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A b s t r a c t

Tortuosity is an intuitive term used to describe paths on the plane that exhibit 

multiple twists and turns. It is used in a variety of applications as a measure of 

how much a path deviates from a straight line, especially to analyze images. 

However, unlike curvature, tortuosity does not have a good mathematical def

inition yet. Nor is there a consensus on how to measure tortuosity.

This paper examines the information obtained from curvature and how it ap

plies to the measure of tortuosity. Methods from the literature are examined 

and a new method is proposed using multiple measures instead of a single 

value.
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Chapter

1

T o r t u o s i t y

1 .1  I n t r o d u c t i o n

The word tortuosity is an intuitive term used to describe paths that exhibit 

multiple twists and turns. It is often used to describe very commonplace 

shapes, like that of a road or a river. It is usually something that is not straight, 

nor is it a gentle curve. Rather, it is something that is crooked, lumpy, or 

misshapen. Definitions and descriptions of tortuosity often use phrases like 

“marked by repeated twists, bends, or turns” [PBG+81], “serpentine” [HGC+99] 

and “a type of geometric irregularity.” [Jos12]
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Figure 1.1: A tortuous river (m eander o f Nowitna River, Alaska) [riv]

Mathematically, tortuosity should be a measure of how much a path deviates 

from a straight line. However, there is no commonly used way to measure 

tortuosity. Many have been proposed, but none have gained widespread ac

ceptance as they do not capture the concept well. The literature on tortuosity 

shows little consilience towards a single description. This, in spite of the great 

advantage in having an objective measure of tortuosity, one that does not rely 

on the subjective opinion of a human observer.
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The goal of this paper is to develop an objective measure of tortuosity based 

on the information that can be extracted from a path, and that describes its

twists well.

This paper examines the mathematical definition of curvature of a curve and 

applying it to define the measurement of tortuosity. We review the literature 

and examine various algorithms that have been proposed to measure tortuos

ity of paths. Finally, this paper proposes using multiple measures of tortuosity 

to improve the ability to distinguish various shapes as a single measure can

not capture all of the information needed to describe tortuosity in a way that 

is useful to an application.
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1.2 Guidelines for Paths

In this paper we use the word “path” for various non-self-intersecting curves 

in R2 being measured for tortuosity.

We give some examples here to underline the restrictions on the types of paths 

that one considers. Note that all paths have a starting point and an end point.

Figure 1.2: Paths cannot have any gaps, i.e. we consider only continuous paths.

Figure 1.3: Paths cannot have any sharp corners, i.e. we consider only locally differen
tiable curves.
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Figure 1.4: Paths cannot have any loops, or self-intersections.

1.3 Formal Definition for Paths

A path is described by a parametric equation P (t) = (x (t), y (t)) over the non-empty 

interval [t0, t1] and is subject to the following restrictions:

(a) P (t) is continuous and differentiable over the interval [t0, t1]

(b) If a = b then P(a) = P(b) for all a, b e [t0, t1]

5



1.4 Examples

1. P (t) = (t, t) defined on [0,1] gives a segment of the straight line y = x in R2.

Figure 1.5: Segm ent o f the Straight Line y = x
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2. P (t) = (sin t,cos t) on [0,n] describes a half-circle.

Figure 1.6: Half-Circle
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3. P (t) =  (t ,s in  t) on [0,4^] describes a sinusoidal curve.

Figure 1.7: Sinusoidal Curve
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1.5 Rules for Measuring Tortuosity

The measure of tortuosity should not depend on the orientation of the path. 

Hence, any measure of tortuosity should not be affected by the following:

1. Translation.

2. Rotating the path around a point.

3. Reflecting the path in a line.

4. Enlarging or shrinking the path (scaling).

Since the concept of tortuosity is often used to analyze images of shapes in 

various scales, we need to make sure that the measure does not change de

pending on the scale. Hence, the measure of tortuosity of a curve should not 

depend on the magnification of the device that obtained the image. It should 

be scale invariant.
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1.6 The Information Contained in Curvature

1.6.1 Introduction

Mathematically, curvature of a path at a point is measured by fitting a circle

that approximates the shape of the path the best. Therefore, the radius of the

circle is a numerical invariant, and we define geometrical curvature as 1 = k .
r

1.6.2 Definition

The path can be thought of as the trajectory of a moving particle in space over 

time as it travels on a plane from its starting position to its ending position. As 

the particle moves, it may be turning in various ways. Curvature is a measure 

of the size of a turn at any single point along the path.

Consider a path given by a parametric equation P(t) = (x(t),y(t)) over the 

non-empty interval [t0, ti]. As t goes from t0 to ti, the particle at point P (t) 

moves along the path. Since we assume P (t) is twice differentiable, we have 

a line tangent to the path at any point (x(t),y(t)). Curvature is the rate of 

change in the angle of this tangent line with respect to the change in the posi-
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tion o f the point.

Figure 1.8: Tangent line at point P(t)

Let A0 be the change in the angle, let As be the distance the point has moved, 

and let k be curvature. Then, curvature is defined as [wil]

, A9
k = lim —  (1.1)

Aŝ 0  As

Observe that A9 can be negative, so k can be negative as well. We call it signed 

curvature k . However, we usually consider |k |, i.e. positive curvature only. The 

precise definition is given here.
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D efinition: Let P ( t ) =  (x (t) , y ( t Then, signed curvature is given by

(1.2)
(X2 + J>2)2

and curvature by

, ,,,, |̂ cj/ -  ŷ ic1|K(t)| = ----------- ^ (1.3)
(X:2 + j>2) 2
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1.6.3 Magnitude of the Turn

Geometrically, curvature relates to the circle whose shape matches the path at 

a point. To illustrate, examine the parabola described by the equation y = x2 

at the point (0,0). We have X: =  1, jc = 0, j> = 2t, and j> = 2. Hence

2
K(t) = -----------  ̂ (1.4)

(1 + 4t 2)2

For t = 0 we get 2. Hence, a circle with radius 2 approximates the parabola at 

(0,0).

Figure 1.9: Parabola curvature at (0,0)
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It turns out that the value of the curvature is equal to the inverse of the radius 

of this circle. [Rau08, p. 64]

By contrast, at the point (2,4), the parabola has a curvature of k = 0.0285, 

which means the inscribed circle is much larger and has a radius of 35.0464.

Figure 1.10: Parabola curvature at (2,4) 
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Points on a path with a small curvature approximates the curve by a large cir

cle, i.e. it has a very gradual turn. A path with a large curvature has a very 

sharp turn. Here, a low |k | indicates a gradual turn while a high |k | indicates a 

sharp turn. Hence, curvature is an indication of how much the path turns, or 

the magnitude of the turn.

1.6.4 Direction of the Turn

But K can be negative as well as positive. A positive value means the path is 

turning in a counter-clockwise direction and a negative value means the path 

is turning in a clockwise direction. Hence, curvature is also an indication of 

the direction in which the path turns. Here, direction is analogous to rotation:

clockwise or counter-clockwise.

K > 0 turns counter-clockwise (turns to the left)
K < 0 turns clockwise (turns to the right)
K = 0 (does not turn at all)

Table 1.1: Table o f Curvature D irections

1.6.5 Two Kinds of Information

Therefore, curvature captures two aspects of how the path turns at any spe

cific point. The magnitude of the turn as well as the direction of the turn. A

15



parabola may have one sharp turn but never changes direction while a sine 

wave may never have sharp turns but changes direction frequently.

1.6.6 Curvature Along The Entire Path

Curvature is a measure of tortuosity of the path at a single point. To charac

terize the entire path, we examine curvature at every point along the length of 

the path and normalize the result to obtain a numerical invariant of the path.

To illustrate, we present examples of curvature along various paths. For sim

plicity, every path starts with a point on the left and ends at a point on the 

right at the same vertical position.
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Exam ple 1: Consider a sem i-circle  o f radius 2

Figure 1 .11: Sem i-circle o f radius 2

The plot below is of the curvature function along the arc length of the path. 

Arc length is on the X-axis and curvature is on the Y-axis.

Figure 1 .12: Curvature o f Sem i-circle

We conclude that circles have a constant curvature. The curvature is positive 

because the path is turning counter-clockwise.
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Example 2: Consider a parabola

y = 2x(x -  1) over [0,1]

Figure 1.13: Parabola 

Hence the curvature function:

Figure 1 .14: Curvature o f Parabola 
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On a parabola, the curvature varies along the length of the path, but it is al

ways positive because the path is always turning counter-clockwise.
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Example 3: Consider a cubic polynomial

y = 5x(x-  1)(x -  1) over [0,1]

Figure 1 .15: Cubic Polynomial 

We have the following curvature function:

Figure 1 .16: Curvature o f Cubic Polynomial 

20



The curvature is negative for the first part because the path is turning clock

wise. Then, the path turns counter-clockwise and the rest of the curvature is

positive.
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To characterize the average curvature along the entire path, we calculate the 

average, which is the area under the curve divided by the length of the interval.

1 rb------  k (s) ds  (1.5)
b -

The problem with this method is apparent in example 3. Curvature can be 

negative, so the area of the first part is negative which cancels out the positive 

area of the second part. The average curvature in example 3 is zero.

This problem is usually solved by examining the absolute value of the curva

ture along the arc length of the path

1 rb
^--------  |k (s)| ds  (1.6)
b -  ^ a

Figure 1.17: Absolute Value o f Curvature o f Cubic Polynomial

Now, the average |k | is an indication of the magnitude of turns along the path.
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Observation: There is more than one way to characterize the average curva

ture along the length of the path. Mean and standard deviation are the two 

most commonly used calculations.

1.6.7 Second Aspect of Curvature Along The Entire Path

Since the average |k | ignores any changes in direction the path may have taken, 

it only captures one aspect of the path: the magnitude of the turns.

The other aspect of tortuosity is related to the number of times the path changes 

direction, which can be obtained by finding the inflection points of the path. 

Both the first and second examples have zero changes in direction. The third 

example has one inflection point, hence it changes direction once.

1.6.8 Two Types of Information Obtained from Curvature

Both aspects of curvature can be extracted from any given path. The mag

nitude of turns can be captured by examining the absolute value of curva

ture along the length of the path and changes in direction can be captured by
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the num ber o f in flection  points. To fully characterize a path, it seem s that all

available information should be utilized.
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Chapter

2

M e t h o d o l o g y

2 .1  M e a s u r e s  o f  T o r t u o s i t y  i n  L i t e r a t u r e

In this chapter we discuss the algorithms that have been proposed to measure 

tortuosity in the past.

2 .1 .1  A rc L en gth

The most commonly used measure of tortuosity is also the easiest to under

stand. The arc length of the path.
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The path with the shortest length between two points is a straight line, some

times called the chord length. Any other path must be longer. The more a 

path deviates from a straight line, the longer its arc length.

Most applications that use arc length measure tortousity as the ratio between 

the arc length of the path (Lc) and the chord length (L^).[SHN+93]

Let’s call this “arc ratio”. Often, this ratio is reduced by one so a straight line 

will have a tortuosity of zero. [HGC+99]

Lc—  -  1 (2.1)L LI

However, arc ratio completely ignores the shape of the path.

Figure 2 .1 : Two Paths with the Sam e Arc Ratio

Both of these paths have the same arc ratio.
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While arc ratio is a good measure of how much a path deviates from a straight 

line, it doesn’t capture any other information about the path.

2.1.2 Total Curvature

Because curvature varies along the length of the path, another commonly 

used measure involves “the use of the integral of the absolute curvature (tc) 

or the squared curvature (tsc).”[GFR08]

tc ^ ^  Ik (s)I ds  (2.2)

tsc =  k (s)2, ds  (2.3)

where s  is the distance along the path.

Interestingly, both tc and tsc are used in the calculation of the mean (̂ ) and 

standard deviation (n ) of the absolute curvature |k |.

tc
^  ^ ^  (2.4)a rc  len g th  

tsc 2
n = ------ ]------IZ -  h  (2.5)a rc  len g th

27



2.1.3 Inflection Points

As demonstrated above (see § 1.6.7) these measures ignore changes in the di

rection of the path. One 1993 paper, [SHN+93], simply counts the number 

of inflection points as an invariant of tortuosity. Of course this completely ig

nores the magnitudes of the turns along the path, hence many different curves 

have the same measurement.

Other researchers have proposed methods that combine different informa

tion into a single measure. A 2003 paper, [BGP+03], multiplies inflection points 

by the arc ratio into what they call an “Inflection Count Metric”.

a r c  l ength
ICM = (IPs + 1 ^ --- -T T ^ -T  (2.6)^chord lengths

where IPs  is the number of inflection points.

While ICM  incorporates both number of inflection points and arc ratio by 

multiplying them together, this has the effect of losing information about the

However, these m easures ignore any changes in direction o f the path.

28



influence of each factor. Given some ICM  value, it is impossible to tell if the 

value was dominated by the number of inflection points or the arc ratio. For 

example, the following two paths have the same ICM  value.

Figure 2 .2 : Two Paths w ith Sam e ICM Value

2.1.4 More Complicated Methods

Several methods have been proposed combining several measurements to

gether. They also have the same limitation as ICM  because they multiply all 

the factors together into a single value.

We examine three methods from the literature. They begin by breaking the 

path at every inflection point into a sequence of single arcs such that each arc 

has curvature with a constant sign.

[k (s) > 0, Vs e Di] V [k (s) < 0, Vs e Di] (2.7)

29



where D{, i = 1 ,..., n refers to the set of arcs in the path. [GFR08]

Here are three methods proposed by [GFR08], [TOUC13], and [Josl2].

n -  1 \( 1 n  Lci
------  — L  -  1 (2.8)V n J\L^ i  = 1 l LXi

n -  1 \( 1 W-
------  — J^Ki (2.9)n Lc

^  Lc-Ci( n ^  V T— \n  ^LIL (2.10)
VL^  m

n is the number of arcs with curvature of a constant sign.

Lc and Lx are the arc length and chord length of the path.

Lc. and L̂ .̂ are the arc length and chord length of a single arc within the path. 

m is the number of segments the path is divided into.

9i is the change in angle with each segment.

The first equation (2.8) involves calculating the average arc ratio, the second 

(2.9) involves calculating the average curvature of the path, and the third in
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volves calculating both s in c^^  9i is just another way to calculate curvature 

(see §1.6.2). They all use measures described above, but they are all multi

plied together, which has the effect of losing information about the tortuosity 

of the path.

n - 1
The first (2.8) and second (2.9) methods both use the coefficient------ which

n

approaches one as the number single arcs increases, but it collapses to zero 

when the path consists of one arc, hence losing all information about that 

path.

2 .1 .5  Su m  o f  A ngles

Paths are usually described by a sequence of points, which in turn describe a 

chain of line segments. Each adjacent pair of segments form an angle.

Figure 2.3: Angles between Path Segments
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Another method of calculating tortuosity that appears in the literature, as men

tioned above in equation (2.10), is the sum of these angles. This is actually a 

discrete way of calculating total curvature. From the definition of curvature 

(see equation 1.1 in § 1.6.2), the measure of curvature at each point in the 

chain can be approximated by 9i. The total curvature is simply the sum of 

these angles.

2.1.6 Conclusion

All of the methods described above either ignore information about the path 

or lose information by multiplying various factors together. Hence, distin

guishing certain paths from each other using these measurements may be 

impossible.
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2.2 Proposed Measurement of Tortuosity

Our goal is to measure tortuosity more efficiently than it was done in the past. 

It has been demonstrated that there are several kinds of information that de

scribe the shape of a path. All the methods proposed so far have either ignored 

some information, or combined different combinations of this information 

into a single value, losing information in the process.

It seems that the best approach is to keep the various kinds of information 

separate to control the differences between the paths. For example, in statis

tics when mean and standard deviation are used to characterize a data set, 

they are kept separate. They are not combined into a single value as this ob

scures the information about the underlying data set.

The tortuosity of a path is also a way to characterize the path. Two similar 

paths should have similar measures.

The proposed technique is to treat tortuosity as a problem of classification. To 

sort paths into classes based on a small set of independent features. [Dou12, 

p. 3] The features would be the various kinds of information that can be ex
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tracted from paths. Then, the measure, instead of being a single value along 

the real number line, becomes a location in n-dimensional space where n is 

the number of features. Paths are characterized, or “measured”, by the posi

tion they hold in this “feature space.”

2.2.1 Selection of Features

The first step in defining this classifying space is to decide upon a set of fea

tures. This set should be small but still capture the available information. The 

technique is to generate several features, analyze them, and remove features 

that are redundant. If two features are highly correlated, then one can be elim

inated without appreciable loss of information. The result is a small set of the 

most significant features that will be used to characterize paths.

2.2.2 Test Suite of Paths

In order to evaluate features, a test suite of paths was generated. Each path 

P(t) was formed from two sine waves. The second wave was added to add
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some irregularity. The function used was

 ̂  2n^  2n
P(t) = t,M1sin t—  + M2sin t—  (2.11)

\ T1> I T21j

where t ranged from zero to 10.

To ensure a good distribution of data, the number of inflection points was 

controlled so that each path had a fixed number of inflection points. This 

number varied from zero up to and including 32. This was controlled by the 

T1 parameter. For each number of inflection points, 10 paths were generated 

by randomly assigning values to the other parameters. This resulted in a test 

suite of 330 paths with a range of inflection points.

Range of values Range of values
T1 0.6 to 20 M1 0.1 to 0.3
T2 10 to 20 M2 0.0 to 0.3

Table 2 .1 : Table o f Param eters
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2 .2 .3  A vailable F ea tu res

Based on the discussion above, and a review of the literature, the following 

seven features were extracted from each path P(t) (with fixed parameters):

TC total curvature /  IkI

TSC total squared curvature f  K2

ARCLEN arc length of entire path

RATIO arc ratio
arc length  ̂

chord length

MEAN mean positive curvature
TC

ARCLEN

STDEV standard deviation of positive curvature
TSC 2

--------------- MEAN^
ARCLEN

IPS number of inflection points

Table 2.2: Table of Features

These features were calculated from the entire test suite of 330 paths, using 

the parameters as described above, and were imported int^ [jmp] to pro

duce the correlations and to graph a scatter plot between each pair of features.
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Figure 2 .4 : Scatterplots

T h e n u m b ers  o n  th e  sca les  o f th e  sca tte r  p lo t re fle ct th e  values th a t w ere g e n 

erated . T h ere  are several h ighly  co rre la ted  featu res. ARCLEN and  RATIO have 

a d irect co rre la tio n . W h ile  n o t linear, th e  p lo t o f TC versu s TSC  show s a d is

t in c t  re lation sh ip . A nd TC h as a large co rre la tio n  w ith  b o th  MEAN and  STDEV.
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The question is which ones to eliminate.

The answer comes from an earlier discussion (see §1.5). Features should be 

scale invariant.

To determine the scale invariance of each feature, a small set of paths were 

generated. For each path P(t) the following function was used:

( 2n
P(t) = t,M1sin ^  (2.12)

where T1 varied from 0.6 to 20 in order to generate paths with inflections 

points ranging from zero up to and including 32. M1 was set to one of the 

three values: 0.1, 0.2, and 0.3, while t ranged from zero to 10. Each path was 

scaled by a factor of 1,3,5,7, and 9. Then, for each path and each of its scaled 

paths, the features were calculated and the standard deviation was calculated 

for each feature. The features with the lowest standard deviation would have 

the smallest scale invariance.

The following figure shows data from two of the paths to illustrate the results 

of the entire set. All other paths had similar results. The standard deviations 

are outlined in bold in the last row of each set of data. The first set shows

38



the data generated by Ti = 0.606061, which results in 32 inflection points, and 

the second set shows the data generated by T1 = 2.22222, which results in 8 

inflection points. Both sets used M1 = 0.1.

SCALE TC TSC ARCLEN RATIO MEAN STDEV IPS

1 41.33S7 212.9 S7 12.1255 0.212552 3.45047 2.37861 32

3 41.S3S7 70.939 35.3755 0.212552 1.15016 0.79237 32

5 41.33S7 42.5934 60.6275 0.212552 0.690094 0.475722 32

7 41.3337 30.4233 34.3737 0.212552 0.492924 0.339302 32

9 41.3337 23.553 109.13 0.212552 0.333336 0.26429 32

0 70.3093 34.29525 0 1.139152 0.735234 0

1 4.34471 2.39393 10.1957 0.019567 0.475173 0.240934 3

3 4.34471 0.964642 30.537 0.019567 0.153391 0.030311 8

5 4.34471 0.573735 50.9733 0.019567 0.095035 0.043137 3

7 4.34471 0.413413 71.3597 0.019567 0.067332 0.034419 3

9 4.34471 0.321547 91.751 0.019567 0.052797 0.02577 3

0 0.955414 23.3377 0 0.156376 0.079543 0

Figure 2 .5 : Results o f Two Paths

TC, RATIO, and IPS have a standard deviation of zero, meaning they are also 

scale invariant.
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In  th e  te s t su ite  o f  data, TC, RATIO, and IPS have h igh  co rre la tio n s, b u t w h en  

th e  sam e analysis w as p erfo rm ed  o n  tw o sets o f  re tin a l im ages, th is co rre la tio n  

d isap p ears.

Figure 2 .6 : Scatterplots o f Retinal Data

T h is p lo t is from  th e  ST ructured  A nalysis o f  th e  R etin a  d ata  se t [s ta ]
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Figure 2 .7 : More Scatterplots o f Retinal Data

T h is p lo t is from  th e  D igital R etin a l Im ages for V essel E x tractio n  d ata  se t [dri]

H en ce  w e co n clu d e  th a t th ere  is n o  reaso n  to e lim in ate  any m ore featu res. 

T h erefo re , TC, RATIO, and IPS are th e  b e s t  fea tu res to  use.
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2.2.4 Selected Features

TC, RATIO, and IPS are th e  se t o f fea tu res  se le cte d  for analysis. T h ere  are sev 

eral ad van tages to  th is se lectio n .

T h ey  cap tu re  all o f th e  in fo rm a tio n  availab le  from  a p ath . TC cap tu res in fo r

m a tio n  a b o u t th e  m ag n itu d es o f th e  tu rn s in  a p ath , IPS cap tu res th e  n u m b er 

o f ch an g es in  d irectio n , and RATIO cap tu res th e  to ta l len g th  o f  th e  p ath , w h ich  

is a very  in tu itive m easu re . As sta ted  above (see § 1.1) to rtu o sity  is a m easu re  o f 

how  m u ch  a p ath  d eviates from  a stra ig h t line. Arc len g th  cap tu res th is nicely, 

and RATIO is ca lcu la ted  from  arc length .

T h ey  are all sca le  in varian t. As sta ted  above (see § 1.5) , a m easu re  o f to rtu o sity  

shou ld  n o t d ep en d  o n  th e  sca le  o f  th e  data. All th ree  o f  th e se  featu res rem ain  

th e  sa m e  as th e  sca le  o f  th e  p ath  ch an ges.

T h ere  are only  th ree  o f  th em . T h is m ea n s it is p o ssib le  to p lo t o u t th e  d ata  onto  

a graph  and exam in e  it visually. T h is is an  en o rm o u s ad vantage over having 

a larger se t o f  featu res. To illustrate , TC, MEAN, and  IPS from  th e te s t su ite  o f 

d ata  are p lo tted  on  a 3D  graph  for v isu al exam in atio n .
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Figure 2 .8 : Scatterplot o f Feature Data

T h e resu lting  graph, w h en  ro ta ted  in  3D  to d isp lay  th e  m axim u m  v arian ce , 

show s a sa il-lik e  sh ap e  w h ere th e  p o in t a t th e  b o tto m  is th e  p o in t co rre sp o n d 

ing  to a stra ig h t line. T h e  p o in ts are sp read  o u t fairly  evenly  so th a t every p ath  

is d is tin ct from  every o th er p ath . T h is e lim in ates  th e  am big u ity  o f previous 

m easu res w h ere  d issim ilar p ath s h ad  th e  sa m e m easu red  value. To illustrate  

how  th e  resu lts are d istrib u ted  th ro u g h o u t th is graph, seven  d ifferen t p ath s 

are id en tified  and show n o n  th e  n ex t graph.
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Figure 2.9: Scatterplot of Feature Data with Labeled Points
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2.2.5 Tortuosity in Feature Space

All e lem en ts  o f th e  p ro p o sed  te ch n iq u e  are now  in  p lace . T ortu osity  o f  a p ath  

is m easu red , n o t by  o n e  n u m b er, b u t by  th ree: th e  to ta l p ositive curvature, the 

ratio  o f arc len g th  to ch ord  len gth , and th e  n u m b e r o f in fle c tio n s  p o in ts. T h is 

se t o f  m easu res form s a lo ca tio n  in  th e  featu re sp a ce  for p ath s. T h e  “lo ca tio n ” 

in  featu re  sp a ce  is u sed  to evalu ate and classify  th e  path .

It is up to th e  sp e c ific  a p p lica tio n  to d ecid e how  to ch aracterize , or classify, 

th e  p ath . T h is te ch n iq u e  is m e a n t to  w ork  for any ap p lica tio n . For exam p le, 

so m e a p p lica tio n s  m ig h t w an t to  classify  p ath s as b e in g  e ith er “to rtu o u s” or 

“n o n -to rtu o u s” [G F R 08 , p. 310 ]. Su ch  a p p lica tio n s w ould  have to d eterm in e  

w h at reg ions o f fea tu re  sp a ce  co n stitu te  o n e  class or th e  other.
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2.2.6 Previous Work

We want to comment that this is not the first time a set of features has been 

proposed as a measure of tortuosity. A 2013 paper, [TCU13], examined a set of 

features and concluded the best results came from a combination of two, (see 

equations (2.9) and (2.6)).

n -  1 \( 1 W .
T = ------  — Y.KI (2.13)

n j \ L c ) ^

a r c  l ength
ICM = (IPs + 1) ------------ ------  (2.14)

{ c h o r d  len g th )

Note that ICM makes use of the ratio of arc length to chord length and the 

number of inflection points while t makes use of total positive curvature, the 

three features selected for use in this paper. The difference is that they mul

tiply the features together while this paper keeps them separate, obtaining a 

larger classifying space that can differentiate better curves of different tortu

osity.
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Chapter

3

R e t i n a l  D a t a  a n d  R e s u l t s

3 . 1  R e t i n a l  D a t a

To illustrate how this technique can be used, a small set of retinal scans was 

analyzed.

Each retinal image was preprocessed using Adobe Photoshop CS6 and con

verted into a black and white image that the software could read.
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T h e follow ing step s w ere u sed  in  th e  co n v ersio n  o f  im ages.

O riginal im age

G reen  co lo r ex tracted  and co n v erted  to grayscale

Im age d u p lica ted  an d  g au ssian  b lu r w ith  radius 15 pixels

G reyscale  and blu rred  im ag es divided and layers fla tten ed

G reyscale  range ch an g ed  from  0 -2 5 5  to 2 0 0 -2 5 5

Im age in verted

Figure 3 .1 : Preprocessing o f Retinal Im ages

T h e p ath  o f a m a jo r  v essel from  ea ch  b la ck  and  w h ite  im age w as extracted  

u sin g  th e  im ag e p ro cessin g  program  Im ageJ [im a ] w ith  th e  p lugin  softw are
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package NeuronJ [neu].

A test suite of 35 images was selected from the STructured Analysis of the 

Retina website [sta]. The retinal images were labeled with various diagnoses. 

Finally, for the path extracted from each image, the three features were calcu

lated and the results plotted in 3D.

On the following graphs, two groups of retinals are highlighted based on their 

diagnoses.



Figure 3 .2 : Central Retinal Vein O cclusion

T h is p lo t show s th e  retin als d iag n osed  w ith  C entral R etin al Vein O cclu sion .
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Figure 3 .3 : Choroidal Neovascularization

T h is p lo t show s th e  retin als d iag n osed  w ith  C ho ro id al N eovascu larization .

In  ea ch  graph, th e  retin a ls  w ith  a p articu lar d iagn osis are g athered  to g eth er in  

o n e  area  o f  th e  featu re  sp ace . T h e  retin a ls  w ith  C en tra l R etin a lV ein  O cclu sio n  

are in  a d ifferen t area  from  th e  retin als w ith  C ho ro id al N eovascu larization .

I f  an  a p p lica tio n  w an ted  to id en tify  re tin a ls w ith  C en tra l R etin a l V ein O cclu 

sio n  or C ho ro id al N eovascu larization , it cou ld  u se th is te ch n iq u e  to see  w h at
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re tin a ls fall in  th e  tw o reg ions id en tified  above.

W h ile  th is u sed  a very  sm all se t o f data, it does illu stra te  how  th is te ch n iq u e  

ca n  b e  u sed  to classify  re tin a l im ages.

52



Chapter

4

D i s c u s s i o n  A N D  C o n c l u s i o n

4 . 1  F u t u r e  W o r k

4 .1 .1  E x tra c tio n  o f  d a ta

One issue that emerged during this research was how the data for paths was 

obtained. It turns out that the calculation of curvature from a set of points is 

very sensitive to noise. [JD07]

In digitial images, positions are restricted to the discrete locations of pixels, 

introducing noise into the data. Noise can also come from rounding errors 

when numerical data are recorded. The problem is one common to signal
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p ro cessin g : how  to  ex tra ct th e  sign al from  n oisy  data. [G rf95 , p. 382]

O ne te ch n iq u e  is to  sm o o th  th e  d ata  to e lim in a te  th e  n o ise  b u t n o t rem ove 

sig n ifica n t m o v em en t o f th e  p ath . T h ere  are a variety  o f  w ays to sm o o th  data. 

So m e a ttem p ts  w ere m ad e u sin g  m oving average b u t th e  resu lts w ere u n sa tis 

factory. A n o th er te ch n iq u e  is to  fit a p o ly n o m ial sp lin e  th rou g h  th e  raw  data. 

[JD 0 7 ] H ere, a sp lin e  is fit th rou g h  a s e q u e n ce  o f circles, ea ch  ce n tered  on  a 

d ata  p o in t, all w ith  so m e radius. T h e  radius d eterm in es  th e  sm o o th n e ss  o f 

th e  resu lting  sp lin e. In  b o th  m ovin g  average an d  sp lin es, it w as u n clea r how  

m u ch  sm o o th in g  w as requ ired  and w h en  to o  m u ch  in fo rm a tio n  w as rem oved 

a b o u t th e  p ath . H ow  to rem ove n o ise  rem ain s an  o p en  qu estio n .

T h e  analysis p erfo rm ed  for th is p ap er did n o t rem ove an y  n o ise  from  th e  data.

4.1.2 Principal Component Analysis

T h ere  are variou s te ch n iq u e s  th a t ca n  e n h a n ce  th e  d istrib u tio n  o f  th e  data. 

P rin cip a l C o m p o n e n t A nalysis (PCA) ca n  tran sla te  th e  featu res o n to  a se t o f
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axes th a t m axim izes th e  v aria tio n  in  th e  data. T h e  te s t su ite  o f  d ata  w as s u b 

je c te d  to PCA and th e  resu ltin g  th ree  co m p o n e n ts  w ere p lo tted  on  a 3D  graph.
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Figure 4 .1 : Principal C om ponent Analysis

T h is is a graph  o f  th e  te s t su ite  o f d ata  show ing th e  resu lts after PCA. T h e  re 

su lt is also  a fairly  even sp read  o f th e  d ata  p o in ts. It rem ain s to b e  se e n  if  th is 

e n h a n ce s  th e  analysis o f th e  data.

W hile it ca n 't  b e  se e n  in  th e  above g rap h , th e  d ata  p o in ts  form  a cu rv ed  su r

face, so m e th in g  like a sad d le curve. A n o th er o p en  q u estio n  is w h eth er a n o n 

lin ear analysis w ould  give b e tte r  results.
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4.2 Conclusion

Measuring tortuosity with a single value is not a good way to characterize a 

path. Too much information is lost and dissimilar paths can have the same 

measured value.

A much better approach is to use more than one value. This set of features 

captures more of the information that can be extracted from a path and can 

be used to more accurately characterize it.

This paper proposes using a set of three measures. The total positive cur

vature, the ratio of arc length to chord length, and the number of inflection 

points. They are independent of each other and they capture most of the 

available information. They are also scale invariant, which is a valuable prop

erty. In most applications, the data is extracted from digital images. Being 

scale invariant, the feature measurements do not depend on the size of the 

images, nor do they depend on the magnification of the camera.

This approach is also general enough for use by any application.
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