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ABSTRACT

We study the Zariski-closures varieties of 3 -ellipses defined by foci that are either lines or points in  R3(x ,y , z) 

as algebraic surfaces in three-dimensional real projective space, P 3(x, y, z, w). These surfaces are the smallest 

algebraic varieties containing the 3 -ellipses. In our case, they are described as the sets of zeroes of 

homogeneous polynomial functions of degree eight. Geometrically, these types of surfaces in P 3 are yet to be 

classified. Using algebraic geometry and new visualization tools, such as Surfer and (Wolfram) Mathematica, we 

study the properties of these surfaces with different foci configurations. In particular, we study the shapes and 

symmetries of each surface, their reducibility, boundedness, etc., and compare the results with the already 

existing ones. We also study the stability of these properties under deformations by applying different 

deformation techniques on the surfaces and analyzing the results.
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Chapter

1

I n t r o d u c t i o n

Over the past centuries, numerous scholars have encountered k —ellipses in different contexts. 

In n —dimensional Euclidean geometry, the first generalizations of the traditional ellipse are 

fc—ellipses with k point foci. More precisely, for a finite number of k points (called foci) in with 

coordinates, (u^^, u^„), for each n  =  1, k, a —ellipse is the locus of all points whose sum of

distances to the k foci is a constant d. If not empty, the ^-ellipse in is simply the set:

For example in M2, a 1 —ellipse is a circle and a 2 —ellipse, or a standard ellipse, is the set of all points 

such that the sum of their distances from two fixed points (foci) are constant. For any number of foci k, 

the k —ellipse in M2 is a closed, convex curve [19]. The curve is smooth unless it goes through a focus [13]. 

Similarly when in M3, a 1 —ellipse is a sphere and a 2 —ellipse is an ellipsoid, respectively.

Figure 1: 1 —ellipse and 2 —ellipse in M2

Figure 2: 1 —ellipse and 2 —ellipse in M3 
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In 1990, k —ellipses with foci consisting of points were found to be useful in solving optimization problems 

under constraints. About 15 years ago, flats in such as lines, planes, and hyperplanes, were introduced 

as foci for k —ellipses beside points, and the study of k —ellipses and related varieties in and in 

P ” aided in solving convex optimization problems. Although, k —ellipses in M” with only points as foci 

have fully been described [13], the classification of generalized k —ellipses and the associated algebraic 

varieties still remains an unsolved problem. Keeping in mind the various possible configurations of foci, in 

this paper we explore 3 —ellipses having 3 —foci consisting of a combination of lines and points in M3. In 

particular, we focus on the seven specific configurations listed below:

• two perpendicular intersecting lines and the focal point of intersection

• two perpendicular intersecting lines and a point on one of the lines

• two perpendicular intersecting lines and a point on neither of the lines

• two perpendicular skew lines and a point on one of the lines

• two perpendicular skew lines and a point on neither of the lines

• two parallel lines and a point on one the lines

• two parallel lines and a point on neither of the lines (also not co-planer with the lines)

We study the properties of the 3 —ellipses and their associated Zariski-closure varieties generated by the 

above configurations. Then we comment on our results in the wider algebraic geometry context.
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H i s t o r y  A n d  R e s u l t s

In this chapter we start with several of the known results of the k —ellipses with foci /]_, fĵ  (not 

necessarily points). Some of these results involve only points as foci and the others include some flats as 

well. We are using here works of Stebbins [16] and Tejeda [17], as well as the fundamental paper of Nie, 

Parrilo, and Sturmfel [13].

NOTE: Some of the terms in the statem ents below are defined more explicitly in Chapter 3.

Theorem 2. 1. The defining irreducible polynomial P jl(x) =  x2, x„) of the k —ellipse with k

focal points is monic of degree 2^ in the param eter d. It has degree 2^ in (x^, x2, ^ , x„) if k is odd, 

and it has degree 2^ — j  if k is even [13].

Theorem 2. 2. Let E be a generalized k —ellipse in with foci / i ,  ^ , (not necessarily points). If the

set of foci has a non-trivial symmetry group G, then E also has the same symmetry group [17]. 

Theorem 2. 3. Let E be a generalized ^-ellipse in with foci / 1, _ ,  . If at least one of the foci is a 

point, then the generalized ^-ellipse in M” is bounded [17].

Theorem 2. 4. Let E be a generalized ^-ellipse in M” with foci / 1, ^ , Z .̂ Then, E is non-singular if it does 

not pass through any of the foci [17].

Theorem 2. 5. Let E be a generalized ^-ellipse in M” with foci / 1, _ ,  fj .̂ Then one of the following holds:
a) If there exists a hyperplane that is perpendicular to all the foci of the generalized k —ellipse,

then the generalized k —ellipse is unbounded.

b) If there does not exist a hyperplane that is perpendicular to all the foci of the generalized 

k —ellipse, then the generalized ^-ellipse is bounded [17].

We use the above results in our work and discuss our finding in similar context.
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3

D e f i n i t i o n s

Definition 1. Affine Space of dimension n  over a field k  is defined as a set of points:

:=  fc” =  {(a!, a 2, a„): aj 6 k], where ( â ,̂ a 2, a „ ) are points with coordinates.

REMARK: We call the point 0 =  (0, _ ,  0) the origin. We consider and C” as affine spaces.

Definition 2. The k  —ellipse in (if not empty) is the hypersurface consisting of all points, the sum 

of whose distances from the k given foci, that are either points, lines, planes or other flats, is equal to 

some positive fixed real number d. k foci with coordinates, (u^1, _ ,  u^„), where n  =  1, _ ,  k , define

a —ellipse in M” as the set |  (x-^,.. x„), 6 M” X^/=i Jx^^=i(^i — Uji)2 =  d |.

Example 2.1 An ellipse in M2 is a collection of points such that the sum of the distances from the foci 

d-̂  +  d 2 is equal to a constant d. (See Figure 1)

Definition 3. The Fermat-W eber distance, denoted as d „ , is the least non-negative real number such

that the generalized ^-ellipse E is non-empty.

NOTE: For our purposes we will always assume d >  d „  .

Definition 4. An Algebraic Variety V =  V (/]_,.. ) in M” (or C” ) is the set of points satisfying a finite

system of polynomial equations fi (x^,..  x„), =  0, for i =  1, 2 _ ,  m.

REMARK: In other words, a variety is the set of common zeros of several polynomials. In classical algebraic 

geometry, the polynomials may have complex numbers as coefficients. Note that such polynomials always 

have zeros. For example, {(x,y, z): x 2 +  y 2 — z 2 =  0} is a cone V, and {(x,y, z): x 2 +  y 2 — z 2 =  0, ax  +  

hy +  cz =  0} is a conic section, which is a sub-variety of the cone V. When a variety is embedded in a 

projective space P 3 with homogeneous coordinates x0, x^, x2, x3 it is called a projective algebraic variety.
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Example 4.1 Consider the following system of equations in M2:

f/ i(^ , y )  =  ^ y  =  0  

Ifz ix ,y ) =  X2 +  y 2 -  1  =  0

Figure 3: Example of an algebraic variety in M2  

Here the V (/]_) is the sum of the x  and the y  — axis  and V (/ 2 ) is the unit circle. Therefore,

V(fi, f2) =  {(1, 0), (0 ,1 ), ( —1, 0), (0, —1)}.

Definition 5. Projective Space: Let be a finite dimensional vector space over an arbitrary 

algebraically closed field k. The projective space P(fc” + 1 ) is the set of equivalence classes of all lines 

passing through the origin in fc” + 1 . We define P ” ^  (fc” + 1  — { 0 } )/ ~ ,  where ~  is the equivalence 

relation (x 0 , x 1 , _ ,  x „ ) =  ( I xq, Ax1, _ ,  Ax^), where A is an arbitrary non-zero real number.

NOTE: In our case k =  M or  C.

Example 5.1 The following relation defines the three-dimensional real projective space with 

variables (x, y, z, w ), P 3 (x, y, z, w ) =  (M4  — { 0 } ) / ~  , where ~  represents the equivalence 

relation (x, y, z, w) =  (Ax, Ay, Az, Aw) for any non-zero real number A. More precisely, a three­

dimensional real projective space is the set of classes of all lines in M4  passing through the origin, 

where each line is represented by exactly one point lying on it. Consider all the unit vectors attached 

at the origin, their end-points form a sphere S 3 in M4  and each of them represents a line passing 

through it. If we 'glue' the end-points of the vectors representing the same line in S 3, we get 

PM(^, y, ^, ^ )  that contains the usual Euclidean M3  (x, y, z, 1) as a Zariski-open subset [7]. In other 

words, ^M(^, y, ^, ^ )  is a compactification of M3  by a plane at infinity.
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Definition 6. Zariski-Closure in A^:  Algebraic varieties in are considered closed sets in Zariski 

topology. The complements of a Zariski-closed sets are Zariski-open sets. Such defined Zariski 

topology is well-defined on A^. The Zariski closure of a subset Z  c  A^ is the smallest algebraic variety 

set V of containing Z. V is the set of zeros of an ideal I =  ( .. x „ ), (x^ ,.. x „ ) )  generated

by polynomials vanishing (at least on Z), denoted V(I(Z)).

Definition 7. Irreducible/Reducible Algebraic Variety: An algebraic variety is called irreducible if it 

cannot be written as the union of distinct nonempty algebraic varieties. Otherwise, it is called 

reducible.

Example 7.1 The algebraic variety V defined by x y  =  0 is reducible, because it is the union of the 

solutions of two varieties, V-̂  and V2 given by two linear polynomials x  =  0 and y  =  0, respectively.

Definition 8. Singularity: A singular point (singularity) of an algebraic surface V is a point P at which 

the unique tangent plane to the surface does not exist or is not well defined.

Example 8.1 In M3, all singular points on a surface V ( f ) ,  defined by a polynomial / ,  are the solutions

to the following the vector equation V /  =  ( 0 , 0 , 0 ).

Definition 9. The Dimension of a Variety: for an irreducible algebraic variety V, the dimension of V is 

the dimension of the tangent vector space at any non-singular point of V. This is the algebraic analogue 

to the fact that a connected manifold has a constant dimension.

Definition 10. Skew Lines: In Euclidean space, skew lines are two lines that do not intersect and are not 

parallel (see Figure 4).

Figure 4: Possible configurations of lines in M3  
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Chapter
4

M e t h o d o l o g y
In this chapter, we present the equations for 3 —ellipses in M3 with various foci / j . We start by considering 

the equation of a 3 —ellipse with point foci only. Let =  (x^, , z^), f 2 =  (x2, y2, z2) and f 3 =

(x3, y3, z3) be the 3 focal points, and d be the distance greater than (so the ellipse is not empty). 

Then, the equation of the 3-ellipse is the following:

E =  {(x,y,z) e M3: d i((x ,y ,z ),(x^ , y^, z^)) +  d2((x ,y ,z ) ,(x 2, y2, z2)) +  d3{(x,y,z),(%3, y3, Z3)) =  d}.

In other words, the equation of the 3-ellipse is

^ (x -  Xi)2 + (y -  yi)2 + (z -  Zi)2 + ^ (x -  X2)2 + (y -  yz)2 + (z -  Z2)2 + ^ (x -  X3)2 + (y -  ys)2 + (z -  z^)2 = d. 

Note that this equation includes radical expressions, hence does not define an algebraic variety, i.e. its set 

of solutions is just a subset E in M3. The examples below show a construction of an algebraic variety 

containing E.

Example 1. Consider the circle (1 -ellipse) in M2 with focus (0,0) and radius d. By definition, the equation 

of E is y x ^ + y 2 =  d, which is not algebraic. Squaring both sides yields x 2 +  y 2 =  d 2, which is already 

an algebraic equation. Note that solutions sets for both equations are identical, this implies that circle is 

its own Zariski-closure.

Example 2. Now consider a 2 -ellipse  in M2 with foci ( -1 ,0 )  and (1,0), and distance d =  4. By definition, 

the equation of this 2 -ellipse is ^ (x  +  1)2 +  y 2 +  y ( x -  1)2 +  y 2 -  4 =  0. Again, this equation is not 

algebraic. In order to make it algebraic, we need to remove the radicals. We multiply the expression on the left 

side by its three other conjugates as following:

(x +  1)2 +  y 2 + ^ (x  -  1)2 +  y 2 -  4j  ^ ^ (x  +  1)2 +  y 2 -  ^ (x  -  1)2 +  y 2 -  4j  { - y ( x  +  1)2 +  y 2 

+ y ( x -  1)2 +  y 2 -  4 j ^ - y  (x +  1)2 +  y 2 -  y ( x -  1)2 +  y 2 -  4 j =  0.

Here it is important to note that because our original equation had 2 different radicals and each radical can 

assume two different signs, we had to multiply by a total of 22 =  4 conjugates to make the equation completely 

radical-free.

7



Using Wolfram Alpha, we perform the multiplication and obtain the following algebraic equation:

( - 4 8 x 2 -  64y2 +  192)2 =  0.

Note that this equation is factorable and has double vanishing set. Hence, we take only one factor to obtain an 

irreducible variety and observe that 2 —ellipse is also its own Zariski-closure defined by:

—48 x2 — 64y2 +  192 =  0, or equivalently, +  =  1.
 ̂ (2)2 (Vs)2

In general case of k focal points, we apply this technique to find algebraic varieties of associated to the 

the k —ellipses defined by the equations in M3 given at the beginning of this chapter:

V (x -  x i)2 +  (y -  y i)2 +  (z -  z i)2 +  V (x -  X2)2 +  (y -  yz)2 +  (z -  Z2)2 +  ^ (x -  x^)2 +  (y -  y3)2 +  (z -  Zs)2 — d =  0. 

Since this equation has 3 different radicals and each radical can assume two different signs, we multiply a total 

by 23 = 8  conjugates and expect the equation resulting equation to be completely radical-free.

We denote the first, second and the third square root expression as a, b and c respectively, and obtain 

the following equation:

(A +  B +  C — d)(A — B +  C — d)(A  +  B — C — d ) ( —A +  B +  C — d)(A — B — C — d)

( - A  — B +  C — d ) ( —A +  B — C — d ) ( —A — B — C — d) =  0.

In essence, we multiply the radical expression on the left-hand side by its 7 different conjugates. The 

resulting expression has all variables in even degrees only, hence after the substitution of original 

variables, the expression is a polynomial. Therefore, it defines an algebraic variety V containing our 

3 —ellipse E. Sometimes this expression is factorable. When it is, we take the lowest degree factor(s) that 

vanishes on our 3 —ellipse and call it the algebraic variety V defined by this factor the Zariski-closure 

variety of E  in M3 (x ,y , z). Otherwise, we take the entire non-factorable expression which defines an 

irreducible algebraic variety as Zariski-closure for the 3 —ellipse.

Now consider a 3-ellipse in M3 with one or more of the foci that are lines. Without loss of generality, we 

can choose f 1 to be a line, and we can assume it is the x  —axis (as we can translate and rotate the 

3 —ellipse without changing its properties. Then the distance equation between any point and this lines 

simplifies to d1((x, y, z), f 1)  =  ^ y 2 +  z 2 . Now suppose that f 2 is also a line passing through two points =  

(a 0, b0, Cq ) and x 2 =  (a  +  a0, b +  b0, c +  c0) lying on it. To find the associated distance formula, we use the 

following parametric vector equation of the line:

( at +  a0 \ 
bt +  bo I .

Ct +  Cq J  

8



D =  d 2 =  [(a 0 — x ) +  at]2 +  [(b0 — y )  +  bt]2 +  [(cq — z) +  ct]2 .

To minimize the distance, we set =  0 and solve for t to obtain t =  —(^̂ , )̂ (̂ ,̂,^ )̂, where the symbol
dt |̂ 2 -^ il2

" denotes the vector dot product. Then by substituting t back into the previous equation we find the 

minimum distance as

d2 =  (a0 — x ) 2 +  (b0 — y ) 2 +  (cq — z)2 +  2t[a(a0 — x)  +  b(b0 — y) +  c(c0 — z)] +  t2[a2 +  b2 +  c2]

, , [(^ i —^) • (X2 — Xi)]2 [(X i  —x ) • (X2 — Xi)]2
=  Ix^ — xl2 — 2 --------- -̂--------------------- + ---------- -̂---------------------2 2  

1 ^ 2  I l^ 2  I

=  IXj — xI2IX2 — X^l2 +  [(X i — x )  • (X2 — x ^ ) ] 2

2Î 2 ^ 1 I

Since (A X B ) 2 =  A2B 2 — (A • B )2, where X denotes the vector cross product, we have

,2 =  I(X2-Xi)X(Xi-X)I2
IX2-XlI2 .

1^ - J  I(X2-Xi)X(X̂ -X)I I(X-Xt)X(X-X2)ITaking square root of both sides we obtain, d = ------ -̂------ ;------= ------ -̂------ ;----- .IX2- X\\ IX2- Xx\

Therefore, the distance between a point x  =  (x, y, z) and the line (at +  a0, bt +  b0, ct +  Cq) defined by the 

points x^ =  (a0, bQ, cq) and x 2 =  (a +  aQ, b +  bQ, c +  cq) can be written as

^  =  I(a, b, c) X (ao — x, bo — y, Cq — z)I 
=  I(a, b, c)I

, Ib (CQ — z) — c (bo — y), c (aQ — x) — a (CQ — z), a (bo — y) — b (aQ — x )I
=  I(a, b, c)I

. {b (CQ —z) — c (bo — y ) ) 2 +  { c (aQ — x) — a (CQ — z) )^ +  {a (bQ — y) — b (aQ — x ) )^
d ^ ------------------------------------------------- . --------------------------------------------------

^ a 2 +  b2 +  c2

We can write it as

_  Vm

^ a 2 +  b2 +  c 2

where

M =  a2c02 +  b2c02 — 2bccQbQ +  a2b02 +  c 2b02 — 2accQaQ — 2abbQaQ +  b2a02 +  c 2a02 +  2acc0x  
+  2abb0x — 2b 2a0x — 2 c 2a0x +  b2x 2 +  c 2x 2 +  2bcc0y — 2a2b0y — 2 c 2b0y  
+  2aba0y — 2abxy +  a2y 2 +  c 2y 2 — 2o2cqz — 2b2c0z +  2bcb0z +  2aca0z — 2acxz  
— 2bcyz +  a2z 2 +  b2z 2.

Then, the squared d istan ce  betw een a point on the line w ith param e ter t  and a point x  =  (x ,  y ,  z )  is therefore

9



We calculate the distance between a point x  =  (x, y, z) and the y  -axis. By choosing two random points 

( 0 , - 1 , 0 ) and ( 0 , 1 , 0 ) on the axis, we have (a0, b0, Cq) =  ( 0 , - 1 , 0 ), (a +  a0, b +  b0, c +  c0) =  ( 0 , 1 , 0 ) and 

then solve for a, b and c. Substituting a0 =  0, b0 =  - 1 ,  c0 =  0, a =  0, b = 2 ,  c =  0 in the above equation we

obtain d =  ^4^2+ ^ 2 =  J 4^ - 4 ^  =  .

Therefore, the distance between a point x  =  (x ,y , z) and the y  -a x is  is given by -Jx2 +  z2. Similarly, the 

distance between a point x  =  (x, y, z) and the z -a x is  is J x 2  +  y 2 .

We use the above formula for our seven chosen configurations of foci to find Zariski closure algebraic 

varieties for the associated 3 -e llipses.

3 -e llip se s  with two perpendicular intersecting lines and a point as foci give as the following three cases 

to consider.

4.1 Two perpendicular intersecting lines and the point of intersection.

Figure 5: The 3 - fo c i consisting of two perpendicular intersecting lines and the point of intersection 

Consider the lines =  z -a x is , L2 =  y  -a x is  in E 3 (x, y, z) and take their point of intersection P =  

(0, 0, 0) as foci. Then the 3 -e llip se  with d =  2 is given by

^3 =  {(x , y, z)  6 E 3 : d i( ( x ,  y, z), z -  axis) +  d 2 ((x , y, z), y -  axis) +  d s ((x , y, z), (0 ,0 ,0 ))  =  2] . 

Therefore, we have the equation J x 2 +  y 2  +  V x 2  +  z 2 +  J x 2  +  y 2 +  z 2 =  2.

10



Figure 6: The picture to the left is the view of 3 —ellipse defined by two perpendicular intersecting lines 

and the focal point located at the intersection of the lines. The picture on the right shows a small part of

the Zariski-closure variety as well.

To find the algebraic variety V in M3, we multiply by conjugate expressions using (Wolfram) Mathematica. 

Hence, the equation of the Zariski-closure is

f ( x ,  y, z) =  256 — 7 6 8 x2 +  4 8 0 x4 — 1 1 2 x 6  +  9 x 8  — 5 1 2 y 2 +  6 4 0 x2y 2 — 2 2 4 x4y 2 +  2 4 x 6y 2

+  2 5 6 y 4 — 1 2 8 x2y 4 +  1 6 x4y 4 — 5 1 2 z2 +  6 4 0 x2z 2 — 2 2 4 x4z 2 +  2 4 x 6z 2 +  3 8 4 y 2z 2

— 3 2 0 x 2y 2z 2 +  5 6 x 4y 2z 2 — 1 2 8 y4z 2 +  3 2 x 2y 4z 2 +  2 5 6z4 — 1 2 8 x2z 4 +  1 6 x4z 4

— 1 2 8 y 2z 4 +  3 2 x 2y 2z 4 +  1 6 y4z 4.

It is a degree 8  polynomial with 27 different terms.

Figure 7: Various views of the Zariski-closure variety of the 3 —ellipse defined by two perpendicular 

intersecting lines and the focal point on the intersection of the lines

In this particular case we have the following symmetries of the set of foci, of the 3 —ellipse, and Zariski- 

closure variety generating the group: the mirror reflection in the y z  — plane, the mirror reflection in the 

x z  — plane, and the mirror reflection in the x y  —plane, two 180° rotations about both x, y  —axes, as well 

as one 90° rotation around z  —axis.
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4.2 Two perpendicular intersecting lines and a point on one of the lines (and not on the other):

Figure 8 : The 3 - fo c i consisting of two perpendicular intersecting lines and a point on one of the lines 

Consider the lines =  z -a x is , L 2 =  y  -a x is  and the point P =  (0 ,1, 0), which is on the line L 2. To find 

the algebraic variety V in M3, we choose the d =  2 and define the 3 — ellipse  as following:

E3 =  { ( x , y ,z)  6  M3: d i ( ( x , y , z), z -  axis) +  d 2 ( ( x , y , z), y  -  axis) +  d s ( ( x ,y ,z ) ,  ( 0 , 1 , 0 ) )  =  2 } .

Therefore, we obtain the equation y x ^  +  y 2 +  V x 2 +  z 2 +  ^ x 2 +  (y  -  1 )2 +  z 2 =  2 .

Figure 9: The picture on the left is the view of the 3 -e llip se  defined by two perpendicular intersecting 

lines and a point on one of the lines. The second view shows part of the Zariski-closure as well.

Hence, the equation of the Zariski-closure is

/ ( x ,y ,  z)  =  81 -  4 6 8 x 2 +  3 6 6 x4 -  1 0 0 x 6  +  9 x 8  +  2 1 6 y -  5 5 2 x2y  +  2 3 2 x4y -  2 4 x 6y -  7 2 y 2 
+  3 9 2 x2y 2 -  2 1 6 x4y 2 +  2 4 x 6y 2 -  2 8 8 y 3 +  3 2 0 x2y 3 -  3 2 x 4y 3 +  1 4 4 y4
-  1 6 0 x2y 4 +  1 6 x4y 4 -  2 8 8 z2 +  5 0 4 x2z 2 -  2 0 8 x4z 2 +  2 4 x 6z 2 -  3 8 4 y z2 
+  2 8 8 x2y z 2 -  3 2 x 4y z 2 +  5 6 y 2z 2 -  3 3 6 x 2y 2z 2 +  5 6 x4y 2z 2 +  4 1 6 y 3z 2
-  3 2 x 2y 3z 2 -  16 0y4z 2 +  3 2 x 2y 4z 2 +  2 5 6 z4 -  1 2 8 x2z 4 +  1 6 x4z 4 -  1 2 8 y 2z 4 
+  3 2 x 2y 2z 4 +  1 6 y4z 4.

Again, we obtain an 8 th degree polynomial. The number of terms in this case is 39.
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Figure 10: Various views of the Zariski-closure of the 3 —ellipse defined by two perpendicular

intersecting lines and a point on one of the lines.

The symmetry group of the set of foci, of the ellipse, and of the Zariski-closure variety includes: the mirror 

reflection in the yz  —plane: the mirror reflection in the x y  —plane, one 180° rotation about the y  —axis.

4.3 Two perpendicular intersecting lines and a point on neither of the lines:

Figure 11: The 3 —foci consisting of two intersecting lines and a point that is on neither of the lines.

Consider the lines =  z —axis, L 2  =  y  —axis and the point P =  (1, 0, 0), which is on neither of the lines. 

To find the algebraic variety V in M3 , we choose the d =  2 and define the 3 — ellipse as following:

E3 =  [ ( x ,y ,z) 6 M3 : d i ( ( x , y , z), z — axis) +  d 2 ( ( x , y , z), y  — axis) +  d 3 ( ( x , y , z), (1 ,0 ,0 ))  =  2],

Therefore, we obtain the equation ^ x 2  +  y 2  +  V x 2  +  z 2 +  ^ ( x  — 1 ) 2  +  y 2  +  z 2 =  2 ,
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Figure 12: Two views of the 3 —ellipse defined by two perpendicular intersecting lines and a point on 

neither of the lines. The picture on the right shows part of the Zariski-closure as well.

Hence, the equation of the Zariski-closure is (Wolfram Mathematica)

/ ( x ,  y, z) =  81 +  216x — 2 5 2 x2 — 4 5 6 x 3 +  2 7 0 x4 +  2 6 4 x 5 — 1 0 8 x6 — 2 4 x 7 +  9 x 8 — 2 8 8 y 2

— 3 8 4 x y 2 +  3 7 6 x2y 2 +  2 8 8 x 3y 2 — 2 4 0 x4y 2 — 3 2 x 5y 2 +  2 4 x 6y 2 +  2 5 6 y4

— 1 2 8 x2y 4 +  1 6 x4y 4 — 2 8 8 z2 — 3 8 4 x z2 +  3 7 6 x2z 2 +  2 8 8 x 3z 2 — 2 4 0 x4z 2

— 32x 5z 2 +  24x 6z 2 +  1 8 4 y 2z 2 +  4 1 6 x y 2z 2 — 3 3 6 x2y 2z 2 — 3 2 x 3y 2z 2 +  5 6 x 4y 2z 2

— 1 2 8 y4z 2 +  3 2 x 2y 4z 2 +  2 5 6 z4 — 1 2 8 x2z 4 +  1 6 x4z 4 — 1 2 8 y 2z 4 +  3 2 x 2y 2z 4 

+  1 6 y4z 4.

The degree of the polynomial above is 8  and the number of terms is 39.

Figure 13: Various views of the Zariski-closure variety of the 3 —ellipse defined by two intersecting lines

and a point on neither of the lines.

The symmetry group of the foci, the ellipse, and the Zariski-closure variety is generated by the mirror 

reflection in the x z  — plane, the mirror reflection in the x y  —plane, the 90° rotation about the x  —axis.
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3 —ellipses with two perpendicular skew lines and a point as foci gives as the two generic cases. 

4.4 Two perpendicular skew lines and a point on one of the lines:

Figure 14: The 3-foci consisting of two perpendicular skew lines and a point on one of the lines.

Consider the skew lines =  z —axis, L 2  =  line parallel to y  —axis= (1, y, 0) and the point P =  (0, 0, 0), 

which is on the line L^. To find the algebraic variety V in M3, we choose the d =  4 and define the 3 — 

ellipse  as follows:

E3 =  {(x , y, z) 6  M3: d i( ( x ,  y, z), z — axis) +  d 2 ( (x , y, z ), ( 1 , y, 0 ) )  +  d s ((x , y, z), ( 0 , 0 , 0 ) )  =  4 ] . 

Therefore, we obtain the equation ^ x 2 +  y 2  +  ^ ( x  — 1) 2  +  z 2  +  ^ x 2 +  y 2  +  z 2  =  4 .

Figure 15: Two pictures on the left of the 3 —ellipse defined by two perpendicular skew lines and a point 

on one of the lines. The last view shows part of the Zariski-closure as well.

Hence, the equation of the Zariski-closure is (Wolfram Mathematica)

/ ( x ,  y, z )  =  50625 +  27000x — 3 8 7 0 0 x2 — 9 4 8 0 x 3 +  6 9 4 2 x4 +  9 3 6 x 5 — 4 4 4 x 6 — 2 4 x 7 +  9 x 8
— 3 0 6 0 0 y2 — 4 5 6 0 x y 2 +  9 8 9 6 x2y 2 +  1 5 6 8 x3y 2 — 8 2 4 x4y 2 — 8 0 x 5y 2 +  2 4 x 6y 2 
+  3 6 0 0 y4 +  9 6 0 x y 4 — 4 1 6 x 2y 4 — 6 4 x 3y 4 +  16 x4y 4 — 2 8 8 0 0 z2 — 7 6 8 0 x z2
+  9208x 2z 2 +  1056x 3z 2 — 9 1 2 x4z 2 — 3 2 x 5z 2 +  2 4 x 6z 2 +  5 8 8 0 y 2z 2 +  5 4 4 x y 2z 2
— 1 2 6 4 x2y 2z 2 — 9 6 x 3y 2z 2 +  5 6 x4y 2z 2 — 4 8 0 y 4z 2 — 6 4 x y 4z 2 +  3 2 x 2y 4z 2 
+  4 0 9 6 z4 — 512x 2z 4 +  1 6 x4z 4 — 5 1 2 y 2z 4 +  3 2 x 2y 2z 4 +  1 6 y4z 4 .

The degree of the above polynomial is 8  and the number of terms is 42.
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Figure 16: Various views of the Zariski-closure of the 3 —ellipse defined by two perpendicular skew lines

and a point on one of the lines.

The symmetry group of the foci, the ellipse, and the Zariski-closure variety is generated by the mirror 

reflection in the x z  — plane, and the mirror on the x y  —plane, the 180° rotation about the x  —axis.

4.5 Two perpendicular skew lines and a point on neither of the lines:

Figure 17: The 3-foci consisting of two skew lines and a point on neither of the lines.

Consider the two skew lines =  line parallel to the z —axis =  (0, —1, z), L2 =  x  —axis and the point P =  

(0 ,1 , 0), which is not on either of the lines. To find the algebraic variety V in M3, we choose the d =  4 and 

define the 3 —ellipse as following:

^3 =  {(x , y, z )  6 M3: d i( ( x ,  y, z ), (0, — 1, z ) )  +  d 2 ((x , y, z ), x  — axis) +  d s ((x , y, z), (0 ,1 ,0 ))  =  4] . 

Therefore, we obtain the equation ^ x 2 +  (y  +  1 )2 +  ^ y 2 +  z 2 +  ^ x 2 +  (y  — 1 )2 +  z 2 =  4 .
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Figure 18: Two views of the 3 —ellipse defined by two perpendicular skew lines and a point on neither of 

the lines. The last view shows small part of the Zariski-closure as well.

The polynomial for the Zariski-closure variety becomes (Wolfram Mathematica)

/ ( x ,  y, z) =  36864 — 2 4 5 7 6 x2 +  4 0 9 6 x4 — 3 3 2 8 0 y2 +  7 1 6 8 x2y 2 — 5 1 2 x4y 2 +  7 9 5 2 y4 — 9 9 2 x 2y 4 

+  1 6 x4y 4 — 5 2 0 y 6 +  2 4 x 2y 6 +  9 y 8 — 2 7 136 z2 +  5 1 2 0 x2z 2 — 5 1 2 x4z 2 — 3 0 7 2 y z2 

+  1 0 24x2y z 2 +  10 912 y2z 2 — 1 3 4 4 x2y 2z 2 +  3 2 x 4y 2z 2 — 7 0 4 y 3z 2 +  6 4 x 2y 3z 2

— 9 6 8 y 4z 2 +  5 6 x 2y 4z 2 +  4 8 y 5z 2 +  2 4 y 6z 2 +  3 6 0 0 z4 — 4 8 0 x 2z 4 +  1 6 x4z 4

— 9 6 0 y z4 +  6 4 x 2y z 4 — 4 1 6 y 2z 4 +  3 2 x 2y 2z 4 +  6 4 y 3z 4 +  1 6 y4z 4.

The degree of the polynomial is 8 and the number of terms is 35.

Figure 19: Various views of the Zariski-closure of the 3 —ellipse defined by two perpendicular skew lines

and a point on neither of the lines.

The symmetry group of the set of foci, the ellipse, and the Zariski-closure variety is generated by the mirror 

reflection in y z  —plane, the mirror reflection in x y  — plane, the 180° rotation about the y  —axis.
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3 —ellipses with two parallel lines and a point as foci gives us the following two cases. 

4.6 Foci are two parallel lines and a point on one of the lines:

Figure 20: The 3 —foci consisting of two parallel lines and a point on one of the lines.

Consider the parallel lines =  z  —axis, L2 = line parallel to the z  —axis= (1,0, z )  and the origin P =  

(0, 0, 0), which is on the line L^. To find the algebraic variety V in M3, we choose the d =  2 and define 

the 3 —ellipse as following:

E3 =  { ( x ,y ,z )  6 M3: ^ ^ ( (x ,y ,z ) ,  z  — a x is )  +  d 2( ( x ,y ,z ) ,  (1 ,0 ,z ) )  +  d 3( ( x ,y ,z ) ,  (0 ,0 ,0 ))  =  2]. 

Therefore, we get the equation ^ x 2 +  y 2 +  ^ ( x  — 1 )2 +  y 2 +  ^ x 2 +  y 2 +  z 2 =  2 .

Figure 21: Two views of the 3 —ellipse defined by two parallel lines and a point on one of the lines. The

last view shows part of the Zariski-closure as well.
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Hence, the polynomial for the Zariski-closure variety becomes (Wolfram Mathematical

/ ( x ,y ,  z) =  81 +  216x -  2 5 2 x 2 -  4 5 6 x 3 +  2 7 0 x4 +  2 6 4 x 5 -  1 0 8 x6 -  2 4 x 7 +  9 x 8 -  4 6 8 y 2
-  5 5 2 x y 2 +  6 2 0 x2y 2 +  4 9 6 x 3y 2 -  3 1 6 x4y 2 -  7 2 x 5y 2 +  3 6 x 6y 2 +  3 6 6 y4
+  2 3 2 x y 4 -  3 0 8 x2y 4 -  7 2 x 3y 4 +  5 4 x 4y 4 -  1 0 0 y6 -  2 4 x y 6 +  3 6 x 2y 6 +  9 y 8
-  1 8 0 z2 -  1 6 8 x z2 +  244x 2z 2 +  2 0 8 x 3z 2 -  7 6 x 4z 2 -  4 0 x 5z 2 +  1 2 x 6z 2 +  2 2 8 y 2z 2 
+  1 7 6 x y 2z 2 -  1 6 8 x2y 2z 2 -  8 0 x 3y 2z 2 +  3 6 x 4y 2z 2 -  9 2 y 4z 2 -  4 0 x y 4z 2
+  3 6 x 2y 4z 2 +  1 2 y6z 2 +  11 8z4 -  5 6 x z 4 +  1 2 x 2z 4 -  8 x 3z 4 -  2 x 4z 4 -  1 2 y 2z 4
-  8 x y 2z 4 -  4 x 2y 2z 4 -  2 y 4z 4 -  2 0 z6 +  8 x z 6 -  4 x 2z 6 -  4 y 2z 6 +  z 8.

The degree of the polynomial is 8  and the number of terms is 55.

Figure 22: Various views of the Zariski-closure of the 3 -e llip se  defined by two parallel lines and a point

on one of the lines.

The symmetry group for the of foci, ellipse, and Zariski-closure is generated by the mirror reflection in 

x z  -p lan e , the mirror reflection in x y  -p la n e  and the 180° rotation about the x  - a x is .

4.7 Two parallel lines and a point on neither of the lines:

Figure 23: The 3 - fo c i consisting of two parallel lines and a point on neither of the lines.
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Consider the parallel lines =  z  —axis, L 2  = line parallel to the z  —axis= (1,0, z )  and a point P =  

(0 ,1 , 0), which is on neither of the lines. To find the algebraic variety V in M3, we choose the d =  2 and 

define the 3 —ellipse as following:

E3 =  { ( x ,y ,z )  6  M3: d i ( ( x , y , z), z — axis)  +  d 2 ( ( x ,y ,z ) ,  ( 1 , 0 , z ) )  +  d s ( ( x ,y ,z ) ,  ( 0 , 1 , 0 ) )  =  2 ). 

Therefore, we get the equation ^ x 2 +  y 2  +  ^ ( x  — 1) 2  +  y 2  +  ^ x 2 +  (y  — 1) 2  +  z 2  =  2 .

Figure 24: Two views of the 3 —ellipse defined by two parallel lines and a point on neither of the lines. 

The last view shows part of the Zariski-closure as well.

Hence, the Zariski-closure has the equation (by Wolfram Mathematica)

/ ( x ,  y, z )  =  —2 5 6 x 3 +  19 2x4 +  2 2 4 x 5 — 9 6 x 6 — 2 4 x 7 +  9 x 8 +  5 1 2 xy  — 5 1 2 x 2y  — 3 8 4 x 3y

+  16 0x4y  +  8 0 x 5y  — 2 4 x 6y  — 5 1 2 x y 2 +  4 4 8 x 2y 2 +  3 8 4 x 3y 2 — 2 8 8 x4y 2 — 7 2 x 5y 2 

+  3 6 x 6y 2 — 2 5 6 y 3 — 3 8 4 x y 3 +  3 8 4 x2y 3 +  1 6 0 x3y 3 — 7 2 x 4y 3 +  1 9 2 y4 +  1 6 0 x y 4

— 2 8 8 x2y 4 — 7 2 x 3y 4 +  5 4 x 4y 4 +  2 2 4 y 5 +  8 0 x y 5 — 7 2 x 2y 5 — 9 6 y 6 — 2 4 x y 6 

+  3 6 x 2y 6 — 2 4 y 7 +  9 y 8 — 2 5 6 x z2 +  2 5 6 x2z 2 +  1 9 2 x 3z 2 — 8 0 x 4z 2 — 4 0 x 5z 2

+  12x 6z 2 — 2 5 6 y z2 +  1 2 8 x y z2 +  3 2 x 3y z 2 +  8 x 4y z 2 +  2 5 6 x y 2z 2 — 2 2 4 x2y 2z 2

— 8 0 x 3y 2z 2 +  3 6 x4y 2z 2 +  6 4 y 3z 2 +  3 2 x y 3z 2 +  1 6 x2y 3z 2 — 14 4y4z 2 — 4 0 x y 4z 2 

+  3 6 x 2y 4z 2 +  8 y 5z 2 +  1 2 y 6z 2 +  6 4 z4 — 3 2 x z 4 — 8 x 3z 4 — 2 x 4z 4 +  9 6 y z 4

— 4 8 x y z 4 +  2 4 x 2y z 4 — 8 x y 2z 4 — 4 x 2y 2z 4 +  2 4 y 3z 4 — 2 y 4z 4 — 1 6 z6 +  8 x z 6

— 4x 2z 6 — 8 y z 6 — 4 y 2z 6 +  z 8.

The degree of the polynomial is 8  and number of terms is 75.
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Figure 25: Various views of the Zariski-closure of the 3 —ellipse defined by two parallel lines and a point

on neither of the lines.

The only symmetry for the set of foci, the ellipse, and the Zariski-closure variety is the mirror reflection in 

x y  — plane.
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Chapter
5

Re s u l t s  A n d  Ob s e r v a t i o n

In this chapter we summarize our observations and state our results.

Observation 5.1: In all seven cases, the foci, the ellipse, and the Zariski-closure variety have the same 
symmetry groups.

Case 1:

Figure 26: Symmetries of the foci, ellipse, and Zariski-closure: Mirror on the yz — plane, mirror on the 

x z  — plane, and mirror on the x y  —plane, three 180° rotations about the x, y  and z —axis.

Case 2:

Figure 27: Symmetries of the foci, ellipse, and Zariski-closure: Mirror on the yz —plane, and mirror on

the x y  —plane, one 180° rotation about the y  —axis.
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Case 3:

Figure 28: Symmetries of the foci, ellipse, and Zariski-closure: Mirror on the x z  — plane, mirror on the
x y  —plane, one 180° rotation about the x  —axis.

Case 4:

Figure 29: Symmetries of the foci, ellipse, and Zariski-closure: Mirror on the x z  — plane, and mirror on
the x y  —plane, one 180° rotation about the x  —axis.

Case 5:

Figure 30: Symmetries of the foci, ellipse, and Zariski-closure: mirror at y z  —plane, mirror at x y  — plane,
one 180° rotation about the y  —axis.
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Case 6:

Figure 31: Symmetries of the foci, ellipse, and Zariski-closure: mirror at xz  —plane, mirror at x y  —plane,

one 180° rotation about the x  —axis.

Case 7:

Figure 32: Symmetries of the foci, ellipse, and Zariski-closure: mirror at x y  — plane

Note that these findings are consistent with the Theorem 2.2 in Chapter 2 which says that if E  is a 

generalized ^-ellipse in with foci /]_, (not necessarily points), and if the set of foci has a non­

trivial symmetry group G, then E  also has the same symmetry group. This observation leads us to the 

following results:

Lemma 1: Let E  be a generalized 3 —ellipse in M3  with foci , ^ 2  and that are either points or lines.

Then, E  has a reflectional symmetry in a plane if and only if the Zariski-closure of E  also has the same 

reflection.
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Proof: Let E  be a generalized 3 —ellipse in M3 with foci ^ 2 and that are either lines or points. E  is 

given by E =  [(x , y, z) 6 E 3|d((x, y, z), +  d ( (x , y, z), ^ 2) +  d ((x , y, z), ^ 3) =  d ] . Moreover, let

be the Zariski-closure variety of E.

( ^ )  Without loss of generality, suppose E  has a reflection in the xy  —plane. We want to show that 

also has a reflection in the xy  —plane. In other words, if f ( x ,  y, z) =  f ( x ,  y, —z), where /  is the equation 

of the 3 —ellipse E, then E (x , y, z) =  E (x, y, — z), where E  is the equation of the Zariski-closure variety 

of E.

Now suppose, f ( x ,  y, z) =  f ( x ,  y, —z) and let f ( x ,  y, z) =  A +  B +  C — d =  0 as before (Chapter 2). 

Consider the points (x0, y0, z) and (x0, y0, —z) on E, where x 0, y0 are fixed. For the points (x0, y0, z), 

using variable z the equation can be written as follows

A (z) +  B (z) +  C(z) — d =  0 .

^  ^C^  ̂ +  iz — a )2 +  +  (z — b )2 +  +  (z — c )2 — d =  0, where Cĵ , Cg, are constants.

Note that because all the terms above are positive (i.e. nothing can cancel) and f ( x ,  y, z) =  f ( x ,  y, —z),

+  (z — a )2 +  +  (z — b )2 +  ^C c +  (z — c )2 — d =  0

^  ^ +  z 2 +  ^C g +  z 2 +  ^ C (2 +  z 2 — d =  0.

Similarly, for the points (x0, y0, —z), the equation also will be

+  (—z )2 +  ^ C b +  (—z )2 +  ^C c +  (—z )2 — d =  0.

Now we multiply both of these equations by their 7 different appropriate conjugates (See Chapter 4 for 

more details), and obtain the factored polynomials for the Zariski-closure algebraic varieties, using 

radicals. Since this factorization is unique, we have that E (x , y, z) =  E (x, y, — z); i.e. Zb is also has a 

reflection with respect to the xy  —plane.

( ^ )  Without loss of generality, suppose Zb has a reflection in the xy  —plane. Consider the points

(x0, y0, z) and (x0, y0, —z) on E. Because Zb contains E, (x0, y0, z) and (x0, y0, —z) are also on Zb . Since

Zb has a reflection in the xy  —plane, E (x 0, y0, z) =  E (x 0, y0, — z). This implies,

(A(z) +  B(z) +  C(z) — d)(_A(z) — B(z) +  C(z) — d)(A (z) +  B(z) — C(z') — d ) (—A(z) +  B(z) +  C(z)

— d)(_A(z) — B(z') — C{z) — d ) (—A(z) — B(z) +  C(z) — d ) (—A(z) +  B(z) — C (z) — d)

=  (A(—z') +  B(z —) +  C (—z) — d)(_A(—z) — B (—z) +  C(—z') — d)(_A(—z) +  B (—z)

— C(—z') — d ) (—A (—z) +  B (—z) +  C(—z') — d )(A (—z) — B (—z) — C(—z) — d ) (—A (—z)

— B (—z) +  C(—z') — d ) (—A (—z) +  B (—z) — C(—z') — d)
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Since we have unique factorization into the radical expressions related to the distance function, the above 

equation can only be true when the first factors (positive ones) are equal. Hence,

(A(z) +  B(z)  +  C (z )  — d) =  (A (—z) +  B(z  —) +  C(—z) — d).

^  / ( x ,  y, z )  =  f ( x ,  y, —z) for any (a, b, z) 6 E.

Therefore, E  has a reflectional symmetry in the x y  —plane. □

Lemma 2: Let E  be a generalized 3 —ellipse in M3 with foci ^^, ^ 2 and that are either points or lines. 

Then E  has a rotational symmetry around an axis L if and only if the Zariski-closure of E  also has the same 

rotational symmetry around L.

Proof: Let E  be a generalized 3 —ellipse in M3 with foci ^ 1, ^ 2 and ^ 3 that are either points or lines. 

Moreover, let be the Zariski-closure of E.

Without loss of generality, suppose E  has a a° rotational symmetry with respect to the z  —axis; call it .

We want to show that also has the same rotational symmetry with respect to the z  —axis.

Without loss of generality, suppose 0 is an angle on the x y  —plane measured from the positive x  —axis, 

and let r  be the radial distance from the center. Then by the polar coordinates we have x  =  r  cos 0 

and y  =  r  sin 9.

Now let (9 +  a)  be another angle on the x y  —plane measured from the positive x  —axis.

Since is a a° rotational symmetry, suppose, f ( r  cos 9, r sin  9, 0) =  / ( r  cos(9 +  a)  , r sin (0  +  a) , 0), 

where /  is the equation of the 3-ellipse E. We want to show that E (r  cos 9, r  sin  9, 0) =  E (r  cos(9 +  

a) , r  sin (0  +  a) , 0), where E  is the equation of the Zariski-closure i.e. the algebraic variety of E.

Note that f ( r  cos 9, r sin  9, 0) =  f ( r  cos(9 +  a)  , r sin (0  +  a)  ,0 )  will only be true if either all ai =  0 

or r  cos 9 and all bi =  0 or r  sin  9. Then rotating 9 to 0, we obtain:

f ( r  cos 0, r  sin  0 ,0 ) =  f ( r  cos(a) , r  s in (a )  , 0) o  f ( r ,  0 ,0 ) =  f ( r  cos(a) , r  s in (a )  , 0)

o  ^ r 2 +  02 +  (—c^)2 +  ^ r 2 +  02 +  (—C2) 2 +  ^ r 2 +  02 +  (—c3) 2 — d

=  ^ r 2cos2 a +  r 2 s in 2 a +  (—c^)2 +  ^ r 2 cos2 a +  r 2sin2 a +  (—c2) 2 

+  ^ r 2 cos2 a  +  r 2 sin 2 a  +  (—c3) 2 — d

o  J r 2 +  +  J r 2 +  +  J r 2 +  c'  ̂ — d =  J r 2 +  +  J r 2 +  +  J r 2 +  c'  ̂ — d .

Now since both sides of this equation are the same, when we multiply each side by 7 different appropriate 

conjugates (see Chapter 4 for more details), we obtain algebraic varieties that are also the same.

This implies, E (r,  0 ,0 ) =  E (r  cos(a), r  s in (a ), 0) o  f ( r  cos 0, r  sin  0 ,0 ) =  f ( r  cos(a), r  s in (a ), 0)
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Rotating back to 6 we get that F (r  cos 6, r  sin  6 , 0) =  F (r  cos(9 +  a ) , r  sin(9 +  a ) , 0).

Since the xy-plane was an arbitrary choice we conclude that

F (r  cos 9, r  sin  9, z) =  F (r  cos(9 +  a ) , r  sin(9 +  a ) , z). □

Lemma 3: Let E  be a generalized 3-ellipse in M3 with foci ^ 1, and that are either lines points or

lines. E  is symmetric with respect to the origin if and only if the Zariski-closure of E  is also symmetric with 

respect to the origin.

Proof: Let E  be a generalized 3-ellipse in M3 with foci ^ 1, and ^ 3 that are either lines or points.

We want to show that if E  is symmetric with respect to the origin; in other words, if f ( x ,  y, z) =  

f ( - x ,  —y, —z), where f  is the equation of the 3-ellipse E, then E (x, y, z) =  F ( - x ,  —y, — z), where F  is 

the equation of the Zariski-closure i.e. the algebraic variety of E.

Since f ( x ,  y, z) =  f ( —x, —y, —z), we have

^ ( x -  Ui)2 +  ( y -  hi)2 +  (z -  Ci — d =  ^ ^ ^ ^ / ( - x —ai)2 + J - y —bi)2 + J - z —ci)2  ̂ — d .

Case 1: Three points: We will have symmetry with respect to the origin when at least one of the 3 —foci 

is the origin itself and the other two points are positioned where they are symmetric with respect to the 

origin. For example:

Figure 33: 3 —points foci 

So the equation for ellipse may be of the form

f ( x ,  y, z) =  {^^l(x+E)2 + y 2 + 'z 2 +  ^ x 2 +  y'2 +  z'2 +  ^ ~ (x — E)2 + y 2'+ 'z 2  ̂ — d .
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Case 2 : Two points and one line: We will have symmetry with respect to the origin when the line will go 

through the origin and the two points will be positioned at a symmetry with respect to the origin. For 

example:

Figure 34: 2 —points and 1 - l in e  foci 

So the equation for ellipse may be of the form

f i x ,  y, z) =  (x +  1 )2 +  y 2 +  z 2 +  ^ x '2 +  y 2 +  ^ ( x — 1 )2 +  y 2 +  z 2  ̂ — d .

Case 3: One point and two lines: We will have symmetry with respect to the origin when the point is the 

origin and the two line are symmetric with respect to the origin. For example:

Figure 35: 1 —point and 2 —lines foci

So the equation for ellipse may be of the form

/  (x, y, z) =  { ^ x 2 +  y 2 +  ^ x 2 +  y 2 +  z2 +  V x 2 +  z2) — d
Or

f ( x ,  y, z) =  ^ ^ ( x  +  1)2 +  z2 +  ^ x 2 +  y2 +  z2 +  ^ ( x  — 1 )2 +  z2j  — d .
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Case 4:  Three lines: We will have symmetry with respect to the origin when at least one of the line goes 

through the origin and the other two are symmetric with respect to the origin. For example:

Figure 36: 3 —lines foci

So the equations for ellipse may be of the form

f i x ,  y, z) =  (x +  1 )2 +  z 2 +  +  z 2 +  ^  ( x — 1 )2 +  z 2 j  — d

or

f ( x ,  y, z) =  ^V (^  + 1 )2 +  ^ 2 +  V ^ 2 +  y 2 +  V (^  — 1 )2 +  ^ 2)  — ^
In all the cases above, we can see that / ( x ,y ,  z) =  f ( —x, —y, —z). Now if we multiply both sides by the 

appropriate conjugates, we can see that it will also be true that F(x , y, z) =  F ( —x, —y, —z). In other 

words, the Zariski-closure of the 3 —ellipse will also be symmetric with respect to the origin. □

Theorem 1: Let E  be a generalized 3 —ellipse in E 3 with foci that are either points or lines. If E  has a non­

trivial symmetry group G, then the Zariski-closure of E  also has the same symmetry group.

Proof: Consequence of the above lemmas. □

Theorem 2: Let E  be a generalized 3 —ellipse in E 3 with foci (p-̂ , p 2, that are either points or lines. If 

the set of foci has a non-trivial symmetry group G, then the Zariski-closure of E  also has the same 

symmetry group as the set of foci.

Proof: Let E  be a generalized 3 —ellipse in E 3 with foci p- ,̂ p 2, p 3 that are either points or lines. Also let 

the set of foci have a non-trivial symmetry group G. Then by Theorem 6.4.1 of [17], we know that the 

3 —ellipse E  has the same symmetry group. However, from the Theorem 1 listed above, we know that 

whenever a 3 —ellipse E  has a non-trivial symmetry group, the Zariski closure of E  also has the same 

symmetry group. Therefore, we conclude that if the set of foci has a non-trivial symmetry group G, the 

Zariski-closure of E  has the same symmetry group as the set of foci. □
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Observation 5.2: In each case, our 3 —ellipse is bounded in E 3.

Note that this observation is consisted with Theorem 2.3 (Chapter 2) stating that if E  is a generalized 

k —ellipse in E ” with foci fj ,̂ and if at least one of the foci is a point, then the generalized k —ellipse

in E ” is bounded [17].

Observation 5.3: In all seven cases we considered in the previous chapter, the Zariski-closure varieties are 
unbounded in E 3.

Observation 5.4: In both the intersecting lines cases and the skew lines cases, Zariski-closures have pipe 

shapes that extends to infinity in 4 'directions'. However, in the cases involving parallel lines Zariski- 

closures have funnel shapes that extends to infinity only in 2 opposite 'directions'.

Figure 37: Zariski-closures extend to infinity having pipe shapes in 4 'directions' in the cases of
intersecting lines

Figure 38: Zariski-closures extend to infinity having pipe shapes in 4 'directions' in the cases of skew
lines

Figure 39: Zariski-closures having pipe shapes only in 2 opposite 'directions' extend to infinity in the
cases of parallel lines
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The above observations lead us the following statements.

Theorem 3: Let E  be a generalized 3 —ellipse in E 3  with foci and consisting of a point and two

lines. Then the Zariski-closure variety is not bounded. Moreover,

1. If the two lines are parallel, then the Zariski-closure of the 3-ellipse extends to infinity in 

the direction of the lines.

2. If the two lines are not parallel, then the Zariski-closure of the 3-ellipse extends to infinity 

in the directions of both lines.

Proof: Let E  be a generalized 3-ellipse in E 3  with foci and ^ 3  consisting of a point and two lines.

Proof o f 1. Without loss of generality, suppose our is the x  —axis (i.e. y  =  0 and z =  0), L 2  is a line 

parallel to the x  —axis (i.e. y  =  1 and z =  0) and P is the origin. To start, we reduce this case to the case 

of E 2(x , y )  (i.e. z =  0).

Figure 40: 3-foci consisting two parallel lines and the point of origin in E 2(x , y )

Then for some d > 1 ,  the equation of the 3-ellipse becomes d =  jy| +  jy — 1| +  y x  2  +  y 2.

And therefore, the first step in calculating the equation of the polynomial for the Zariski-closure variety 

can be expressed as follows:

d — jyj — jy — 1 j =  V x 2  +  y 2  

^  (d — jy j — jy  — 1 j ) 2  =  ( V x ^ + y 2)

-  d 2  +  y 2  +  (y  — 1 ) 2  — 2 djy j  +  2 jy (y  — 1 )j — 2 d jy  — 1 j =  x 2  +  y 2  .
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Note that this equation includes terms with absolute value signs, hence to get the polynomial expression, 

few more steps are required. However, the zero set for the above equation is included in the Zariski 

closure variety. Therefore we solve this equation for x  without getting it into a polynomial form:

X 2  =  d 2  +  y 2  +  y 2  — 2 y  +  1  — 2 d|y| +  2 |y2  — y j — 2d\y — 1 | — y 2

^  X 2  =  d 2 +  y 2 — 2y  +  1  — 2 d|y| +  2 |y2  — y| — 2 d|y — 1 |

^  X 2  =  1  +  d 2  +  y 2  +  2 |y2  — y| — 2 |y| — 2 d|y| — 2 d|y — 1 |

^  X 2  =  1  +  d 2  +  y 2  +  2 |y2  — y| — 2 |y +  d y  +  d (y  — 1 )|

^  X 2  =  1  +  d 2  +  y 2  +  2 |y2  — y| — 2 |y +  2 d y  — d|

^  X 2  =  1  +  d 2  +  y 2  +  2 |y2  — y| — 2 |y( 1  +  2 d) — d|

^  X 2  =  1  +  d 2  +  y 2  +  2 |y2  — y| — 2 |y( 1  +  2 d)| +  2 d

^  X 2  =  1  +  d 2  +  2 d +  y 2  +  2 |y2  — y| — 2 |y( 1  +  2 d)|.

Note that the right hand side of the above equation is a continuous function of y  and when x  is large, y  

has to be large as well. Because d cannot be negative, 1 +  d 2  +  2d > 0. Moreover, y 2  +  2|y2  — y| — 

2|y(1 +  2d)| >  0 for all |y| ^  3 d. Therefore, for large enough x  there exists y  such that the above 

equation has real solutions; i.e. as x  ^  + ^ ,  there always exist a real number y  that solves the problem

above. Moreover, the X 2  term on the left hand side guarantees that the graph of set of zeros of this

equation is symmetric. Therefore, the Zariski-closure of this 3 —ellipse extends to infinity in both 

directions along the x  —axis.

General case 1. Note that applying a few deformation techniques, we can easily generalize this case to 

less special situations of 3 —ellipeses in M3  (x, y, z ). For example we can translate the point from the 

origin by a distance e in any direction, and obtain equations with similar behavior as x  ^  + ^ ,  because 

the above equation is not going to change too much for large |x| (we may lose the symmetry). Working 

in this manner, we can conclude that if the two lines of the 3-foci are parallel, then the Zariski-closure of 

the 3-ellipse extends to infinity along the parallel lines. □

Proof o f 2. Without loss of generality, suppose our is the x  —axis (i.e. y  =  0 and z  =  0), L 2  is 

the y  —axis (i.e. x  =  0 and z  =  0) and P is the origin. Again, we reduce the study of this case to M2 ( x ,y )  

(assuming z  =  0 ).
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Figure 41: 3 - fo c i consisting two non-parallel intersecting lines and the point of origin in M2(x ,y )  

Then for a fixed distance d, the equation of the 3 —ellipse becomes: d =  \x I +  |y| +  +  y 2-

Therefore, the first step in calculating the equation of the Zariski-closure variety gives us

d — \x\ — lyl =  V ^ 2 +  y 2 

^  (d — \x\ — ly l) 2 =  ^V ^2 +  y 2)

^  d2 +  X2 +  y 2 — 2d\x\ +  2\x\\y\ — 2d\y\ =  x 2 +  y 2 

^  d 2 — 2d\x\ +  2\x\\y\ — 2d\y\ =  0 -

Note that the solution set is included in the Zariski-closure variety. Hence, we solve for x  to study the 

behavior at infinity.

2 \x\\y\ — 2d\x\ =  2d\y\ — d 2

^  \x\(2\y\ — 2d)  =  2d\y\ — d 2

2d\y\ — d 2 

\ \̂ 2\y\ — 2d

2d — ^-.
^  \ x \ = _____ ^

2 \y\

Now, (for all y ^  d) as \y\ ^  \x\ ^  d. This means, for large \y\ the above equation always has real

solutions. Therefore, noting the symmetry due to the \x\ term on the left hand side, we conclude that the 

Zariski-closure variety of this 3 —ellipse extends in both directions along the y  —axis-
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Next, we solve the equation for y :

2 |x ||y | — 2d\y\ =  2 d |x | — d 2 

^  |y |(2 |x | — 2d) =  2 d |x | — d 2 

2 d |x | — d 2
^  |y | =  — 2 7 '2 |x | — 2d 

2d — ■|̂ 2|

-  ■ ^ ■ = 7 : | 4  ■
|x|

Now, (for all x ^  d) as |x| ^  |y | ^  d. This means that the above equation always has real solutions.

Then again, noting the symmetry due to the |y  | term on the left hand side, we conclude that the Zariski- 

closure variety of this 3-ellipse also extends in two opposite directions along the x —axis.

General case 2. Note that applying a few deformation techniques, we can easily generalize this case to 

other less special 3 —ellipses in M3 (x, y, z). We can translate the point from the origin by a distant of e 

in any direction, and obtain equations for varieties with similar behavior while tending to  infinity. 

Therefore we conclude that if the two lines are non-parallel, then the Zariski-closure of the 3 —ellipse 

extends to  infinity in the directions along the lines as we predicted.

Moreover, also note that deforming the 3 —ellipse by moving the line L2 slightly (translate or rotate), 

does not significantly change the solutions of the above equations, hence the above can represent 

behavior of the Zariski closure variety for 3 —ellipse in a general case. Therefore, the Zariski-closure 

variety extends along its linear foci to infinity in all cases. □

Corollary 1. If the 3 —ellipse in M3 has a linear foci, then the Zariski-closure variety is unbounded.

Observation 5.5: In all seven cases, the Zariski-closure variety is irreducible because it cannot be written 

as the union of distinct nonempty algebraic varieties. We can also see this algebraically, because in all 

seven cases the equations of the algebraic variety are not factorable (as per Wolfram Mathematica). We 

expect that the generic Zariski-closure varieties for 3 —ellipses is irreducible.

Observation 5.6: The degree of the polynomial describing the Zariski-closure variety of all 3 —ellipses in 

all our examples is 8.
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This observation leads us to the following results:

Theorem 3: Every 3 —ellipse in , x 2, x 3) with foci that are either points or lines has a Zariski-closure

of degree < 8. Moreover, the degree is 8, if the linear foci do not overlap.

Proof: We already know that Zariski-closure of a k —ellipse with k — focal points in general position in 

has a polynomial representation of degree 2^ when k is odd [13]. Therefore, every 3 —ellipse with foci 

consisting of three points has a Zariski-closure V of degree 23 =  8.

Now suppose, one or more of our 3 —foci are lines. Then for some d >  , d =  A +  B +  C, where

A, B, C represent the distances from each foci. Hence, we have

A +  B +  C — d =  0 .

Note that A, B, C are square roots of sums of positive quadratic polynomial terms. Alternating the signs 

of A, B, C, we multiply the left side of this equation by its seven other conjugates and obtain the following 

equation (See Chapter 4 for more details):

P(A, B, C ) =  — AA6B 2 +  6A4B4 — AA2B 6

+ B 8 —AB6C2 +  6B4C4 —AB2C6 

+ C 8 — AA2C6 +  6A4C4 — AA6C2 

+AA4B 2C2 +  AA2B4C2 +  AA2B 2C4

—AA6d 2 +  AA4B 2d 2 + AA2B4d 2 — AB6d 2 + AA4C2d 2 — A0A2B 2C2d 2 +  AB4C2d 2 

+ AA2C4d 2 + AB2C4d 2 —AC6d 2 + 6A4d4 +  AA2B 2d 4 +  6B4d 4 +  AA2C2d 4 

+ AB2C2d4 +  6C4d 4 —AA2d 6 —AB2d 6 —AC2d 6 + d 8 .

Note that in the above equation, not only the degree of the entire polynomial is 8, but also the highest 

degree A, B, C individually assume is 8. Moreover, all the powers are even. Hence, there are no radical 

expressions when we substitute expressions in , x2, x 3.

If any two focal lines are in general positions, then the radical expressions in A, B, C are all different. 

Without the loss of generality we can assume that one of them describes the distance to the x 2 —axis; i.e. 

A =  ^x'2 +  x 2 . Hence, the first term in the above equation becomes: x̂ [ +  x^ +  (lower d e g r e e  terms).  

Now if we let, B =  x:2 +  P2(x2, ^ ) +  P1(x1, x 2, ^ ) and C =  x:2 +  Q2(x2, ^ (x^, x 2, ^ ). Then 

writing only the highest degree terms for x :  in the above polynomial we have, P(A, B, C) =  x'̂ l — Ax' l̂ +  

6x ^8 — 4x18 +  x̂ 8 — 4x18 +  6x18 — 4x18 +  x̂ 8 — Ax’2 +  6x ^8 — 4x^8 +  4x^8 +  4x^8 +  4x^8 +  P (x 2, ^ ) +

G(x1, x 2, ^ ) where the exponent o f  x :  is less than  8. Considering only the coefficients of x ’2 we
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obtain 1 — 4 +  6  — 4 +  1 — 4 +  6  — 4 +  1 — 4 +  6  — 4 +  4 +  4 +  4 +  0. This means does not 

cancel; i.e. the polynomial is of degree 8  when each of A, B, C contains the term x^.

Now let us consider the case when B or C does not have any x^ term. Without the loss of generality, 

suppose it is C. Note that at least two of x^, x 2, x 3  must be present in any distance expression in M3. Hence

we let B =  x'2 +  x| +  (low er d e g re e  term s) and C =  x| +  x| +  (low er d e g re e  term s).

Then writing only the highest degree terms only in the above polynomial we obtain the following equation 

P(A, B, C) =  (x^ +  x3 +—  ) — 4 (x 6 +  X6 +—  )(x1  +  x2 +  ^  ) +  6 (x 4 +  x^ +—  )(x ^  +  x^ +  — ) —

4 (x 2 +  x^ +  — ) ( x 6 +  x^ +—  ) +  (x^ +  x^ +—  ) — 4 (x 6 +  x̂ 6 +  — )(x |  +  x^ +  — ) +  6 (x 4 +

+  — ) ( X 2  +  X  ̂ +  — ) — 4 (x 2  +  x^ +  — ) ( x|  +  x 26 +  — ) +  (x| +  x3 +  — ) — 4 (x 2  +  x i  +

— ) ( x| +  x| +  — ) +  6 (x 4  +  x| +  — ) ( x 2 - +  x| +  — ) — 4 (x 6  +  x| +  — ) ( x| +  X 2  +  — ) +  4 (x 4  +  

x| +  — ) ( x 2  +  x| +  — ) ( x 2  +  X 2  +  — ) +  4 (x 2  +  X 2  +  — ) ( x 4  +  x| +  — ) ( x| +  X 2  +  — ) +  4 (x 2  +

X 2  +  — ) ( x 2  +  x| +  — ) ( x 4  +  x| +  — ) +  —.

In this case, the coefficients of 8  may be zero, however the coefficients for the final term x^^x2  is

not. Hence, the polynomial is of degree 8 . We can do similar calculations in general cases. Therefore, we 

can conclude that the degree of the Zariski-closure of every 3 —ellipse in M3  is at most 8 , and is equal to 

eight for generic cases. □

Theorem 4. Family of polynomials in three variables of d e cree  <  8  can be classified by p 164.

Proof of claim 2. We know that a parameter space in this case is the set of the possible coefficients of 

polynomials in three variables of degree 8  that are not all simultaneously zero. We can calculate the 

dimension of the space parameterizing all homogeneous polynomials of degree eight in P 3 (x, y, z, w )

8 + 3as follows. The dimension of the parameter space is given by  ̂ 8  j  — 1 =  164.

Therefore, all polynomials of degree 8  with 3 variables are parameterized by p 164. Hence, we conclude 

that the subset containing varieties that are Zariski-closures of 3 — eZZrpses is of dimension at most 164 

(but most likely less than 164) in p 1 6 4  . □

Corollary 3: The set of polynomials for the Zariski-closure varieties of 3 —ellipses consisting can be 

considered as a subset in P 1 6 4  with some embedding.

One can ask which polynomials of degree 8  represent Zariski closure varieties of 3 —ellipses and how to 

characterize them.
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Chapter

6

C o m p a r i s o n

In this short chapter, we compare our results with the statem ents mentioned in Chapter 1.

Theorem: Zariski-closure of a k —ellipse consisting of k points in has a polynomial representation of 

degree 2^ when k is odd, and degree 2^ — j  when k is even [13].

Comparison: This result extends to lines and points in our study. In all seven cases, the polynomial of the 

Zariski-closure variety of the 3 —ellipse has a polynomial representation of degree 23 =  8 and the result 

extends to the generic case with similar foci.

Theorem: Let E be a generalized k —ellipse in E ” with foci /]_, (not necessarily points). If the set

of foci has a non-trivial symmetry group G, then E also has the same symmetry group [17].

Comparison: Through our study, we have extended this result in our cases for 3 —ellipses to include the 

Zariski-closure varieties V. Hence we expect the following to be true in general:

Let E be a generalized k —ellipse in E ” with foci /]_, ^ , /^  (not necessarily points). If the set of foci has 

a non-trivial symmetry group G, then E and V also has the same symmetry group

Theorem: Let E be a generalized k —ellipse in E ” with foci f^, .^, . If at least one of the foci is a point,

then the generalized k —ellipse in E ” is bounded [17].

Comparison: All seven of our cases had exactly one point as a focus and each one of our 3 —ellipses is 

bounded. Therefore, this result has been verified.
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Chapter
7

D e f o r m a t i o n s

Our 7 cases are very specific examples 3 —ellipses and can be easily deformed to  general examples by 

simple rotations and translations of the foci. As an example, now we analyze some deformations of one 

of equations of the Zariski-closure variety, namely Case 5 in Chapter 5:

36864 — 24576X2 +  4096x4 — 33280y2 +  7168x2y 2 — 512x4y 2 +  7952y4 — 992x2y 4 +  

16x4y 4 — 520y6 +  24x2y 6 +  9 y 8 — 27136z2 +  5120x2z 2 — 512x4z 2 — 3072yz2 +

1024x2y z 2 +  10912y2z 2 — 1344x2y 2z 2 +  32x4y 2z 2 — 7 0 4 y 3z 2 +  64x2y 3z 2 — 968y4z 2 + 

56x2y 4z 2 +  4 8 y 5z 2 +  24y6z 2 +  3600z4 — 480x2z 4 +  16x4z 4 — 960yz4 +  64x2y z 4 —

416y2z 4 +  32x2y 2z 4 +  6 4 y 3z 4 +  16y4z 4 =  0 .

Note that the term + 9 y 8 has the highest degree in one variable and it is also the only term with an odd 

coefficient. Here we study the stability of the properties of our Zariski closure surface under deformations 

by continuously changing the coefficient of the term a y 8 and observing graphs below.

When a  =  —20: When a  =  —9:
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When a =  - 1 : When a =  0:

When a =  1: When a =  9: (our usual case)

When a =  11: When a =  20:

Figure 42. A family of interesting deformations

It can be easily observed that as the coeffient of the term y 8 goes to —<x, we obtain a funnel-type shape 

which gets bigger and bigger. On the contrary, as the coeffient of the term y 8 goes to <x, the double-red- 

cross vanishes on itself in the middle.

39



Chapter

8

C o n c l u s i o n s

Most of our results are based on properties we observed while graphing the 3 —ellipses and their 

associated algebraic varieties. Hence, they may not seem very surprising. However, we are excited to see 

that our findings are compatible with other known results. It is interesting to observe that the 3 —ellipses 

and their Zariski-closures always have the same number and types of symmetries. We would like to predict 

that this result can be extended to not only lines and planes, but also to any flats and even to higher 

dimensions. Moreover, for all the cases of 3-foci consisting two lines and a point, we obtain polynomials 

for Zariski-closure algebraic varieties that have at most 75 terms. Therefore, it may be safe to say that 

such Zariski-closure varieties of 3 —ellipses may be classified by some suitable param eter space of 

dimension 74 (that is less than the dimension 164 of the total param eter space of degree 8 polynomials). 

One can ask which polynomials of degree 8 represent Zariski-closure varieties of 3 —ellipses and how to 

characterize them. There should be more work done on other properties of Zariski-closure algebraic 

varieties, including their irreducibility, singularities and topological properties.
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