +  \ftu +  hu\) — (1 +  \u +  u\ +  \u\2)R 2]

>  c H 2.

(Observe that the last inequality comes from any quadratic polynomial q(t) is 0 ( t 2).) 

Now, it immediately follows that for all sufficiently large \h\, we have

\e-T(x)\ =  g-Re(PM(x)) <  g-CV|2 <  e-CM.

Since f>2̂ eO e-C|M| is a convergent geometric series, we conclude for any R >  0 that F (x) 

converges uniformly in QR by the Weierstrass M-Test (and consequently is absolutely con­

vergent for all x E C 2).

In a similar manner, one establishes the desired convergence properties for G (x). ■

Next, we give a generalization of the Theorem 12 from [18], using very similar ideas.

T h eorem  2.11. For t >  0 and arbitrary complex numbers u1,u2 we have

E  g - 2̂ - ^ ^  =  . . /  E  exp ( ■  (—vui +  Vu, })■—it(u — u ^ ^ ^  \t(u — u )2 u — u /^eo K ' veo K '

Proof: By Theorem 2.11, both sides of the equality in Theorem 2.10 define entire functions in 

x i ,x 2 E C. Since they are equal for real x i ,x 2, they must be equal by the Identity Theorem 

for analytic functions. ■

Next, we introduce our version Theta function for a number ring.

D efin ition  2.12. (Theta function) Define 9(t,a) =  hwa exp(—~2n= ■ t\h\2).
^eo “  “

17



Using the previous result, we now derive and prove the more general transformation for­

mula for the Theta function.

T h eorem  2.13. We have that d(t, a) satisfies the equation d(t, a) =  t 1 wa • 6(1, a).

Proof: Recall that

exp(—2nt(p +  « i ) (u  +  M2)) =  — exp f  2n|vl  ̂ +  2ni_  • (—vui +  Vm2^ )  .
1' —it(u — u) \t(u — u )2 u — u /teo  K ' veo K '

Let p E O be arbitrary. Using the change of variables u1 =  p and u2 =  z +  p on the result 

to Theorem 2.11. Then, the left side of the last equality transforms as follows:

Y  exp ( — 2nt(p +  ui)(p  +  U2 M =  ^ e x p  ( — 2nt(|^ +  p|2 +  z(p  +  p)) 1.
teo '  ' veo '  '

Moreover, the right side transforms as follows:

1 (  2n|v |2 2ni , _  )\
— ------ —  > exp  ------ — 2 + ------ =  • ( -  vp +  v(z +  p)) .- i t ( u  — u) \t(u — u )2 u — u )

Taking our new representations of the left and right hand sides and differentiating |wa| times 

with respect to z and simplifying, we obtain

V ( ^  +  p)wae-2nt(|M+p|2 +z(t+p)) =  ( _____1 _  V ' ^  ^  „wa . g ^ • (-vP+W+p)) .
^  V — it(u — u) )  ^teo  y K ' 7 veo

Upon setting z =  0, our equation becomes

/  1 \ 1+wa 2 , 2 2 .
W ( u  +  p)wae-2n,|"+p|2 =  ( ----- ------- —  ) • e ^EE2- • (vp-vp).
teo  w it(u  — u o  teo

Furthermore, by setting t =  - i (f_^) , the left hand side of our equation becomes 

Y ( »  +  p)wae-2nt|t+p|- =  Y  V"" • e ^ TM- = : % ,  a).
teo  teo

18



Next, note that whether — d =  1 mod 4 or otherwise, ■ (up — up) =  y -y  Im(vp) is

an integer; call it k. Then, e2nik =  1, rendering the corresponding factor in the sum above 

unnecessary. Thus, we have that

6 {T, a) =  ( i )  £  v’"“ ■ exK —T—iJyrT)
veo K '

=  t - 1-wa « ( 1  .a ) .

The last equality follows from re-indexing the sum, replacing v with v . ■

Next, we introduce and proof a functional equation for the L-function. We recall that a 

functional equation is an equation that specifies a function in implicitly form. We specifically 

use the functional equation for the Gamma Function, namely r (x  +  1) =  x r (x ). 

Abstracting yet another idea of [18], we give the following theorem.

T h eorem  2.14. Let £ (s, x wa) =  ( T-T ) S■ r (s  +  wjr1) ■ L(s, x wa). Then £(s, x wa) is entire and 

satisfies £(s, x wa) =  £(1 — s, x wa)-

Proof: Without loss of generality, we may assume that a is non-negative, since we have 

L (s ,xwa) =  L (s ,x -w“ ). Fix p G K  and a >  1. By using the definition of the gamma 

function followed by the substitution y =  t|p|2, we have that

r ( s +  Wa)  ■ |p|-2<"+t > =  f  |p|-2(s+? )  . ys+ wa-1 . e-y dy

0

=  J  |p|-2(s+wa)(t|p|2)s+wa-1 ■ e-t|M|2 ■ (|p|2 dt)
0

=  f  t‘ +“2?- 1e - ‘ '^2dt.
0
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Using this previous result, it follows that

 , w \ Xw“ (^)  , w \ ^wa
V 2 )  N ((u ))s V 2 )  |p,|2s+wa

_  c o

/ ,.wa
ts+¥-  • e - iM1 dt • î ^Upwa

0
c o

— J  p,wa • ts+ WT-1 • e - ^ l2dt.
0

Next, by the change of variables t — ( )v and dt — (JnJ)dv, we have

0  , . . I wa -i
r ( s  +  Wa\ | W 2U  — /  „w a e -(S )v M 2 t  J m b  2 -  • ( _ ^ L )d v

V 2 / N ( ( ^ ) ) s J \u  — u J l w  — uz
0

CO

— f - 2^ ) S+^  [  iiwa • e- ^ v 1 M 12 vs+wa-1dv.
Vu — u /  J

0

Thus, we have

. _v s+ wa_ 1 00
r ( s  +  Wa ) ( ^ - U )  2 i(s,X 'W a)— £  U w a  • e-  S ^ V  + S* ~l dv

 ̂ ™ ' (v)<O 0
CO

— -  £  f  Iiwa • e- ^  v 1 ̂  12 vs+w2a-1dv 
w veO 0

CO
— -  f  £  ^wa • e- : v  1 ̂  12 vs+wa-1dv 

w 0 veO
CO

— -  [  0(v,a)vs+wa-1dv. 
w 0

Next, we split up the integral and use the functional identity of the Theta function on the 

first term:
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s + wa 1

r ( s  +  f  a )  ( ^ 2 n r )  L (s ’ Xwa) =  — f  d{u,a)us+^ -1 +  J  d{u,a)us+^ ~ ldu
0 1 

1 c»

=  w [ /  9 (  1 , a ) vs-wa-2dv +  J  9 (v ,a )vs+wa-1dv . 
0 1

Applying the substitution t =  1 and dt =  — ̂ 2 dv on the first integral yields

1 C»

J  9^ — ,a jv s 2 -2dv =  J  9 (t,a )t-s+ ^  dt. 
0 1

Therefore, we have that

s + wa

r ( s +  w a )  f c —r )  ” L (s ' x' wa) =  w / 9(v-a ) ( v -s+“  +  v' +“ " 0 dv'
1

and we can conclude that

« s , x " “) =  — (  ̂  ) "  “ y  9 (v ,a ) (V +  “ -1 +  v - ' + v )  dv.
1

Since this integral converges absolutely for all s, this representation is an analytic contin­

uation of £(s, x wa) to the whole plane. The functional equation then follows, since the right 

side of our result remains unchanged when we replace s by — — s. ■

We use the notation ^  synonymously with our Big O notation. The following corollary 

follows from [—8].

C oro lla ry  2.15. In the strip — 2 <  a <  4 we have that L(s, x wa) =  k1ek2* for some constants 

k1,k2 >  0 dependent only on a.

Proof: First, we use our definition of f ( s ,x wa) and use our previous result to obtain the 

following equality.
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( ^ ) '  r ( . + w a  ) l ( „ w°) =  w  ( ) - ’  J ' M (  v + * - 1 + v -s+* )  dv
1

By combining terms we see that

— c i wa I I -i p̂ O
( f — ^ ) 2 F (s  +  Wl ) L (s ,X ” “ ) =  - [  0 M ( v ’ + wa-1 +  v -s+wa) dv

«  (°°e x p  (  — ) tl4+¥ - 1 du
J1 — f  /

«  O o(l),

due to the convergence of the integral for the Gamma function. Hence,

T, wo, (  2nt ) s+wa l _ /  l N
L(s, x  ) « o  --------- ---------- i— =  O j  ----------i— i— .

V f — f /  r (s  +  J^i) V |r(s +  w |)|J

Next, we apply Stirling’s formula, which states that in an angular region —n +  8 <  arg s <  

n +  8 for any fixed 8 >  0, we have as |s| ^  ro

lo g T (s) =  (s  — - ) log s — s +  - l og2n +  O(|s ! 1).

This implies that

log r (s )  =  ( 2  — s)  log s + s +  O ( l ) .

Since — n <  arg(s +  | WO |) <  f , it follows that in the strip — 2 <  8 <  4, we have

/  l \ l | wa | (  | wa | w a ,
R% lo g r (s +  | Wf | J = 2 log s +  1 ~2 1 — — ^ ^  log s +  ^ 1

| wa | | wa |
+  t arg +  —  J +  a +  —  +  O (l)

<  k2|t|
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for some constant k2 >  0. The corollary now follows from exponentiation both sides. ■

2.2. F in din g zero-free  regions o f  the H ecke L -function . We begin by citing two lem­

mas from Landau in order to help find zero-free regions for the Hecke L-functions L(s, x wa).

L em m a 2.16. (Landau [16]) Let r >  0 be constant. Suppose that f  (s) is analytic for 

|s — s0| <  r. Furthermore, suppose

-f TSr  <  eM for  | s — so| <  r 
f  (so)

and

f  (s) =  0 whenever |s — s0| <  r and Re(s) >  Re(s0). 

Then the following holds:

(1)

—» • (  f s )  < ^

(2) If there is a zero p on the line between s0 — | and s0 (exclusive), then

—R e ( T s t )  < 4 M  — _ l _ .
f ( s 0) r s0 — p

L em m a 2.17. (Landau [16]) Let r >  0. Suppose that f  (s) is analytic for |s — s0| <  r and 

on this region satisfies R e (f  (s)) <  M  for some constant M  >  0. Then for |s — s0| <  p where 

0 <  p <  r, we have

2r
If'(s )| <  t-----r- )2 (|M| +  |f(so)|).

(r — - )2

Next we cite the Phragmen - Lindelof Theorem on a half strip [3], an extension of the 

Maximum Modulus Principle to unbounded regions in the complex planes. This allows us 

to show that our L-function is bounded in the preceding proof.

23



T h eorem  2.18. (Phragmen - Lindelof) Let f  be a holomorphic function on the horizontal 

half-strip {z  =  a +  it : a <  a <  b and t >  to >  0} with fixed a, b, t0.

Suppose that for some a >  1, we have f  (a +  it) =  O(e*“ ) for all t >  t0, and on the sides 

of the half-strip f  is bounded. Then, f  is bounded on the half-strip.

Our next generalization from [18] gives a bound on the Hecke L-Function.

T h eorem  2.19. In the strip — 1 <  a <  4, we have that |L(s,xw“ )| <  ci(1 +  |a|)2(1 +  |t|)2 

for some constant c1 >  0 independent of a.

R em ark : We note that the labelling c1, c2, ... will be used to denote arbitrary, but different 

constants.

Proof: From the functional equation for the L-function, we have

l (  1| if * A  =  ( w " V 2-2“  r<2 — it +  f|a|) L l 3 i t , . « A
H  — 2 +  it,X )  =  w n r j  r (—2 + it +  wia|) L h — it,X ) ■

First we note that |L(| — it , x w“ )| <  N(M)3/2 =  O(1) due to p-series convergence. Thus,
(m)

we obtain

t (  1 , •. wa\ ^  r(3-it+ w |a|)
L {  — 1 +  it• X )  < c2 r (-22^it+2̂|o.|)

for some constant c2 >  0. By applying the functional equation for the gamma function, we 

obtain

l ( - i + i t  , x - )  <  d  r ( §1~ i t + f 'a '*( 2 +  , x ) <  2 r ( —1 +  it +  w|a|)

=  (2 — it +  f  |a|) (—2 — it +  f  |a| )F(—2 — it +  f  |a|)
=  c2 r ( —2 +  it +  w |a|)

1 w  1 w
=  c2 2 — it +  ^ |a| — 2 — it +  ^ |a| .
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Further simplification gives us

L (—2 +  i t ,xwa) =  j ^ ( 1 +  w|a|)2 +  4t2 ■ ^ ( - 1 +  w|a|)2 +  4t2

-  i 2 ( ( 1 + w|a|) + 2 |t 0  ( ( - 1 + w|a|) + 2 |t|)

<  4̂2 (̂w|a| +  w|a|) +  2 |t|j ^(0 +  w|a|) +  2 |t|j

=  ^ (w ^ a ^  +  2w|at| +  2 |t|2^

— |a|2 +  |at| +  |t|2 j  where K  =  max{2, w2, 2w}

<  ( |a|2 + |at| + |t|2 +  2 )

=  cs(1 +  |a|)2(1 +  |t|)2, where C3 =  K C2.

Furthermore, |L(4 +  it, x wa)| — N-1 )4 =  O(1) again due to p-series convergence. Thus
(m)

we obtain a similar result for L(4 +  it, x wa). Now consider the function

L (s ,x wa)
( ) (1 +  |a|)2(1 +  s)2.

As A(s) is holomorphic in the strip — 1 — a — 4, and since |A(s)| ^  ( ^ L 'p ^ i p , it 

follows that A(s) is bounded on a =  — 1 and a =  4 by above. Furthermore, it is O(ect) in 

the whole strip by Corollary 2.16. Thus, by Phragmen-Lindelof’s Theorem, we have that 

since our holomorphic function A(s) is bounded the whole strip, and the theorem follows. ■  

The following Lemma is a generalization of Lemma 19 from [18].

L em m a 2.20. In the strip 1 <  a <  2,

Z ( 1 < 2^(D)Ck (s ) < ------- r .a — 1

where D  is the discriminant of K .
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Proof: First of all, observe that we can factor CK (s) as follows:

zk ( s ) = n o  -  N (p )- *)-1
p

=  n  ( !  -  p- s ) -1 n  ( !  -  p- ’ ) -2 n  (1 -  p-2s) -1
p ramifies p splits p is inert

= n o  -  p - ’ ) -1 n  (1 -  p - ’ ) -1 n  ( 1 + p -s ) -1
p p splits p is inert

=  C (s )L (s ,x t

(n)On the previous line, L( s ,x )  =  ^  is the Dirichlet L-Function for the x-character
n=1

x(n ) =  ^ ^ , being the Kronecker extension of the Legendre/Jacobi symbol.

To conclude the proof, it remains to bound both C(s) and L(s,  x). First of all, since a >  1, 

we have

CO

1 2
|C(s)| s  T £  1 +  /  du =  1 +  — -  <  — -. 

n =  1 a - 1 a - 1

Furthermore, to bound L(s ,x ) ,  we employ summation by parts:

L ( s , x ) =  ^  =  /  u - ’ dE  x (n)}  =  s f  u - ’ - 1 ( ^  x (n)) du
n=1 1 n<u 1 n<u

Since | ^  x(n)| £  f ( —) for all x  >  1, by [11], we conclude that |L(s,x)| £  f ( —), and the
n<x

lemma then immediately follows. ■

Now we give our general theorem that defines so called “Zero-Free Regions” for the Hecke 

L-Functions. The benefit to having such regions allows the possibility of having joggx in our 

results without the need to mention domain restrictions.
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T h eorem  2.21. There exist constants c5,c 6 >  0 such that L (s ,x wa) has no zeros in the 

region defined by

1 ---------- 7----1---------- y for |t| >  C6
a >  J C5 log ((i+M)(i+|t|)J

1 ---------- 7-----1----------- y for |t| <  C6.
C5 log((1+M)(1+NI))

Proof: Logarithmic differentiation of (1) yields

L \ s ,Xwa) ^  x wma(p)logN (p )
L (s ,x wa) y  mLi N (p)ms

for a >  1. We recall the definition of dp as the unique angle in (—W, W]. In terms of dp we 

have, for every p and m,

Xwma(p)logN (p ) logN (p) ( . .  n ^
-------N ( p p ------- _  N (p) J  exP ( i(wma0p -  mt log N (p ))J .

Using the inequality 3 +  4 cos 0 +  cos(20) _  2(1 +  cos 0 )2 >  0, we deduce that

R e r _  3 C K ( ^ _ 4 /L '( a  +  it, x wa) (  L '(u +  2it, x 2wa)\ l (2)
L Zk (a) V L (a +  it, Xwa) /  V L (a  +  2 it ,x 2wâ  ( )

_  S  ^ ( 3+ 4 cos iwma9p — mt log N (p)y

+  cos(2wmadp — 2mt log N (p)) j >  0.

Now, let s0 _  p +  i r , where 1 <  p <  2 with p being suitably chosen as a function of t . In 

the disk |s — s0| <  | we have, by Corollary 2.20 and Lemma 2.21
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< c i ( l  +  |a|)2(1 +  |t|)2|L(s0,x w“ ) x\

n i i i\2n i ui\2 p (a )X_a(a)=  c i (1 +  |a|)(1 +  |(|) ^  N  (a ) »
(a) { J

<  ci(1 +  |a|)2(1 +  |t|)2(K(p)

<  l (1 +  |a|)2(1 +  |t|)2.
P -  1

Suppose now that p +  ir  is a zero of L(s, x _ a), where p — | <  p <  p. Then, by applying 

part 2 of Lemma 4.1 with r =  | and

M  =  l o g ( y —j (1 +  |a|)2(1 +  |r|)2)  ,

we find that

— R e( L f i + l y w a y )  < 16 M C  +  k O a  +  k D — 8 lo g (p — 1) +  <*■ (3)

z
In regards to ^ , we note that because of the simple pole at 1,

CK(p) „  1 , (A\
— < ------ T +  c io. (4)Ck (P) P — 1

Now (2), (3), and (4) imply

—  <  - 3 r  +  80 log ((1 +  | a | )(1 +  | T| )) — 40 log(P — 1) +  cii. (5)p — p p — 1 3 v 3

We may choose c6 sufficiently large to ensure that for |t | >  c6

40log(100log(2(1 +  |t|)) +  3cii <  20log(2(1 +  |t|)),
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and for all a =  0

40 log ^100log ((1 +  |a|)(1 +  |t |))^ +  3cn <  20log ((1 +  |a|)(1 +  |t |)). (6)

Now we set

1 +----------^ ----------- v for |t| >  Co
=  1 100log ((1+|o|)(1+|r|)

p \
1 -----------( —----------- y for |t| <  Co.100log((1+|o|)(1+|r |)

First, suppose that t >  c6. Put L =  log ((1 +  |a|)(1 +  |t |)). Then (5), multiplied by 3 

becomes

12
-------- <  980L +  40log(100L) +  3cn .
P -  P

Thus, by (6) we have that p—_ <  1000L, and hence

P <  1 +  _J____ 1 ^  =  1 ______L_U' ^  ^  100L 1000L 500L

for all eventual zeros p +  It.

Next, suppose that |t | <  c6 and put L  =  log ((1 +  |a|)(1 +  |c61)). In a similar manner, we 

find that

1
P <  1 -  500L ',

thereby finishing the proof of this theorem.

L em m a 2.22. On the line a =  2, we have | log L(s, x wo)| <  c16 for some constant c16 >  0.
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Proof: Writing s =  2 +  it for some t E R, we have

1 _ T T | . V '“ (P)
|L(s, x w“ )l ^ 1 N (p )s

<  n ( 1 + n ( p ) -2 )
p

<  1 +  £  N (a )-2
a

=  1 +  (k  (2 * * * *).

Moreover, since \\wa(a)| =  1 for any nonzero ideal a in O, we have

|L(s,Xwa)\<  E  i N j P |  =  =  Zk(2).

Thus, 1+z (̂2) <  \ L (s ,x 'a)\ <  ZK(2), and we conclude that the logarithm of the L-function 

is bounded as well. ■

The ideas for the proof of following theorem were taken from ([18], Theorem 22).

T h eorem  2.23. In the region Q defined by

1 ---------- 7— 1----------- v for \t\ >  C6
3 >  a >  J C12 log((1+|a|)(1+|t|)J

1 ---------- 7— 1------------y for \t\ <  C6
C12 log ((1 + M)(1 + |c6 I))

where c12 >  c5, we have

<  C13 log ^ (1 +  \a\)(1 +  m ax(\to\,c6))^  .

Proof: Let c14 >  c5. For every s0 =  2 +  it0 on the line Re(s) =  2, let Cs0 be the circle with

center at so and radius
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1 +--------- 7— 1------------ y for |t| >  C6
r ) C14 log ((l+|o|)(l+|t0|)J

1 +--------- 7— 1------------ y for |t| <  c6.C14 log ((1+|o|)(1 + |C6|)J

We may freely assume that c6 >  2, so that (1 +  |a|)(1 +  c6) >  3. Then we have for s =  a +  it 

in Cso:

log ( (1 +  |a|)(1 +  |t|)) <  log ( (1 +  |a|)(3 +  |to|))

<  log ( (1 +  |a |)(1 +  |to|)) + lo g 3.

Thus we obtain

2 log ((1 +  |a|)(1 +  |to|)) for |to| >  C6
log ((1 +  |a|)(1 +  |t|)) < ^  (7)

2 log ((1 +  |a|)(1 +  |ce|)) for |to| <  cfe.

Now we use Lemma 2.18 with f  (s) =  lo g L(s, x wo), which is analytic in the zero-free region 

of Theorem 2.22, and thus analytic in Cs0.

Also, by Theorem 2.20

|L(s,xwo)| < c i (1  +  |a|)2(1 +  |t|)2

in Cso, so by (7)

R e (f  (s)) =  R e(log (L (s ,xwo)))

<  4 log ((1  +  |a|)(1 +  |t|) +  logci

<  4log ^ ( 1  +  |a| ) (1  +max(|to|, c a )^  +  C15.
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Now, we set

1 +----------7— 1------------y for |to| >  Co
p I C12 log ((l+|a|)(l+M))
P 1

1 +----------7— 1------------y for |to| <  Co,C12 log((1+|a|)(1+|c6|̂

where c12 >  c14. Then, Lemma 2.17 with M  =  4log ((1 +  |a|)(1 +  max(|t0|, c6))) +  c15, and 

Lemma 2.23 imply that in the disk |s — s0| <  p, we have

L ^ w a )  <  ( T ^ P ^ ( 4lo^ (1 +  |a|)( 1 + max(|t0|, c6)^  +  c15 +  |f(s0) f)

=  4 l o ^ ( 1  +  |a|) (1 +  max(|to|,Ce)^ +  c ^  ,

where c16 =  c15 +  |f (s0)|. However,

2r 2r f  \
(r _  p)2 =  (A____]_)2 log ^ (1 +  M K 1 + max(|t0|,C6))J

<  (_L 4  _ 1 )2 log ^ (1 +  |a|)( 1 + max(|to|,C6)^  .
(C14 C12 )  ̂ '

Now, the statement of the theorem follows. ■

2.3. G row th  estim ates for sum s o f  H ecke characters. In the following section, we find 

growth estimates on the sums of Hecke characters.

D efin ition  2.24. Let K ( s , x wa) =  X—N p yN(p), for any a >  1.
p

It can be readily checked that this series is analytic for a >  1, being absolutely convergent 

for a >  1 and uniformly convergent for a >  1 +  8 for any 8 >  0. Moreover, we have the 

following generalizing result.
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L em m a 2.25. K (s , x wa) is analytic in the region Q of Theorem 2.24 and satisfies in Q

C15 log3 ((1 +  |a|)(1 +  |t|)) if |t| >  Co
|K (s,xwa)|<  <

C15log3 ((1  +  |a|)(1  +  |Co|)) if |t| <  Co.

Proof: By Proposition 2.4 we have for a >  1

K ( .a . L '(s ,x wa) ^  V  x wa(p) log N(p)
( ,x  ' L (s ,x wa) Y N (p)™  . ( '

However, the logarithmic derivative is analytic in Q, and the sum on the right is absolutely 

convergent for a >  1 and uniformly convergent for a >  1 +  5 for any 5 >  0, because

y ^  ^  log N (p) =  y ^ ______ log N(p)________

, N (p)m( 1 , N (p )1 +"(N (p )2 +  -  1)

< 2 W  log p2
p p 2 +  (p 2+5 — 1 )

< 4 E  --------^=2 n 2 +  (n 2+  — 1)

< 4 w
<  4 n1+2S ,

n=2

and this later sum is seen to be convergent upon comparison with ^  nl+2̂ _e, where we choose 

e such that 0 <  e <  25 (note that we are using the fact that for any constant c >  0, we have 

log x < xc for all sufficiently large x).

Then, (8) constitutes an analytic continuation of K (s ,x wa) to Q (since Q lies to the right 

of the line a =  2). From (8), it is also clear that in Q,

T>(a xwa)
K ( s , x wa) +  r ( , x  ) <C17

L( s , xwa)
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for some constant c17. Therefore, in Q we have

\K(s,xwa) | <  C13 log3 ^ (1 +  \a\)(1 +  max(|fo|,C6)^ +  C17

<  C15 log3 ^ (1 +  \a\)(1 +  max(\io\,C6)^ . ■

L em m a 2.26. ([18], Lemma 24)

2+r xs 0 i f  0 < x <  1

d* =  
2—vx 2ni log x i f  x >  1

2
Proof: Let x >  0 be fixed. The function Y  is analytic in the whole plane, except for a 

double pole in the point s =  0 with residue log x. Assume first that 0 <  x <  1. Using the 

integration contour of Figure 1, we have by Cauchy's Theorem

2+iR

xs ( xs
-  d s+  -  ds = °.

2-iR YR

However,

f  x s x 2
 S2ds -  ,

YR
so by letting R oo we get

2+i<̂ f ? ds =  0.
2—i<̂

Next, assume that x >  1. We then use the contour of Figure 2. Since the pole lies inside 

the contour, by Cauchy’s Theorem we get that

2+iR
xs xs
— ds +  ~Yzds =  2ni log x.s2 s2

2—iR wr

However,

f  x s x s S ds -  '
wr
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so again, letting R ^  <x, we see that

2+i<̂
x s

ds =  2ni log x. ■
s2

2—i<x>

The next generalization of Theorem 25 in [18], allows us to compute sums of prime ideals.

T h eorem  2.27. For x >  1

Xw“ (p) lo g —(p) log . ^  xe 18i°g(i+M)+vi°gx log3(1 +  |a|).
N(p)<x (p)

Proof: By Lemma 2.27,

2+i^ 2+i^
—  f  X !K (s v ” )ds =  —  I' - ( X'w° (p )lo sN (p b ds (9)
2ni s2K (s ,X )ds 2ni s'2 N(p)< ds 19

2—i<̂  2—i<̂

The latter integral simplifies as follows:

£  x ”“ (p)iog ds
P , )

=  £  Xw“ (p)log —(p) log ,
N(p)<x (P)

which is the sum we want to approximate. Now let w be the curve defined by
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1 — y 1 T f or |t| >  c6a =  ) C12 log ((1+M)(1+|t|)}

1 — y 1 t for  |t| <  C6.C12 log (1 + |o|)(1+|c6|)

We claim that

2+i<̂

/ xS xS
- K ( s , x wa)ds =  - K ( s , x wa) ds. (10)

2-i<x> w

To see this, consider for large T  the contour r T defined in the following manner:

• From 2 — iT  to 2 +  iT  in a straight line,

• From 2 +  iT  to 1 — d i  +  iT  in a straight line,

• From 1 — c l i  +  iT  to 1 — d i  — iT  along u,

• From 1 — — it to 2 — iT  in a straight line.

For the aforementioned contour, we are letting L =  log ((1 +  |a|)(1 +  |T|)).
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Since the integrand is analytic inside and on r T, by Cauchy’s Theorem,

2-iT 1 c112L +iT 1 c112L iT 2-iT

0 =  J  X  K  ( s ,x w“ )ds = ( +   +  +  ) x ?  K  ( s ,x w“ )ds. (11)
rT 2+iT 2+iT 1---- 1 +iT 1---^ -iTc12L c12L

By Lemma 2.26,

, 2±iT

^ K ( s , x w“ )ds < T C15 log3 ((1 +  |a|)(1+ T )),
1____1__C12L±iT

which goes to 0 as T  ^  ^  in (11). Hence, the horizontal integrals vanish, implying (11). 

Thus we need to approximate the integral along u. Now, for an arbitrary t >  c6, we have 

by Lemma 2.26

C6 i________ 1_______
f  Xs f  x c12 los((1+|a|)(1+C6)) 0 „

J s  K ( s , x wa)ds « J  ----------------------------log3((1 +  |a|)(1 +  c6)) dt
w 0

T tt 1 1
(  f  f \ x 1 c12log((1 + |a|)(1 + t))

+  { J + J  ) ------------12------------ log3((1 +  |a|)(1 +  t)) dt.
C6 T

The upper bound for the right side can be further simplified to

1________ 1_______ Q
x 1 c12log((1+|a|)(1+c6)) log3(1 +  |a|)

tt
i 1------, ((1+, ,)(1+ )) tt log ( (1 +  |a|)(1 +  t)) J4_+  x c12 log((1+|a|)(1+T)) I ------- ------------------------— dtt2

1
tt

+  x J log3 ( ( 1 +  )2a|)(1+ f)) dt.
T

Putting together the first two terms in the previous line, we may further asymptotically 

simplify to

xe c12log((1+|a|)(1+T)) log3(1 +  |a|) 

x
+  -  log3 t log3(1 +  |a|). 

t
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By setting t  =  e^log x, we get

<
xS 1 log X 3 .___  \
— K (s ,x wa)ds <  x log 3(1 +  |a|H e-Cl9i°gd+i“i)+vTogx +  e3 loglogx^ /logx j .

However, for sufficiently large x,

3 lo g log x -  V b g x  <  C20Vl° g x <  c20,— ^ ^ X— ,
2 log(1 +  |a|) +  Vlog x

so letting c18 =  m in(c19,c 20) and recalling (9) and (10), we deduce that

^ ^  X _c ____ log X_____
y   ̂ Xw“ (p )logN (p )log  N  \ ^  xe-  18iog(i+iai)+v'i°gX log3(1 +  |a|). ■

N(p)<x (P)

T h eorem  2.28. For x >  1, we have

»  ̂ c log X ^
y  y Xw“ (p) logN (p) ^  xe-  21 i°g(i+|a|)+viogx log3(1 +  |a|).

N(p)<x

_ 1 c ____ log x____
Proof: Set for short 5 =  5(x) =  e 2 . With x replaced by

(1 +  5)(x), Theorem 2.28 gives

_ (1 +  5)x —c ____lQg(i+̂ )x
Xw“ (p)logN (p ) log . ^  (1+5)xe 18log(i+|a|)+vlog(i+«)x log3(1 +  |a|) ^  52x log 3(1 +  |a|).

N(p)<(1+5)x (P)
(12)

We will now split the sum on the left in two parts. First, again using Theorem 2.28, we 

have

S  x w“ (p )l° g N (p )l° g (1N+(p5))x =  S  x w“ (p )log N (p^ log (N+py) + l o g N p y )  (13)
N(p)<x N(p)<x

Upon splitting the terms in the product, the right side of the previous equality becomes
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£  Xw“ (p)log N (p )lo g (N _ ^ +  £  x w“ (p)log N (p)log —£
N(p)<x (P) N(p)<x (P)

=  log ( i +  S') £  x w“ (P)lo g N (P) +  £  x w“ (P) lo g N (P)lo g N p )
N(p)<x N(P)<x (P)

=  log (1 +  S) £  x w“ (P) lo g N (P) +  0 ( s 2x log3(1 +  |a |)).
N(P)<x

Secondly,

£  Xw“ (P) l o g N (P) log ^  Sx log ((1 +  S)x ) l og(1 +  S)
x<N(P)<(1+5)x (P)

^  S2x log x,

since the number of terms in this sum is O(Sx). By (13), we have

lo g (1 +  S) £  x ” (P )lo g N (P )=  £  x ”” (P)logN (P) log (1N -S )x
N(P)<x N(P)<x (P)

+  0 (S 2x log3(1 +  |a|))

=  £  x w“ (P) log N (P) log
N(P)<(1+5)x (P)

-  £  x w“ (P)lo g N (P) log (1N+7P)x
x<N(P)<(1+5)x (P)

+  0 (S 2x log3(1 +  |a|)).

Remark, label our last equation as (14).

From (12) and (13), we note that

S2x log3(1 +  |a|) +  S2x log x +  S2x log3(1 +  |a|) 

=  0 (S 2x log x log3 (1 +  |a|)).
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Therefore, we can rewrite (?? ) as

Y  XWa log N (P) <  l Q +  e) X log X l0g3(l +  M )
N(p)<x 0g( +  )

^  lx  log x  log3(l +  |a|)

=  xe 2c18i°g(i+|a|)+viogx+loglogx log3(l +  |a|) 

=  xe 21log(1+|a|)+^logx log3(1 +  |a|). ■

12

We now give a final growth estimate.

T h eorem  2.29. For x >  1, we have

XWa(p) ^  xe-C21 log(1+|af) + VT0gX log (1 + |a|).
N(p)<x

Proof: Let

>% ) =  £  Xwa(P) logN (p).
N(p)<x

By partial summation, we obtain

V  Xwa(p) =  V "  ^ (m) -  $ (m -  !)
X (p) log m

N(p)<x 2<m<x °

=  Y  d (m ) f — __________ 1_____ ^ ^ ___
2<m<x Vlog m log (m + 1)J log ( [x ] +  1)

Then Theorem 2.29 yields

^ ^   ̂ logm 0 1 1
Y  X (P) <  Y  me log(1+|a|)+vlogm log3(1 +  ------------ --— -— ——

Np<x 2<<m<x v logm  log(m  +  1)7

+  xe 21log(1+|a|)+vl°gx log3(1 +  |a|).

_c21____logx_____
Since xe log(1+|a|)+vl°gx is monotone and increasing for sufficiently large x,
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^ ^  _ _ log m , ,s f  1 1 \

2<m<x Vios m iog (m + 1) /

xe ^ g a + M H V ^  v  i ----------- ------------------ i
2<m<x v log m lo g (m + 1 )^

_C21 ____lOgLX____  (  1 1 \
^  \log 2 log([x] +  1)7

log x
^  xe C21log(i+M)+V°gx log3(1 +  |a|).

This completes the proof of Theorem 2.30.

2.4. P r o o f  o f  the A n gu lar P rim e Ideal T h eorem . We are almost ready to prove the 

Angular Prime Ideal Theorem. The final ingredient to prove this is a little Fourier analysis. 

More specifically, we apply a lemma of Vinogradov that will prove useful in the preceding 

results. The two lemmas construct two periodic functions which attain the value 0 on a 

particular interval, 1 on another interval, and some values between 0 and 1 exclusively 

elsewhere. By creating these two functions, we find the upper and lower bounds for our 

function n (x ; 0 i, £2) that gives us the desired result.

L em m a 2.30. (Vinogradov, [18])

Let r be a positive integer, and let a,£,  and A  be real numbers satisfying

0 <  A  <  1 and A  <  £  -  a  <  1 -  A.

Then there exists a periodic function £ (x ), with period 1 satisfying

(1) £ (x ) =  1 in the interval a +  i| <  x <  £ — i| ,

(2) £ (x ) =  0 in the interval £  +  i| <  x <  1 +  a — ,

(3) 0 <  £ (x ) <  1 in the remainder of the interval a — i| <  x <  1 +  a — i| ,
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(4) -0(x) has an expansion in Fourier series of the form

'fi(x) =  (0 — a) +  ( am cos(2nmx) +  bm sin(2nmx) J,
m= 1 '  '

where

|am|, |bm| <  2(nm )-1 ,

|am1, |bm| <  ( n r n X n r n x )  •

L em m a 2.31. Let 5 >  0 and suppose 25 <  02 — 0 1 <  2n — 25. Then there exists 2n-periodic 

functions f  (0) and f  (0) such that

(1) f  (0) =  1 if 0 i <  0 <  02

f  (0) =  0 if 02 +  5 <  0 <  2n +  0 1 — 5

0 <  f  (0) <  1 in the rest of the interval 0 1 — 5 <  0 <  2n +  0 1 — 5.

(2) f  (0) =  1 if 01 +  5 <  0 <  02 — 5 

f  (0) =  0 if 02 <  0 <  2n +  01

0 <  f  (0) <  1 in the rest of the interval 0 1 <  0 <  2n +  0 1.

(3) If

f (0) =  £  (0) =  £
n=-<x> n=-<x>

then we have

a0 X (02 0 1 +  5), an 1 j", an W To2n |n| 5|n|1 2

1 , . . n  1 1
a0 =  2n (02 01 5), an ^  |n| , an ^  5|n|2 .

Proof: This follows directly from Lemma 6.4 if we take x =  on0 and r = 1 ,  setting for f ,

1 1 1 1 1
a =  —  0 1 — — o, p =  —  02 +  —  5, A  =  —  5,

2n^ 2n 4n^ 2n 2n
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and for f

1 , 1 „ 1 1 . 1 r _
“  =  Tn'h  + tJ -  = 4 7h  -  tJ -  a  =  2 A  ■

Now we prove the result regarding the distribution of prime ideals within a circular sector. 

Proof of the Angular Prime Ideal Theorem 1.17: Define the functions f  ( ' )  and f  ( ' )  as in 

Lemma 2.32 with 8 =  e-C26̂ logx.

Then we get

n (x ; ' i , ' 2 ) =  E  1 <  E  7 (0p)
N(p)<x N(p)<x

3i<$p<32
<x

=  E  E  (P)
N(p)<x —ro

=  aoTT(x) +  E a n ( E  Xwn(P ^  •
n=0 AN(p)<x

Thus by Theorems 1.13 and 2.30,

n (x ; ' i , ' 2) <  2^(02 -  ' 1 +  8 )(L i(x ) +  O (xe—C27' l̂ogx))

+  O| E  |an|xe—C21log(1+|n|)+^l°gx log3(1 +  |n|)J • (10)
 ̂n=1 '

Analogously we deduce

n (x ; ' 1  , ' 2) >  E  7 W  -  E  E  s » V ,n(p)
N(p)<x N(p)<x — ro

=  2 n ( '2  -  ' 1  -  8) (L i(x) +  O (xe—C27' l̂ogx))

+  o i  E  |an|xe—'c21l°g(i+ini)+vi°gx log3(1 +  |n|) J • (11)
 ̂n= 1 '
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We examine the sum on the right side of (9). By the bounds on \an\ in Lemma 2.32 we get, 

if we split the sum in two parts:

»  ̂ _ log x
y   ̂\an\xe-  21 iog(i+|n|)+vr°gx log3(1 +  \n\)
n=1

log3(n) - C21------logx , log3(n)
w  x y  — -e iog(i+« 2+viogx+ x y  — — — .

z— ̂ n on21<n<S-2 n>&-2

For the first part we note that log(1 +  0 2) W log 0 2 W ^ log x, and thus

y  log3(n) e- c21iog(i+wg2x+vio^ <  log3(0- 2)e -c28di°W y  1
i<n<^-2 n i < n y 2 n

<  e-c28dl°gx log4(0-2 )

=  e-c28^  (2C26 y i o g x  )4

<  ec29 / l o g  x.

For the second part, we have

log3(ny .  1log3(0-2) 0, 3/.-2N
W = 0 l og ( 0  >n>S 2

=  e-C26VIogx(2c26/ l o g x ) 3 <  e-C3oVEgx.

Obviously, we have the exact same bounds for the corresponding sum in (11) containing 

an. Thus (10) and (11) yield

n (x ; 0 i ,0 2 ) -  ^20 ^  Li(x) W xe-c25^l°gx,
2n

and we are done. ■
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3. A pplications of the angular prime ideal theorem

3.1. V ariations on  a T h em e. In this section, we discuss a few variations on the angular 

prime number theorem. In particular, we develop an angular prime number theorem for an 

imaginary quadratic ring.

In order to arrive at such a result, we recall a result of Landau from 1918 concerning the 

equidistribution of prime ideals in ideal classes.

As a reminder about ideal classes in a number field K , we denote I ( K ) as the group of 

fractional ideals of K  and P ( K ) as its subgroup of prinicipal fractional ideals. Then, we 

define the class group of K  as

C l (K ) =  I  (K  ) /P  (K ).

The order of C l (K ) is denoted as h, the so-called class number. With this notation, we now 

state Landau's equidistribution theorem.

T h eorem  3.1. (Landau, [15]) Fix an algebraic number field K  with ring of algebraic integers 

O, and let C E C l (K ). Let n (x ; C) denote the number of prime ideals in a fixed class C of 

O with norm at most x. Then for all x  >  3, we have

n (x ; C) =  1  Li(x) +  O(xe -cVIogx), 
h

where c is a positive constant depending only on K .

Using Landau’s Theorem in lieu of the Prime Ideal Theorem applies to an imaginary 

quadratic number ring, we obtain the following angular prime ideal theorem.

T h eorem  3.2. Fix — W < 0 1 <  02 A w. Let n (x ; 0 i ,0 2,C) denote the number of prime 

ideals in a fixed class C in a sector [01, 02] of an imaginary quadratic number ring O with
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norm at most x. Then, we have

n (x ; 0 i ^  c )  =  ^ ^  L i(x) +  O (x exp (—- n / log x ̂

where n =  [K : Q], and b is a positive constant independent of K .

Corollary 3.3 follows if we consider the trivial class P  of principal prime ideals; this 

corresponds to prime elements in O (up to associates). We call this an “Angular Prime 

Number Theorem” .

C oro lla ry  3.3. (A ngu lar P rim e N u m ber T h eorem )

Fix —n < 0 i  <  0 2 <  Ww. Let n (x ; 0^  0 2, P ) denote the number of prime elements in a sector 

[0i, 02] of an imaginary quadratic number ring O with norm at most x. Then, we have

n (x ; 0 i ,0 2,p )  =  ^ 0227rfr01)  L i(x) +  O (x exp ( - - n / log x )), 

where n =  [K : Q], and b is a positive constant independent of K .

R em ark : We can also state a version of this theorem where we remove the restriction of 0 1 

and 02 to simply being angles in [0, 2n). Since there is a “w to 1” correspondence of elements 

in O to principal ideals in O, one simply multiplies the principal term of n (x ; 0 1,0 2, P ) by 

a factor of w:

n (x ; 0 i , 0 2 , P ) =  ^ W(022nh 0 l ) )  L i(x) +  O (xexp (—- bn \ /lo g x )).

3.2. Q uotien ts  o f  prim es in an im aginary quadratic  num ber ring. Although it is 

a standard fact from Real Analysis that Q is a dense subset of R, it may still come as a 

surprise that the set of quotients of prime numbers is a dense subset of R. More recently, 

Garcia proved that the set of quotients of prime Gaussian integers is a dense subset of C [7].
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Inspired by this, Sittinger [22] extended Garcia’s result by using the angular prime number 

theorem (Corollary 3.3) to prove the following:

T h eorem  3.4. (Sittinger, [22]) The set of quotients of primes in an imaginary quadratic 

ring O is dense in the complex plane.

Proof: It suffices to show that any annular sector {z  E C : f 1 <  arg z <  f 2, 0 < r <  |z| < R}  

contains a quotient of prime numbers in O. Moreover, since associates of primes are again 

primes, we can assume without loss of generality that f 1, f 2 E [0, ], where w denotes the

number of units in O .

For any 9 E (0, 2n], it follows from the angular prime number theorem that

h m  Kr t ° - 9- P ) - n ( R ; 0- 9' P ) ]  =  ~ .

This means that there exists x0 >  0 such that

n ( r 2 ; 0, 9, P^ -  R _ ; ° , 9 , p )  >  2 for all x >  xo.

Moreover, the angular prime number theorem implies that there are infinitely many prime 

numbers in O in the sector ( f ^ f R .  Therefore, there exists a prime number n1 in the sector 

( f n f R  with sufficiently large magnitude (N (n 1) >  x0) such that

n (  R b  ■;0- i - P’ )  -  n (  Jr t  ; ° ' ^ ' p  )  > 2

where f  =  m in { f2 — arg(n1), arg(n1) — f 1}.

Next, the inequality in the last assertion implies that there exists a prime number n2

satisfying -L1-! <  |n2| <  -L i! and 0 <  arg(n2) <  f .

From this, it now follows that r <  —  <  R and f 1 <  arg ( —1 ) < if2. ■
Vn2/
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3.3. P rim es o f  the form  x 2 +  ny2 in a sector. In this section, we show how to apply 

the angular prime number theorem to give us sharper (natural) density results for certain 

positive definite quadratic forms.

As an illustration of such a result, we first consider an extension of the problem concerning 

of primes of the form x 2 +  5y2 (for some integers x  and y).

E xam ple 3.5. Suppose that we want to know the density of primes of the form x2 +  5y2 

that lie in the sector in the xy-plane bounded by f 1 =  | and f 2 =  | in the first quadrant.

The key idea is to note that x 2 +  5y2 =  N (x + yy/-5) in O =  Z [V —5]. Then, it is equivalent 

to find the density of prime elements in O that have prime norm.

Since such elements are in 1-1 correspondence with generators of principal ideals in O, we 

consider the principal ideal class in O. As it is known in O that h =  2, Corollary 3.3 yields

n (x ; 3 , 2 , p )  =  24L i(x) +  ° ( x e xp (- - b2 V lo g x )).

In other words, A  of the rational primes are of the form x 2 +  5y2 and lie within the given 

sector.

We now state a theorem that generalizes what we have just seen in this last example. We 

content ourselves with considering the case that d ^  1 mod 4.

T h eorem  3.6. Suppose that d >  0 and d ^  1 mod 4. Then, the density of rational 

primes of the form x 2 +  dy2 lying between lines passing through the origin with arguments 

0 <  f 1 <  f 2 <  2 is equal to 3?— , where h is the class number of Oq^̂ —i).
2n h

Proof: Consider the imaginary quadratic number field K  =  Q (^ /—d). Since d ^  1 mod 4, 

we have O K =  Z [V —d]. Then, noting that x2 +  dy2 =  N (x  +  yy/—d), it suffices to find the 

density of elements in O that have prime norm (and are thus primes in O) and are in the
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sector (<£i ,<£2). Since such elements (are in 1-1 correspondence with generators of principal 

prime ideals in O, we consider the principal ideal class in O. Then, Corollary 3.3 yields the 

desired result. ■
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