CloudSuite

Ad Hoc Laboratories Using Cloud Resources

A Thesis Presented to
The Faculty of the Computer Science Program

California State University Channel Islands

In (Partial) Fulfillment
of the Requirements for the Degree

Masters of Science in Computer Science

by
Drew Alex Clinkenbeard
March 2013

Master Thesis by Drew Alex Clinkenbeard

© 2012, 2013
Drew Alex Clinkenbeard
ALL RIGHTS RESERVED

All images and code generated by author unless otherwise indicated

Master Thesis by Drew Alex Clinkenbeard

APPROVED FOR THE COMPUTER SCIENCE PROGRAM

(2ivg ¥

I. . {‘ \ I~ ; / L 9 f\‘}
[LLLC' \ \| nl{ AL N /<3,

Advisor: Dr. Andrzej Bieszczad Date

Pede D SwaL tu33

Dr Peter Smith Date

ﬂ”"“o'\(éuu, Yaal(z

Dr Michael Berman Date

APPROVED FOR THE UNIVERSITY

) /’\.J ’ = &L 29 1:
P /
Dr’Gary A. Berg Date

Non-Exclusive Distribution License

In order for California State University Channel Islands (CSUCI) to reproduce, translate and
distribute your submission worldwide through the CSUCI Institutional Repository, your agreement to
the following terms is necessary. The author(s) retain any copyright currently on the item as well as
the ability to submit the item to publishers or other repositories.

By signing and submitting this license, you {the auther(s) or copyright owner) grants to CSUCI the
nonexclusive right to reproduce, translate (as defined below), and/or distributé your submission
(including the abstract) worldwide in print and electronic format and in any medium, including but not
limited to audio or video.

You agree that CSUCI may, without changing the content, translate the submission to any medium
or format for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of this submission for purposes of
security, backup and preservation.

You represent that the submission is your original work, and that you have the right to grant the
rights contained in this license. You also represent that your submission does not, to the best of
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the
submission contains no libelous or other uniawful matter and makes no improper invasion of the
privacy of any other person.

If the submission contains material for which you do not hold copyright, you represent that you have
obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by
this license, and that such third party owned material is clearly identified and acknowledged within
the text or content of the submission. You take full responsibility to obtain permission to use any
material that is not your own. This permission must be granted tc you before you sign this form.

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH
CONTRACT OR AGREEMENT.

The CSUCI Institutional Repositary will clearly identify your name(s) as the author(s) or owner(s) of
the submission, and will not make any alteration, other than as allowed by this license, to your
submission.

Cloa&ﬁu:}e, Ad Hoo L abora tore, Using Cioud Res ources

Title of Item

Masters Thesis : Cloud (ompu hing. Virtualization, Scen 1ific (.on{’wl‘{flg.
3 to 5 keywords or phrases to describe the item !

DRew A. CLINKEVBEARD
Author(s} Name (Print)

M@M 30-AR- 0 13
Author(s) Signature Date

This is a permitted, modified version of the Non-exclusive Distribution
License from MIT Libraries and the University of Kansas,

Master Thesis by Drew Alex Clinkenbeard

CloudSuite : Ad Hoc Laboratories Using Cloud Resources

by
Drew Alex Clinkenbeard

Computer Science Program

California State University Channel Islands

Abstract

CloudSuite presents a proof of concept for cloud based ad hoc virtual laboratories.
Using Amazon Web Services and a persistent web server, CloudSuite allows students and
instructors to explore ideas in computer science. CloudSuite provides a web based
interface to configure labs consisting of advanced algorithms and, using an Amazon
Elastic Cloud Compute instance, execute those labs. The results of the execution are then
made available for analysis. This thesis discusses the technology necessary for
implementing this system as well as providing the code necessary to demonstrate the
feasibility of such a system. Finally this thesis also presents a roadmap for future
development of CloudSuite.

Master Thesis by Drew Alex Clinkenbeard

Acknowledgements

1 would like to thank Dr. Andrzej Bieszczad tor his patience, guidance, and
encouragement on the long journey towards the completion of this project. My meetings
with Dr Bieszczad helped keep me sane and on task.

L would not have been able to complete this project without the support of my wife.
The hard work she put in on her own thesis inspired me to keep working, her
encouragement kept me writing, and her proof reading made it all presentable. Thank you
Jenny!

I would also like to thank my family, my in-laws, and my ‘Camarillo family’ whose
support, encouragement, and home cooked meals sustained me throughout.

Finally I have to thank Shure, Thomas Leeb, and Daft Punk. Without headphones
and music this never would have happened.

Master Thesis by Drew Alex Clinkenbeard

TABLE OF CONTENT

1. INTRODUCGCTION.......ocicoveiiereieersiseeeeesssssessssssnsssssssassssssesssssesssssssssssssssesssssressssssssssssasens 9
LTSE CABES L.ttt ettt e e 9
UNDERGRADUATE STUIDENTS et 9
UPPER DIVISION OR GRADUATE STUDENTS oo, 10
PROFESSOIRS L.ttt ettt e et et e et e et 10
FUNCTIONAL REQUIREMEINTS L. 10
CREATING LABS oo e e e 10
SAVING LABS .. oot e e e 10
LOATIING LA DS Lo e, 11
IS TRIBUTING LA BS oo e e e 11
MODIFYING LLABS ..c.oviie ettt e e a1 11
NI RING MO L LS et e, 12
RUNNING A LAB . oo e, 12
REMAINING CHAPTERS ..ottt ettt ta et 13
K THRMS Lo oo et 14

2. FIELD QOVERVIEWooooviriiiriinirritirnssiirrsssssssssssssesssssnnsssssssessssssssssssnnesssrsssssssnssssss 16
WHAT IS CLOUD COMPUTING -t oo, 16
HISTORY OF CLOUD COMPUTING L...oviiiciiiiiiiiie et iane s 17
VIRTUATLIZATION Lot e oo ettt 18
HYTERVISORS ... 18
PARAVIRTUALIZATION L...ooiiiiiiii et e st ine st ar st e tin e 19
AMAZON.COM ELASTIC COMPUTE CLOUI oo, 20
OTHER CLOUD BASED SERVICES ... oo e e 21
HEROKLT Lottt ittt e aa e 21
GOOGLE AP ENGINE e e e e e 22
EUCALYPTUS AND ATPSCALE ... oo e 22
LANGUAGES ..ottt et e et e iane s 22
Cont FRAMEWORKS, LIBRARIES ANIDAPIS ..., 23
PHE SLIM ..o e e e 23
BOTO e e 23
ELEMENTTRI oo e 23
JOUERY oo e, 23
BACKBONE JS ..ottt e e ae st e e iae et r st e tae e 24
UNDERSCORELIS Lo e e e, 24
TEMPLATING SYSTEMS ..ottt et e, 25
HIGHCHARTS L.ttt e et ettt et a e ne et 25
O NLINE EDUCATTON Lo e e, 25
OTHER VIRTUAL LABS oo 25
KIEAN ACADEMY ..o et v s e s oaa e et r et a e iae s s sastar st e s tbe e 26
UNIVERSITY OF HAWATT VIRTUAL LAB e, 26
NAVY VIRTUAL LA e e, 26
GRIDS AND CLUSTERS ... oottt oottt et e en et 26

3. IMPLEMENTATIONcorieerrrrrrriesrnsssssssssssrsnsssssnnsssssssssssrnssssesssssssssssssssrsssssrrassssrensase 28
WEB SERVIIR Lo e e e e e, 29
PHP FRAMEWORK ... e, 29
B R et 30
RO e e e e e e e, 30
DU e e e, 3]
LA B e e 34
COLLECTION Lo e e e 36
XML MODELS. ..o e e 36
VIEW LAYER oo ettt 30
AMAZON MACHINI INSTANCE oo e e, 37

O

Master Thesis by Drew Alex Clinkenbeard

4. ANALYSIS OF CLOUDSUITE ... 30

STANDARIY USIR Lo, 338
LG GTNG TN .o,
CREATING A LAB
ADDING MODULTFS TOA LAB. .. 40
REMOVING MODULES FROMALAB. ..o, 42
EDITING MODULES ..ottt a et a e n et 42
SAVING A LAB oo e e, 42
LOADING A LA B e e, 43
QUEUEING LABS ..ottt e et 44
DT ETING LA Lo e e e e, 44
RESTULTS FROMALAB <o e e e, 44
SUPERUSERS ..ottt ettt ettt ettt e e et 43
DS T RIBU T ING L AT S e e e e e 45
STARTING / STOPPING THE SERVERoii e e, 46
5. CLOUDSUITE OQUTPUT ..ot ieticiiemesiiseesssssssiesstisssstissesssssessessstossstissssssssassesssnses 47
LAB RESULTS ...ttt ettt 47
EXAMPLIL EXPERIMENT Lo e 51
6. THESIS RESULTS oottt vsterrssnnsissrsseesssssssssssnnsssssssses ssssassssssnssssssassssensassesssnne 53
TISE CASES oo e 33
UNDERGRADUATE STUDENTS ...0uiisiee et es s mans s riisa s e e 23
UPPER DIVISION OR GRADUATE STUIDENTS . ..o, 53
PR E S RS .o e e e e, 54
FUNCTIONAL REQUIREMENTS L..0iiiiiiiiiciiec e enininse e ine s sesnnsesnnnn ot
CRIATING LABS Lo 54
S AVIING LA B oo e, 54
LOADING LABS ..ottt ame s snsar et inne a0 D)
DS T RIBU T ING LA S e e e e e 35
MODIEYING LABS oo e e 35
CONFIGURING MODULES0oiiiii et es sttt a s es s manssr s nnnse e ?
RN NING A AT e e e e 35
ACCESSING STUDENT DATA oo e, 56
7. FUTURE WORK........ceeiieeeiecrssseessrreerresserrassssesssrreserresssrrassssesssssesseresssssassssesssssessessee 57
USER MANAGEMENTociiviiiiivee s ovvsis st iane st eirn s ine s snsissennsesna i 1
SECURITY oot et et e 58
BTN oo, 58
LAB MANAGEMENT AND DISTRIBUTION ..o, 39
D TN G MO UL e e e e e 59
COLLECTIONS . oo e e e e 59
VWIEW LAYER oot oottt r et e e n st rten e 60
DA T A IMPOR T AN UL e e e 60
AMI/ DATAPROCESSING ..., 60
MODULE UPLOADING / PACKAGE MANAGER ... reerneees 61
A Pl e 6l
8. CONUCLUSTION ..oooviiveeererrreeciirerssissssssesssnsesssssasssssssssessnnsssssssses ssssssssssnssssssassssensssssrssanse 62
APPENAIX 11orvirieriiernierrsinsniesssssisssississ s ssssssssasnssasssssasnssrasnssassnssasnsssssnsrnsssssnensoresssrsrss 0 1
AL PP L ASSES oottt ettt e 67
B SERVER MOIDULIS oo oo e, 104
C. O VIRTUAL HOST FILE . oo e, 103
DL APLREFERENCEcooiii ittt ettt 106
B XML SO MAS e e e, 109
F. PYTHON WERATTERS ..o, 119

Figure 1.
Figure 2,
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8,
Figure 9.

Figure 10.
Figure 11,
Figure 12,
Figure 13,
Figure 14.
Figure 15,
Figure 16.
Figure 17.
Figure 18.
Figure 19,
Figure 20.
Figure 21.
Figure 22,
Figure 23,
Figure 24,
Figure 25,
Figure 26.
Figure 27.
Figure 28.
Figure 29,
Figure 30,
Figure 31.
Figure 32,
Figure 33.
Figure 34,
Figure 35,
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.

Master Thesis by Drew Alex Clinkenbeard

TABLE OF FIGURES

Preliminary design of the CloudSuite lab interface. ... 11
Preliminary design for adjusting modiles. ..o e 12
Model View Controller diagram [2] ... 15
The two most common types of hyoervisor [20] ... 19
Control flow diagram of CloudSuite ... 28
Control and data (low in CloudSuite............... 30
Module uscd for encrypting and decrypting files..........oooii 31
XML representation of a lan showing a configured module ... 32
Partial example of an XML representation of the RSA module..............ccocoooie, 33
Partial example of an XML schema that defines alab ... 35
LOSIM DUTLOTI ... e e 38
Username and password fiCldS ...t 38
Failed Toginm alert ..ottt 38
The username is displaved after successful login ... 39
LOZOUL OPTIOTIScvviiiiiiiiet sttt e e s sss e e rae e st sresnbersrasrensrsesnes 39
The task bar showing the current user options ..., 39
NCW LAD dALOR. ... 39
Warning when (rying to use whitespaceinalabname.................. 40
Lab name and description displayed in the main 1ab arei........ooocveerieiis s 40
Modules displayed in CloudSuite............coooooooiiiii e
Configuration options for the module "NEUI0” ... 41
Modules displaved ina lab ... 42
Confirmation upon removing 4 MOAUIE.............ooivieiirinraiiei i esra e 42
Lab saved Success alerl ..o e 43
Display of labs available 10 L0adcocooivrviie it 43
Queted 1ab Alert. ..., 44
Confirm delete lab dialog.. ..o 44
Listing of users data moduleS . ..o 45
DA QIALOE. 111 v s ettt s et e s bty s b ase s 45
Exaniple Tab distributiOn PAZE. oo v rerseniieesise e ssasssr e srse s rnses 46
Example server status dialog when a serveris running.. 46
The ‘grapl’ module Configured with existing data........................coooiiiii, 47
Results from running the “graph™ module. ... 48
The data used (0 Zenerle FIZIIe 33 ...t in et e 48
Aconfigured "ga MOAUICccoiiii e e 49

A C8YV file showing the minimum and maximum gene values from the “‘ga’ module ... 50

The configured genetic algorithm lab ... 51
The configured ‘result_graphs ™ lab............... . 51
Graph showing single POInt CrOSSOVOT......ocovi ittt e e 52
Graph showing two POINE CTOSSOVEL ... ivisirisorees e isies e re e ererneae st rrrens 52

Master Thesis by Drew Alex Clinkenbeard
Chapter 1:Introduction

This thesis presents a proof of concept for CloudSuite, Ad hoc cloud based
laboratories. CloudSuite provides a cloud based framework to create virtual labs for the
demonstration of scientific computing techniques. The framework allows instructors and
students to create and share laboratories to demonstrate computer based simulations and
processes. CloudSuite is intended to be as platform agnostic as possible. As such the
framework for CloudSuite was developed using PHP and JavaScript. This allows
CloudSuite to run in all modern web browsers, allowing the largest possible user base.

After reviewing the available literature, and the available cloud resources, we
concluded that a cloud based method for creating and running virtual labs is a necessary
component of higher education. Although there are several cloud based solutions for
running arbitrary software in the cloud, our research did not find any examples that were
tailored for the demonstration of scientific computation. Services like Heroku
[33] ,Google AppEngine [41], and other “platform-as-a-service” providers do not offer a
front end that addresses the many use cases that arise when demonstrating techniques in
scientific computation. In this thesis we present a cloud based framework for this express
purpose.

I. Use Cases

We developed several use cases by visualizing how CloudSuite could be used in an
academic setting. The actors identified for these use cases are undergraduate students,
upper division or graduate students, and professors. The primary concern for
undergraduate students is running labs that have been created by their professors and
configuring new labs for their own use. Graduate students will also create and run labs,
but the primary focus for graduate students is on creating and configuring software for
use in CloudSuite. Professors use CloudSuite to create and distribute labs, view the
results from labs which have been run by others, and create new processes to run in
CloudSuite. In the following section we explore the needs of each concerned party and
how CloudSuite addresses those needs.

a. Undergraduate Students

Undergraduate students primarily use CloudSuite to experiment with preconfigured
labs. Students must also be able to create and modify their own labs. Undergraduate
students are limited in that they are not able to distribute labs to other users.
Undergraduates are also only capable of viewing or modifying labs that have been shared
with them or that they have created. An undergraduate student would receive a lab from a
professor, modify the parameters contained within the lab, save the lab, then queue the
lab for execution. Once the lab has run to completion, the student would analyze the
results of the lab e.g., examine the generations created in a genetic algorithm, download
an image produced by a graphing algorithm, or attempt to view the contents of an
encrypted file.

9

Master Thesis by Drew Alex Clinkenbeard

b. Upper Division or Graduate Students

In addition to creating and modifying labs, graduate students will be expected to use
CloudSuite in a more technical way than undergraduates. Graduate students will be given
assignments to create processes and data sets for use in CloudSuite labs.

¢. Professors

Professors require all of the abilities available to students: creating labs, modifying
labs, creating new data, and new processes to operate on data. Professors must also be
able to distribute labs to students either singly or in groups. Finally professors will use
CloudSuite to view and edit student labs. This will allow professors to assist students
with homework as well as allowing the professor to evaluate the results of a student lab.

II. Functional Requirements

Visualizing a typical classroom setting led us to develop several scenarios that define
CloudSuite. The initial metaphor we addressed was that of an in-class lab assignment. We
visualized all the tasks that are necessary to demonstrate an algorithm or teach a new
technique. We concluded that creating, saving, loading, distributing, modifying, and
running a lab 1n CloudSuite are necessary for CloudSuite to be functional. We expand on
this set of criteria in the following sections.

a. Creating Labs

Labs will be created using a simple point and click interface. Each lab will possess a
unique name to identify it to the user that created the lab. Creating a lab writes a unique
file to a persistent server. The lab file will adhere to predefined criteria that will ensure
new labs are compatible. Each lab will consist of zero or more objects that represent
either data or operations upon data.

b. Saving Labs

A lab will be saved by clicking on a dedicated save button. Saving a lab will write a
unique file to a persistent server for later retrieval or modification. The user will be
notified with the status of the save, either success or fail. Saving a lab will not overwrite
the labs of other users. A user may have an unlimited number of labs though it will be
possible to limit the number of labs available to each user.

10

Master Thesis by Drew Alex Clinkenbeard

P e =

Figure 1. Preliminary design ofithe CloudSuite lab interface.

¢. Loading Labs

Loading a lab is accomplished by selecting the name of the lab from a list of labs to
which the user has access. Additionally, when a user first access CloudSuite, they will be
presented with a list of labs that may be loaded. Only those labs belonging to the user, or
that have been distributed to the user, will be available to load.

d. Distributing Labs

Running a lab as an in-class or homework assignment is one of the primary goals of
CloudSuite. To enable this functionality a professor must be able to make configured labs
available to students. This is accomplished by selecting a user, or group of users, that will
gain access to the lab. This will then make the lab selectable for those users. When a user
loads a lab that has been made available in this way the associated file representing that
lab is copied to the users lab directory. Once a lab has been distributed to a user, that user
may modify the lab without changing the original lab file. Distributing a lab, by necessity,
distributes all of components associated with that lab. Components that are distributed
with a lab may also be used in the creation of new labs, or the modification of existing
labs.

e. Modifying Labs

In CloudSuite a lab is composed of ‘modules’ that represent either data or operations
upon data. Additionally if a module is to produce data then that data will immediately be
operable by other modules. Modules that operate upon data will be idempotent, when
data is operated upon a copy of that data is produced, the original data is not modified.
Each CloudSuite module represents a specific data set or operation. Users will only have
access to modify their own labs unless they are of high enough privilege to edit the labs
of others.

11

Master Thesis by Drew Alex Clinkenbeard

f. Configuring Modules

Modules are added to the lab through a simple point and click interface. Upon adding
a module to the lab the user is presented with the configuration options for that module.
A module may posses multiple configuration options that are dependent upon the module
e.g., a graphing module may have options for the type ofigraph to be created, which data
should be used to create the graph, or what to label the axes ofithe graph. Modules may
be added or removed from a lab without affecting the operation ofithe other modules. Ifia
module produces data that will be operated upon by one or more other modules,
removing the module that produces the data will prompt the user regarding the missing
module.

) el T ey i o \
[v I & 1ot A ArY al e ‘_; P ‘
[t | | Evolutifaory Aljerithms = .

| |lemec W karw) Taraour |
A4 £ HEE e g
, T —t
GRAPHTE MU Chose ol e

maegbiog [X1 =3 £=
fMat@sio)

s - 107 %5
selectivn W

[)(,(rf(’h'énrl

————————

i.wh.&?.l,;mg

v

Figure 2. Preliminary concept for adjusting modules

g. Running A Lab

Lab processing is handled by Amazon Web Services and as such requires an active
Amazon Machine Instance (AMI). Activating an AMI to process CloudSuite labs must be
limited to users with high level ofiaccess, such as professors or administrators, or to users
that are responsible for their own Amazon Web Services (AWS) account. Administrative
users supply the AWS credentials that will be used when processing labs. This
administrative user is also responsible for activating and deactivating the AMI. When a
lab is selected to be run it is added to a *first-in-first-out” queue that is processed when the
AMI is activated. Administrative users may decide to allow certain users to supply their
own AWS credentials. If this option has been exercised then any user that supplies their
own credentials will be able to process their own labs whenever they wish. Users
supplying their own AWS credentials will not be able to run labs for other users.

12

Master Thesis by Drew Alex Clinkenbeard

ITI. Remaining Chapters

In the second chapter we discuss our research into the popular platforms,
infrastructure, and software as a service providers available today. We also discuss code
frameworks and libraries, virtual lab solutions, and other relevant technology.

In the third chapter we discuss the implementation process for CloudSuite. We cover
the sctup of the necessary web server and the associated software as well as discuss the
data objects that were created for CloudSuite. Finally we review the use of Amazon Web
Services to process CloudSuite requests.

The fourth chapter analyzes the results of the use cases established in chapter one.
We compare our results with the expected outcome. In the fifth chapter we examine the
output from CloudSuite and in the sixth chapter we addresses how well our expectations
established in chapter one relate to our final outcome.

In the seventh chapter we discuss the future of CloudSuite. We will cover how the
user interface might be improved, user experience enhanced, and new functionality that
might be added to CloudSuite.

In the eighth chapter we draw our final conclusions and reflect on how CloudSuite
might advance the field of computer science. We also discuss the potential of CloudSuite
as an educational tool.

Master Thesis by Drew Alex Clinkenbeard

IV. Key Terms

Amazon Machine Instance (AMI) — These are snapshots of computer systems used
by Amazon EC2. An AMI may be one of the many public otferings or the end user may
customize an AMI to suit their own needs.

Asynchronous JavaScript and XML (AJAX) — A group of techniques and
technologies using client-side resources to create interactive web applications.

Application Programming Interface (API) — A collection of functions, classes, and
objects which allow software components to communicate.

Elastic Compute Cloud (EC2) - Amazon Elastic Compute Cloud is an
infrastructure as a service offering from Amazon.com that allows the end user to launch
virtual machine instances “on the fly”.

Cluster — A cluster is a collection of loosely coupled computing resources. Typically
it is used to mean a collection of commercially available hardware assembled to work as
a single cohesive umit.

Code Library — A collection of code for performing similar tasks.

Document Object Model (DOM) — a platform- and language-neutral interface that
will allow programs and scripts to dynamically access and update the content, structure
and style of documents [74].

Dumb Terminal — A dumb terminal is a computer system with little, or no,
capability for independent computation. Dumb terminals function by connecting to a
main frame system.

Framework — A software framework provides a generic platform that may be
customized by the end user to perform specific tasks.

Grid Computing — Similar to clusters, Grid Computing is the term applied when
geographically distant systems work together to solve a single problem, Often this
involves breaking the problem into discrete segments for each node of the grid to process.

Hypervisor — Also known as a Virtual Machine Manager, a hypervisor is used to
control virtual computing instances on a host system.

Infrastructure as a Service (IaaS)- A business model wherein an organization
provides equipment to support another businesses operation, such as web servers, file
hosting, and networking components. The resource provider is responsible for the care
and maintenance of the hardware.

Instruction set architecture (ISA) — This refers to the native data types, processes,
and 1/0 operations implemented by a particular processor.

Model View Controller (MVC) — A software design pattern that seeks to abstract
the users interaction with information. The controller changes the model, which updates,
the view, which is seen by the user.

Master Thesis bv Drew Alex Clinkenbeard

(MODEL

UPDATES MANIPULATES
VIEW CONTROLLER
\ v
% &
< S
N
USER

Figure 3. Model View Controller diagram 2|

Packet Switching - A networking method that seeks to group all data into similarly
sized blocks.

Platform as a Service (PaaS) - A business model that allows the end user to deploy
software applications to the public.

Representational State Transfer (REST) - is a style of software architecture for
distributed systems such as the World Wide Web. REST has emerged as a predominant
web API design model [71].

Scientific Computing - The science of constructing simulations and performing
quantitative analysis using computer based resources.

Software Development Kit (SDK) - A set of tools used in the creation of software
for a specified platform.

Software as a Service (SaaS) - A business model concerned with creating, hosting,
and maintaing software for third part clients.

Thick Client - A computer system that provides self contained processing power
and resources. Most modern workstations are, in essence, thick clients, in that they may
operate independent of a central server. Also known as a fat, heavy, or rich client,

Thin Client - A hardware or software system that is dependent upon a remote
system for data processing and‘or data persistence. Also known as a lean or slim client.

Universal Resource Identifier (URI) - Characters used to identify a name or
resource on the internet.

Virtual Private Servers (VPS) - Physical hardware that has been
compartmentalized to offer multiple clients discrete web servers. Many web hosts offer a
service wherein the end user has complete access to their own, and only their own, VPS
instance.

Virtualization - Typically a software technique by which one piece of hardware
imitates one, or more, different types of hardware.

15

Chapter 2:Field Overview

Creating a cloud based ad hoc laboratory system, such as CloudSuite, requires a
variety of different technologies. The primary technology that is necessary tor CloudSuite
1s hardware virtualization. Fortunately there are numerous examples available to us, We
will perform an examination of hardware virtualization services in general and a specific
exploration of the services offered by Amazon.com. In addition to virtualization we will
also explore: existing virtual lab environments, templating systems, remote storage
solutions, and finally, APIs and Frame Works.

I. What is Cloud Computing

The National Institute of Standards and Technology defines cloud computing as :

[...] a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction [3].

Types of cloud resources are broken into three models : Infrastructure as a Service,
Platform as a Service and, Software as a Service.

Infrastructure as a Service, or Iaa$S, is one of the more common cloud offerings.
Although many providers offer a variety of services, this 1s most often thought of as
website hosting. Two examples of typical laaS providers are RackSpace.com and
DreamHost.com. A standard laaS service allows the user to install and maintain a suite of
software on a remote server. These servers can either be discrete hardware or, more
commonly, a virtual or shared environment. This allows a consumer to establish a web
presence without purchasing, setting up, or maintaining physical hardware. Additionally
many laaS providers have Platform as a Service functionality available as well.

Platform as a Service, or Paa8S, is similar to TaaS except the end user is not
responsible for installing or maintaining software. PaaS allows a user to deploy their own
software to an external server. Two examples of PaaS are Hercku and Google App
Engine. Platform as a Service allows a user to create and deploy software without
maintaining their own servers. The end user is then able to access the functionality of the
software as long as there is an active internet connection. With the prevalence of smart
phones, tablets, and other mobile computing platforms, PaaS is quickly becoming a
popular choice for new app developers.

The third application of cloud computing is the “Software as a Service”, or Saa$
model. Unlike traditional enterprise software SaaS does not install on the consumer’s
local hardware. Instead the consumer accesses the software through a so called ‘thin
client’ or web browser. The maintenance of the software is left up to the SaaS provider.
Whereas typical enterprise software requires the end user to periodically buy new
licenses, a SaaS model relies upon user subscriptions. Typical advantages of SaaS over
traditional enterprise software include: customization such that the end user is able to
change the look and feel of the software to create a seamless interface for their clients;

Master Thesis by Drew Alex Clinkenbeard

rapid feature delivery, since the software is centrally located it is easier for the developer
to implement and release new features; and pricing, as SaaS typically has a lower initial
price point compared to similar enterprise software offerings. Examples of Software as a
Service include Blackboard [4], OmniUpdate [S], and Cloud9 Analytics [6].

I1. History of Cloud Computing

Cloud computing can be described as the culmination of four technologies:
distributed systems, some form of virtualization, thin clients, and ubiquitous high speed
internet access. Even though the majority of these technologies were developed in the
1960s, it was not until high speed connectivity became common place that the *cloud’ as
we know it was possible.

Traditional distributed systems include cluster, grid, and distributed computing. All
of these refer to a collection of discrete hardware nodes combined to perform a common
task. The hardware may be combined in different ways or locations; however, the end
results are always similar: processing more instructions per cycle then would otherwise
be possible. One aspect that makes cloud computing different from traditional distributed
systems is that, in cloud computing, distributed resources are frequently made available
to multiple end users through virtualized parallel computing.

Virtualization has been pursued by computer scientists since the early 1960s [7].
Virtualization is used to “[subdivide the] ample resources of a modern computer”™ [12].
Primary examples of network virtualization is the Apache HTTP server. The Apache web
server is used to make one resource, a distinct hardware server, appear to be multiple
servers. This process is similar to other types of virtualization provided by software such
as VMWare® [13], Xen® [14], and VirtualBox [15]. Virtualization of this type allows a
single resource, either discrete or composite, to be subdivided into appropriately sized
slices. This allows the end user to access a much more powerful system when they need it
and only pay for the services they require.

Accessing a system with more computational power than the local machine was a
common paradigm in carly computing. Such a system is referred to as a *“dumb terminal”.
These so called “dumb terminals” formed the backbone of early data entry and
processing. Modern systems are powerful and inexpensive enough that this model is no
longer widely used. However, when a modern system accesses distributed resources to
perform complex or process intensive calculations it’s actions are nearly identical to the
“dumb terminal” model. The systems that are available to end users are powerful enough
that it would be more accurate to call them ‘smart terminals’ or “thick clients’. Though
the terminals accessing the resources may be significantly more powerful than their
ancestors, the basic usage is the same: a terminal submits data to a remote location to be
processed and receives the results from the computation. This kind of remote architecture
would not be possible with todays large data sets if it were not for the advent of high-
speed internet access.

The modern internet started life as the first packet switched network known as
‘ARPANLET’. Despite commonly held beliefs, the original goal of ARPANET was not to
build a communications system that was resistant to nuclear attack, but rather to make

17

Master Thesis by Drew Alex Clinkenbeard

computational resources more readily available. The internet has now become a nearly
ubiquitous tool that is known the world over, capable of transmitting more data per
second than the original systems that created it could store. This universal access allows
universities, laboratories, and companies to share their computational resources
worldwide.

Cloud Computing, as we know it today, 1s the culmination of these resources into a
widely available system, that allows the end user access to levels of computing that
would otherwise be impossible. Accessing these resources allows the end user to perform
tasks and provides services that are a driving force in technology today. This thesis
leverages these resources to provide a platform for the development of academic
programs that demonstrate the scientific computing techniques to better understand and
develop future technology.

III. Virtualization

Though this thesis does not work directly with virtualization, CloudSuite relies
heavily on virtualized hardware. Because of this, we carefully reviewed existing virtual
hardware services in order to both understand how the process works and to find the
service that is best suited to CloudSuite.

Virtualization is, in many ways, the main focus of computer science. Each step away
from the physical wires and transistors that make up a computer is an abstraction from
what is really happening. To quote J. Stanley Warford “Once designed, hardware is
difficult and expensive to change” [16]. Software, on the other hand, can be changed with
relative ease. This is what makes hardware virtualization such a desirable goal.

Virtualization 1s one of the oldest areas of interest in computer science. One of the
most successful examples of virtualization is the Java Virtual Machine (JVM) [17]. Using
the JVM allows the Java programing language to produce identical results regardless of
the instruction set architecture (ISA), that is used by the hardware platform. This is
because, for all intents and purposes, the compiled Java code is running on the same
maching — albeit in a virtual setting. As long as a system has a JVM installed that can
translate Java byte code into the appropriate ISA, then the results will be identical.

The Java virtual machine allows one piece of virtual hardware to be present on
multiple discrete systems. Software like VMWare allows multiple virtual hardware
systems to be present on a single piece of physical hardware. Creating multiple
virtualized hardware images on a single piece of physical hardware is one of the
cornerstones of cloud computing. These concurrent virtual images are made possible by a
hypervisor.

IV. Hypervisors

A hypervisor translates the instruction set architecture used by the guest system to
the ISA used by the host system. Hypervisors are also commonly known as virtual
machine managers (VMMs) because they are used to manage the resources allocated to
the virtual machine guest instances being run on the physical host. Hypervisors are also

18

Master Thesis bv Drew Alex Clinkenbeard

frequently used in load balancing and, as Bressoud discusses, can even provide fault
tolerance |18]. Hypervisors are typically classified into one of two types[19]: Type 1, also
known as native or bare metal, and Type 2, hosted hypervisors |20][21].

Type 1 hypervisors run directly on the hardware. They are not contained in an
operating system. This type of hypervisor is a direct descendant of the first experiments
with virtualization. As seen in Figure 4 a Type 1 hypervisor is the lowest level of software
on the system. The guest operating systems run on top of the hypervisor and appear to be
completely independent machines. Modern examples of this are Oracle VM Server for
SPARC, the Citrix XenServer, KVM, VMware ESX'ESXi, and Microsoft Hyper-V
hypervisor |20]. This type of hypervisor is what makes [aaS possible.

Type 2 hypervisors, again seen in Figure 4, are hosted by an underlying operating
system. This allows for multiple operating systems to be tested and used within the
confines of a parent operating system. This type of virtualization is especially helpful
when testing cross platform compatibility as well as heterogeneous network connectivity.
Examples of Type 2 hypervisors include: BHyVe, VMware Workstation and VirtualBox
120].

& T

H;"‘F;ER

VISOR
HYPER }
VISOR

/" HARD . - _
“_ WARE 7 HARD
.. ..) WARE ,,/
TYPE 1
o TYPE 2
(bare metal) hosred

Figure 4. Diagram illustrating the two most common types of hypervisor "20].

Hypervisors originated with some of the earliest mainframe systems. Most notable
were SIMMON [22° and IBM’s CP-40 [11]]23]. These two systems are cited as the first
systems providing full virtualization. That is to say these systems were the first to make
the entirety of the underlying system available to the guest system. An additional area of
interest is the concept of paravirtualization, which will be discussed in the next section.

IV. Paravirtualization

Paravirtualization refers to the ability of a hosted operating system to make calls
directly to the underlying hypervisor. This feature has been present as far back as 1972
|24], in IBM’s VM systems. Calls to the underlying hypervisor were not called
‘paravirtualization” rather, these calls were referred to as "DIAGNOSE code”. Modern
instances of paravirtualization require the guest OS to be specifically tailored for use in a
virtualized environment. These custom OS are designed to run in a different privilege
level and make calls directly to the hypervisor, rather than in the native OS, when such
calls would be difticult or costly in a virtualized environment. It is possible to do this by

19

Master Thesis by Drew Alex Clinkenbeard

changing the privilege level at which the virtualized OS runs. According to Smith and
Nair |25], this leads to a virtual system that performs at 90+% efficiency compared to a
native Linux install. One of the most well known examples of paravirtualization is the
Xen hypervisor |21]. Xen is one of the leading virtualization solutions currently in use
today, and is the primary hypervisor used by Amazon.com.

V. Amazon.com Elastic Compute Cloud

On August 25, 2006, Jeff Bezos announced the limited beta of Amazon Elastic
Compute Cloud |26], referred to as Amazon EC2. Amazon EC2 is a service that allows
users to, essentially, rent computational resources on an as needed basis [27]. This type of
service is made possible by using the Xen hypervisor as discussed in the previous section,
Xen allows Amazon EC2 to create Virtual Private Servers as demand requires. These
virtual servers make use of operating systems that have been optimized for
paravirtualization. Once the end user has customized the virtual machine to their liking
they are then able to save it as an Amazon Machine Image, or AMI.

An AMI is a system image that has been created to be used with EC2. Users may
customize these AMIs with their own software packages allowing an AMI to be tailored
for any task. Once an AMI has been configured it can be saved and re-deployed at will.
This allows the end user the ability to quickly and easily set up a machine that is
configured exactly as needed, when it is needed. Using an AMI, it 1s possible to configure
a powerful computing machine, use it to run a simulation, and then deactivate it. If the
machine is needed again, it is a simple matter to restart the machine and re-run the
simulation. This allows the end user to only pay for the computational resources they
need when they need them. It also allows the user to distribute their AMI to allow others
to reproduce or expand upon their experiments.

The Amazon Simple Storage Service (S3) [28] is used extensively in the code written
for CloudSuite. S3 allows a user to upload and download files using HTTP requests.
Amazon Simple Storage Service, like the rest of Amazon Web Services, is not free,
however at the time of writing, Amazon offers a free tier of service available for the one
year[28].

Amazon, and various 3rd parties, provide SDKs that allow developers to interact
with Amazon Web Services. The framework for CloudSuite is written using SDKs for
PHP, Python (Boto) |29], and Unix/Linux command line [30]. However SDKs exists for
multiple platforms and languages |31]. The provided SDKs greatly ease interaction with
the cloud services provided by Amazon.

The Platform as a Service model (PaaS) has become more prevalent due in part to
Amazon EC2 as well as other laaS providers. The PaaS model allows an end user to
“rent” time on a fully realized high power system, regardless of their own hardware.
Amazon EC2 allows third parties access to the computational resources of Amazon.com’s
data centers. Services such as Heroku make use of this space by providing a platform to
execute end user code. Many PaaS providers make use of Amazon EC2, or similar,
services.

20

Master Thesis by Drew Alex Clinkenbeard

Amazon is far from the only available option for cloud services. Google recently
announced ‘Google Compute Engine’ |32], a service similar to Amazon EC2, in addition
to the long standing Google App Engine. In the next section we will take a closer look at
cloud services offered by providers other than Amazon.com.

V1.0Other Cloud Based Services

The PaaS business model is, at first glance, very similar to the previously mentioned
Infrastructure as a Service. Where these services differ is that PaaS does not require the
end user to setup real or virtual hardware. One of the better known PaaS providers that
we will examine is Heroku |33].

In addition to Platform as a Service offerings there are also many of the more
traditional persistent web hosting services, like Rackspace |34] or Dreamhost |35]. These
services are typically limited to a pre-configured server to which the end user will upload
web content, Many of these traditional web hosts also offer Virtual Private Servers that
allow the end user complete control over the software that is used in their web hosting
solution. Often, cases combing a traditional web host with a Platform as a Service
provider allows a developer to present a fully realized product with very little investment
in terms of hardware. To illustrate this point we will now examine the PaaS provider
Heroku,

a. Heroku

Heroku |36] deservers special consideration because it is one of the best examples of
a platform for executing arbitrary programs in the cloud. Heroku allows the end user to
develop an application and leave the running of that application up to Heroku. The
developer pushes code to Heroku using the Git |37] version control system. Once the
code is present, Heroku relies upon HTTP requests to interface with the client
application.

Heroku can be broken down into three main components: dynos, railgun servers, and
slugs. A dyno is a Unix based “container” that is used to process requests |38]. Each
application can have a number of dynos assigned to handle requests. These requests are
processed by the railgun servers. Each railgun server is an Amazon EC2 instance
configured specifically by Heroku to processes these requests. Once the developer pushes
their code to Heroku, it is compiled into a ‘slug’ |39]. A slug is a pre-compiled package
containing the developer’s code. Each package is designed to be as fast as possible. These
so called slugs are then called by the railgun server when the dynos receive a request, The
entire process is encapsulated to ensure each slug that is run is processed in such a way as
to prevent users from contaminating the code of others.

Heroku was put to great use in the Coursera |40] course ‘Software Engineering for
SaaS’. In this course the students were asked to create software that was automatically
deployed and made available on the internet with little to no wait time. Similar services
are currently offered by Google App Engine, Engine Yard, and Microsoft Azure Services
Platform.

21

Master Thesis by Drew Alex Clinkenbeard

b. Google App Engine

Google App Engine (GAE) [41] is another service similar to Heroku, however,
Google App Engine places a number of restrictions on what code developers may use.
Unlike an Infrastructure as a Service provider, GAE places limits on what code may be
executed as well as only allowing the proprietary Google Query Language as a data store.

c. Eucalyptus and AppScale

Extensive research on cloud technology has been performed at University of
California, Santa Barbara (UCSB). Two of the most well known products of that research
are Eucalyptus [78] and AppScale [43].

Eucalyptus 1s an open source emulator for Amazon EC2 that can be run on local
clusters [42]. Since the initial release of Eucalyptus, i1t has grown to become a
commercial success, and 1s included in the Ubuntu operating system [69].

AppScale is an open source implementation of several cloud APIs, including Google
App Engine. AppScale can be deployed over Amazon EC2, Eucalyptus, or an Ubuntu
image. AppScale uses virtualization to provide a uniform experience across multiple
cloud platforms.

One factor that separates cloud services are the languages that may be used to
develop applications for the various platforms. Some services, like GAE and Heroku,
limit the languages that may be used for development by enly allowing certain types of
code to run on their platform. By granting full access to an operating system, EC2, and
other TaaS services, allow much greater freedom when developing software.

VII. Languages

The development of CloudSuite required the use of multiple computer languages.
The initial development involved writing the model/controller layer in PHP, which stands
for PHP : Hypertext Preprocessor. PHP ‘is an HTML-embedded scripting language’ [44]
and is well suited for the processing needs of CloudSuite because it provides numerous
functions and libraries for XML manipulation. Additionally there is a well documented
API for accessing Amazon Compute Cloud web services.

The view/controller layer for CloudSuite is written primarily in HTML., CSS, and
JavaScript. JavaScript was an obvious choice for the view/control layer because of the
numerous libraries available to assist in the creation of web applications. Using modern
code frameworks and design patterns allows the front end to present an accessible and
modern look and feel. When possible HTMLS and CSS3 were used to increase the
flexibility of the front end display.

The processing of CloudSuite labs makes use of Python and C. Python 2.7 is used for
accessing the XML files stored in Amazon S3 buckets and for calling compiled code
stored on the AMI. Python was chosen because of the libraries available for accessing
Amazon Cloud resources and the ease of accessing system level commands. C is used for
a custom daemon that processes CloudSuite labs. Several CloudSuite modules also call

22

Master Thesis by Drew Alex Clinkenbeard

software that has been written in C. C was the obvious choice for the speed and efficiency
it offers when accessing system level commands and processes.

Finally XML is used to transfer and store data about CloudSuite. The ability to
define and validate custom data structures makes XML a good fit for the creation of a
data persistence layer. This coupled with the PHP support libraries, makes using XML an
excellent choice.

VIII.Code Frameworks, Libraries and APIs

Framewaorks, libraries, and APls allow software developers to use pre-written code
for their own development work. This allows developers to quickly and easily create new
software offerings with little initial setup. This section will examine some of the libraries
that are available and how they relate to CloudSuite. Many of the code frameworks
discussed here served as an inspiration for the design of CloudSuite and would be useful
in creating a successful product. For this thesis we evaluate and discuss the most relevant
of those products.

a. PHP Slim

PHP Slim [45] is a small footprint framework which provides RESTful, [70][71],
utilities in a simple to use package. PHP Slim makes use of anonymous functions to allow
the user to specify actions when a request is made to a specific URI [72]. Additionally
PHP slim filters these requests based upon the HTTP request method used to access the
URI. This framework acts as a communication layer between the Model, View, and
Control layers of a web application.

b. Boto

Boto [29] is a Python API for accessing Amazon cloud resources. It allows the user
to, among other things, create and access S3 buckets and instantiate and control EC2
instances. We make use of Boto in our AMI used for processing CloudSuite labs.

¢. ElementTree

ElementTree [46] is a Python library for working with XML data. ElementTree
allows the user to load XML data and access it similarly to a Python list or dictionary. We
make use of ElementTree when parsing CloudSuite labs.

d. jQuery

jQuery is a popular javascript library that was initially created by John Resig in 2006
as a way to bind CSS selectors to JavaScript functions [47]. According to builtwith.com
[73]. jQuery has become one of the most used JavaScript libraries in use today as well as
one of the most forked repositories on popular coding site github [48]. Additionally
jQuery also boasts a number of large technology companies among it’s users including:
Google, IBM, and Amazon [49].

Master Thesis by Drew Alex Clinkenbeard

jQuery is free, open source software, dual-licensed under the MIT License or
the GNU General Public License, Version 2. jQuery's syntax is designed to make
it easier to navigate a document, select DOM elements, create animations, handle
events, and develop Ajax applications [50].

jQuery simplifies many of the common tasks used in creating a modern website. 1t
provides tools and shortcuts to address DOM elements and send AJAX requests. jQuery
allows the developer to create simple calls to DOM objects using CSS identifiers. These
calls are made using the jQuery mnemonic ‘$’. A good illustration of how this is helpful
is the simple act of changing the contents of an HTML DIV tag. Prior to jQuery the code
necessary to change the contents of a known div would be:

document.getElementById('NoedeID').innerHTML = 'new Value';

jQuery allows the same operation to be performed with this simple command:

§ (“"#NodeID” .html (‘new Value’);

In addition to simplifying code, jQuery also allows the user to access DOM elements
by using CSS selectors which makes the creation of dynamic web sites much simpler. In
addition to providing tools to access rendered DOM objects, jQuery also simplifies
accessing DOM elements that are created dynamically through AJAX calls. By providing
the tools necessary to simplify querying DOM elements and making AJAX calls jQuery
has become a standard for web development.

e. Backbone.js

Backbone js is another popular JavaScript library that allows a web based application
to create a custom models to represent data. These models can then be grouped into
collections and operated on either singly or as a collective group. Additionally, Backbone
can be used to trigger events when data is manipulated.

By connecting web events to the direct manipulation of data, Backbone creates a
mechanism to keep data synchronized while minimizing the impact upon a database
server, as well as decoupling data from the DOM.

Backbone allows data to be collected in a meaningful way while minimizing the
amount of JavaScript that is necessary to track and manipulate that data. Separating the
applications data from the HTML DOM object also allows for data persistence beyond
what the DOM can offer. Backbone relies upon the Underscore js library to manipulate
and iterate over the collected data.

i. Underscore.js

The Underscore s library offers several features that are not natively available in the
JavaScript language. Underscore provides methods that allow aspects of functional
programing to be used when dealing with web based data. The majority of the methods
included in Underscore deal with creation and manipulation of lists. Underscore js also
offers a minimalist templating system (though there are many others available).

24

Master Thesis by Drew Alex Clinkenbeard

j- Templating Systems

Templating systems in JavaScript allow the developer to create an HTML based
template for displaying JSON objects in a predictable way. This gives the developer full
control over the display of dynamic content.

JavaScript templating systems are either standard or logic-less. Standard templates
allow arbitrary code to be mixed in with the template. This can lead to large templates
that can be difficult to follow. Standard templates allow the developer to control the data
as it is presented to the template, resulting in greater flexibility within the templates.
Standard templating libranes include : Underscore js, Jade, EJS.

Logic-less templates do not allow arbitrary code to be present within the template
itself. Logic-less templates forces any data manipulation to be performed prior to the data
being presented to the template. These templates are designed with common use cases in
mind and as such do not offer the same level of flexibility as a standard template. Logic-
less templates are typically less complicated and easier to follow. Some popular logic-less

templating systems include: Mustache js, Handlebars js, dust.js and Transparency.

k. Highcharts

Highcharts JS [75] is a charting library written in JavaScript. It allows the user to
create interactive web based charts and graphs. The library offers the functionality and
flexibility to generate charts dynamically from numerous data sources. We use the
Highcharts library to create visual representations of data within CloudSuite. Using a
JavaScript based language maximizes the computability of these visulatizations.

IX. Online Education

With the growth of high speed internet access to distance learning has become
increasingly more accessible. In addition to universities supplementing their courses with
online offerings, many universities are also making classes available online for free.
Coursera is a central location where those seeking to improve their education may
participate in free online classes from sixteen universities including: Caltech, Stanford,
and Princeton [40]. Additionally many universities have begun offering free classes
online for no credit. One such oftering from University of California, Berkley made use
of Heroku to allow students to publish a web based application and see results in real
time. The Massachusetts Institute of Technology also offers free online courses. It is
important to note that these online courses typically do not confer any sort of degree or
certificate, Coursera being notable in that some of it’s courses do offer an electronic
certificate of completion [51]. Courses offered online could make great use of a service
like CloudSuite to provide their students with an interactive lab component.

X. Other virtual labs

The idea of virtual laboratories is far from new. Just as virtualization is one of the
oldest areas in computer science, virtual labs have been pursued by educators for many
years. In this section we examine some of the more prominent virtual lab offerings.

25

Master Thesis by Drew Alex Clinkenbeard

a. Khan Academy

Khan Academy 1s a not for profit online educational resource. Khan Academy offers
videos explaining a variety of topics. In addition to videos Khan Academy also offers a
web based set of tools for developing mathematical proficiency. In late 2012 Khan
Academy introduced Computer Science curriculum that offers programming instruction
and demonstration. The programing curriculum is based on the JavaScript language and
is overseen by John Resig |52]. The program is designed to demonstrate the fundamentals
of computer science to someone with little to no experience.

b. University of Hawaii Virtual Lab

In 2007 the Department of Educational Technology at the University of Hawaii at
Mano |53] published a paper detailing an experiment where an online biology class made
use of a a CD-ROM based virtual wet lab. The study compared the use of a virtual lab to
what the study referred to as a ‘face to face’ lab. The data analysis showed that, while
students found the virtual labs to be useful, face-to-face lab time was more valuable to the
overall learning experience than a purely computer-based lab. The study was primarily
focused on the effectiveness of the virtual lab and did not give great detail on the
technology |34].

¢. Navy Virtual Lab

The Naval Postgraduate School (NPS) |55]|56] has developed a distance learning
solution that allows non-resident students to perform signal processing laboratory
assignments, The Electrical and Computer Engineering department has developed an
innovative mix of hardware and software to allow students to access lab equipment
regardless of their location. The collection of signal generators and field programable
gate arrays allow students to perform experiments in real time.

XI. Grids and Clusters

No discussion of cloud computing is complete without mentioning grids and clusters.
Grid and cluster computing share a problem domain and similar purpose with cloud
computing;, however, each differs in nuance. Grid computing typically consists ofi a
loosely coupled collection of computers working together to achieve a common goal [57].
One of the most widely known examples of grid computing 1s the SETI@home project
from the University of California, Berkeley |58].

The SETI@@home, or the Search for Extra Terrestrial Intelligence at home, project
was designed to use the resources of 1dle computers to process large amounts of signal
data from radio telescopes. The project has since been expanded into the ‘Berkeley Open
Infrastructure for Network Computing’, known as BOINC [39], and allows users to
participate in multiple distributed computing projects.

Other examples of grid computing include the Worldwide LHC Computing Grid
(WLCG) [60] used to processes the data collected from the Cern Large Hadron Collider
and the European Grid Infrastructure (EGI). EGI is, perhaps, the more interesting of the

26

Master Thesis by Drew Alex Clinkenbeard

two as the mission of EGI “is to allow researchers of all fields to make the most out of the
latest computing technologies for the benefit of their research’ |61]. EGI maintains a list
ofi grid based tools that registered user may use for their own experiments. EGI was of
particular interest to this thesis as it makes virtual tools available to numerous users.

Computer clusters differ from grids in that, typically, clusters are often used for
complex simulations and may be more tightly coupled than a grid system. Usually a
cluster will be treated a single computational resource whereas grid systems frequently
have multiple users focusing on many problems.

A well known example of a high powered computer cluster is the IBM Blue Gene
system. As of June 2012 the BlueGene\QQ system was listed as the highest performing
computing in the world |62]. The BlueGene\Q system is composed of multiple processor
nodes controlled by a central linux based system.

27

Master Thesis bv Drew Alex Clinkenbeard
Chapter 3: Implementation

CloudSuite is composed of three distinct parts: a lightweight backend, a web based
front end, and a set of tools based on Amazon Web Services. The backend uses PHP 5
and an Ubuntu based web server. The web site is written in HTML and JavaScript and
makes use of several JavaScript libraries. The third part consists of Amazon S3 and EC2
components, Python scripts, and code written in C. This layer provides the data
persistence and data processing for CloudSuite. We chose these tools based on analysis of
available options, see chapter two, and our experience with the technologies involved.

The structure of CloudSuite is inspired by the model-view-controller (MVC) style
architecture. The model layer is primarily composed of XML. The view layer is handled
by the web server and the HTML front end. The controller is made up of the PHP
backend, AWS tools, and Python code used for processing. Code examples are included
in appendices A,E, and F.

HTML
JavaScript

|

PHP
XML

Figure 5. Control flow diagram of CloudSuite.

28

Master Thesis by Drew Alex Clinkenbeard

I. Web Server

Any cloud based application requires access to the internet. This requirement, along
with the desire for CloudSuite to be platform agnostic, makes using a website for front
end access the obvious choice. The first step toward creating cloud suite was registering
the top level domain ‘cloudsuite info’ using rackspace.com.

RackSpace provides several server options through their automatic provisioning
system. We chose Ubuntu 10.04 LTS as it provides many features to assist in the creation
and maintenance of a persistent web site,

Using the apt-get |66] packet manager we installed Apache 2.2.14, PHP 5.3.2 and the
necessary modules to support serving PHP content through Apache. For a complete
listing of all the modules installed please see Appendix B. Apache is configured using
virtual hosts to provide DNS and routing information. We configured the virtual hosts file
and used the built in ‘aZensite’ script to establish the server. The provided ‘a2ensite’ script
populates the ‘enabled sites’ folder with the symbolic links needed to properly serve
content at the desired address [63]. The full text of the virtual hosts file is located in
appendix C. The server was tested by creating a simple php file which contained the
function ‘phpinfo()’ [64]. This was chosen because it demonstrates both the ability of
Apache to serve content, as well as the successful installation of PHP. The phpinfo() file
was removed after testing in accordance with best practices.

II.PHP Framework

PHP was chosen as the primary language for CloudSuite because it provides a
convenient connection between the model layer and the view layer as well as between the
view layer and the control layer. Additionally there are a number of useful PHP libraries
for accessing and manipulating XMI. data structures.

CloudSuite 1s designed to be accessed in a RESTful fashion. This allows CloudSuite
to be easily extensible as well as allowing end users to develop their own interface to
CloudSuite if they so desire. CloudSuite provides APT calls for each class that makes up
the control layer of CloudSuite. In this section we discuss the class structure and data
flow between CloudSuite classes. An API reference is included in appendix D.

29

Master Thesis bv Drew Alex Clinkenbeard

User

Lab

Module Collection

[
A 4

Figure 6. Control and data flow in CloudSuite.

a. User

The purpose of the user class is to create, load, and modify CloudSuite users.
Additionally the user class contains helper functions for processing login information and
user settings. The user class is also responsible for storing and processing the users
personal Amazon Web Services settings, if applicable.

The user class is also used when determining access rights to resources within
CloudSuite. User access is modeled after typical UNIX'POSIX access i.e., access
permissions are determined at the owner, group, or global level. The data structures for
CloudSuite currently have the fields necessary to accommodate access permissions
however much of the implementation and integration of the user class has been left for
future work.

b. Group

Following Unix style file permissions, each object in CloudSuite belongs to a group.
Groups are used to control user access to objects within CloudSuite. Group affiliation
will be evaluated when users first access the system.

Because groups function with respect to the user class, full implementation of groups
has been left for future work. Despite not being fully actualized much of the work for
groups is complete. The following describes the intended functionality of groups based
on existing work.

When a group object is instantiated all of the groups that are applicable to the current
user are loaded into memory. This allows access permissions to be verified quickly and

30

Master Thesis bv Drew Alex Clinkenbeard

easily. The integrity of the loaded groups is verified by storing the last modified date from
the file along with the group affiliations. When a group affiliation must be verified the
last modified date from the inode of the group file on disk is accessed to ensure that no
changes have been made. If the last modified date in memory and the date from the file
are not the same, the group affiliations are refreshed from disk before the comparison is
made.

¢. Module

A CloudSuite module is a discrete element that represents either a data source or a
function that is capable of producing and/or modifying data. Each processing module will
have zero or more configuration options, as seen in Figure 7. These configuration options
are stored in a lab object. Figure 8 illustrates the XML representation of a configured
module within a lab. This allows the users choices to be stored for later retrieval without
changing the module itself.

rsa

Encrypt or Decrypt
®) Encrypt file using RSA with provided key
Decrypt a file using RSA with provided key.

—Files
scores.txt File to encrypt/decrypt
scores_crypto.txt Name of output file
rsa Key used to encrypt/decrypt
rsa.pub Public key used to encrypt/decrypt

Addto CS_524 03 Cancel

Figure 7. Module used for encrypting and decrypting files

Modules are defined by an XML schema, a complete listing of which are included in
appendix E. This schema ensures that all CloudSuite modules are compatible. Data
modules represent a data set that is contained in an Amazon S3 bucket. Processing
modules make use of Python scripts that help create data modules and call the code
necessary to perform the requisite action. Currently, any process that can be called from a
command line can be called with CloudSuite. This includes custom programs, built in
command line processes, and, through cURL [65], data from websites.

When operating on data, integrity is preserved by making a temporary copy of each
data module selected. This prevents race conditions and allows CloudSuite to exactly
reproduce results when applicable. The copies are discarded upon successful completion
of the lab. It should be noted that the functionality of each module, and thus the lab that
makes use of the module, is determined by the creator of the module. To this end the
overall functionality of modules may, in time, differ from the initial implementation.

31

Master Thesis bv Drew Alex Clinkenbeard

<7xml version="1.0"7>
<lab 1d="28050" labName="Neuro_test">
<pwner>Drew</owner>
<description>run three neural networks</description>
<permissions>
<owner>7</owner>
<group>4</group>
<everyone>4</everyone>
</permissions™>
<lastRunDate>0</lastRunDate>
<lastRunUser>=0</lastRunUser>
<module id="28055" moduleName="neuro">
<seqNumber>1</seqNumber>
<method>neuro py</method>
<xmlrpeString>--Layers h3 </xmlrpcString>
<filename>8.neurc.xml</filename>
<description>0Open, train, and use a neural network</description>
</module>
</lab>

Figure 8. XML representation of a lab showing a configured module

A CloudSuite Module does not perform the operations itself, rather it provides an
interface to execute command line programs and processes. This illustrates the power of
CloudSuite as any program or operation that is callable by a UNIX operating system has
the potential to be used in CloudSuite. Figure 9 illustrates a partial example of a
CloudSuite module.

When a lab is executed the 'method element and the 'xmlrpcString elements are
parsed from the lab file and are used to call the appropriate executable on the AMI.
Currently, this makes use of the 'subprocess Python library to execute the command
using the system shell. There is a slight security concern in allowing access to the system
shell. however, since administrator access to the AMI is necessary to upload modules,
there is very little danger of malicious code.

Modules reside in one of two locations, either the persistent web server or an S3
bucket. The processing modules, which are modules used to create or modify data, by
necessity reside upon the AMI. Modules that represent data are stored in an S3 bucket.
This allows the data created by the modules to be accessed even when the AMI is not
currently running.

32

Master Thesis bv Drew Alex Clinkenbeard

<?xml version="1.0" encoding="UTF-8"7>

i
Document : modulel .xml
Created on : May 8, 2012, 6:59 PM
Author : drew

Description: Module for calling the RSA utility
3

<module id="21" name="rsa">
<moduleType>method</moduleType>
<description>Encrypt or decrypt a file using RSA </description>
<systemRequirement>
<product>gee</product>
<version>2 4</version>
</systemRequirement>
<fieldset>
<legend>Encrypt or Decrypt</legend>
<element 1d="300">
<type>radio</type>
<name>--EnDe</name>
<valuezencrypt</value>
<description>Encrypt file using RSA with provided key </description>
<input=</input>
<output>TextFile</output>
<required>0</required>
<default>0</default>
<selected>true</selected>
</element>

</fieldset>

<permissions clearance="10">
<gwner=>7</owner>
<gveryone>4</everyone>

Figure 9. Partial example of an XML representation of the RSA module.

33

Master Thesis by Drew Alex Clinkenbeard

d. Lab

Labs represent a series of operations to be performed in sequence. Labs are
constructed by selecting and configuring CloudSuite modules from available collections.
When users first log into the system they are presented with a list of any existing labs and
the option to create new labs. When a lab is loaded, the XML data associated with the lab
is read from a persistent server, verified against a schema (pictured in Figure 10), and
parsed into PHP objects. These objects are then used to restore the configuration choices
made by the user who created the lab.

Administrators may distribute labs for others to use. In future versions of CloudSuite
it will be possible to allow users other than administrators or professors to distribute labs.
This option will be configurable and is discussed in chapter seven.

When a user chooses to run a lab, the associated configuration data is uploaded to an
Amazon 83 bucket that serves as a processing queue. If the CloudSuite EC2 instance is
ready, then the CloudSuite data processor reads each lab from the S3 bucket and
processes them in order. Currently processing a lab is dependent upon an administrator
making an EC2 instance available to execute the queued labs. The details of the EC2
instance are discussed in section V of this chapter.

Master Thesis bv Drew Alex Clinkenbeard

<?xml version="1.0" encoding="UTF-8"7>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<1-- define simple elements -->

<xsd:element name="owner" type="xsd:string"/>
<xsd:element name="group" type="xsd:string" />
<xsd:element name="everyone" type="xsd:string"/>
<xsd:element name="seqNumber" type="xsd:string"/>
<xsd:element name="method" type="xsd:string"/>
<xsd:element name="xmlrpcString" type="xsd:string"/>
<xsd:element name="lastRunDate" type="xsd:string"/>
<xsd:element name="lastRunUser" type="xsd:string"/>
<xsd:element name="tilename" type="xsd:string"/>
<xsd:element name="type" type="xsd:string"/>
<xsd:element name="name" type="xsd:string" />
<xsd:element name="value" type="xsd.string" />
<xsd:element name="dataType" type="xsd:string" />
<xsd:element name="default" type="xsd:string" default="0" />
<xsd.element name="location" type="xsd:string"/>
<xsd:element name="description" type="xsd string"/>
<xsd:element name="required" type="xsd:boolean" />
<xsd:element name="legend" type="xsd:string" />

<!-- define attributes-->

<xsd:attribute name="1d" type="xsd:string" />
<xsd:attribute name="moduleName" type="xsd:string"/>
<xsd:attribute name="labName" type="xsd:string"/>
<xsd:element name="selected" type="xsd:string" />

<!-- define complex elements -->
<xsd:element name="input">
<xsd:complex Type>
<xsd:sequence>
<xsd:element ref="type" />
<xsd:element ref="tilename" />
<xsd:element ref="location" />
</xsd:sequence>
<!--xsd:attribute ret="id" use="required"/-->
</xsd:complexType>
</xsd:element>

Figure 10. Partial example of the XML schema that defines a lab

35

Master Thesis by Drew Alex Clinkenbeard

e. Collection

Collections are used to organize modules, in much the same way folders organize
files in a traditional operating system. A collection consists of a grouping of like modules
that are currently available to the user. A module may be present in multiple collections;
however, a collection will only be listed once per user. Currently collections do not
feature prominently in the functionality of CloudSuite. Collections are envisioned as a
tool for organizing and distributing modules. Further discussion of the future of
collections may be found in chapter seven.

HIL.XML Models

The model layer of CloudSuite 1s in the form of XML files that define the data
structures of CloudSuite. XML was chosen for the model layer of CloudSuite for several
reasons. The primary reason was to eliminate the need for database management software
(DBMS). Not requiring a DBMS makes CloudSuite very “light weight” and easy to
install. Another reason for using XML is that providing XML schemas to the end user
facilitates the creation of custom modules and collections. Verifying the structure of data
using XML schemas is an easy process and ensures that user created data will always be
compatible with the rest of CloudSuite. Sce figures 8, 9, and 10 for examples of the
XML strucutres used in CloudSuite. Appendix E, XML Schemas, has a complete listing
of the schemas used in CloudSuite.

The schemas that define CloudSuite are stored on a persistent server, eliminating the
need to make additional network calls to validate the XML models. These schemas are
used to verify the XML files that define the modules, labs, users, and other components
of CloudSuite. Each time a CloudSuite element is accessed the structure of the element 1s
compared against the stored schemas to verify the integrity of the file. This process is
performed by using the DOMDocument PHP library. The functions used to perform this
verification are located in the utills.class.php file, the full text of which is located in
appendix A, section VIL

IV. View Layer

The the front end (or View layer of the MVC model) of CloudSuite is primarily
composed of HTML and JavaScript. The JavaScript library jQuery, discussed earlier in
this thesis, is relied upon heavily for front end processing. JavaScript is used to make
CloudSuite portable and generally platform agnostic. By following JavaScript best
practices, CloudSuite is accessible on the majority of modemn platforms.

The front end of CloudSuite primarily consists of an ‘index.php’ file that makes calls
to the other components of CloudSuite. This includes instantiating the necessary PHP
classes and loading the PHP configuration files. This file also establishes a user session
however, currently, user session data is not widely used in CloudSuite. The majority of
the REST requests made by CloudSuite originate from this file.

REST requests are parsed using a custom handler as well as the SLIM PHP library
discussed in chapter two. Initially CloudSuite processed each request by parsing the URL

36

Master Thesis by Drew Alex Clinkenbeard

variables in the request URI and calling the necessary functions. Through our research we
discovered the PHP SLIM library and transitioned from our original approach to one
based on the PHP SLIM library. This allows for greater flexibility in REST commands as
well as a more consistent API,

Additionally future versions of CloudSuite will make use of more JavaScript
libraries, such as Backbone js and Bootstrap, both previously discussed in chapter two, to
further increase compatibility and functionality with a variety of systems. For more
information please see chapter seven.

V.Amazon Machine Instance

The ‘heavy lifting’ of CloudSuite is performed using an Amazon Machine Image
running on the EC2 platform. This AMI has been configured by installing Python 2.7
with Elementtree [46], and Boto [29], both of which are described in chapter two. We
have also included our own set of CloudSuite tools namely: a Python script for parsing
labs, Python wrappers used for processing modules, and a daemon used to control the lab
parsing process.

When the AMI is initialized a cron task starts the daemon that calls the Python file
responsible for parsing labs. The daemon runs continually as long as the AMI is active.
This structure allows us to update the files used in processing labs with little to no
interruption in service. Errors with either process are written to a log file.

CloudSuite labs are processed through a “first-in-first-out’ (F1IFQ) queue. The Python
lab parser first reads all the labs queued in the designated Amazon S3 bucket. The
controller then loads the lab into memory and begins processing the modules contained
therein,

Each module is associated with a Python wrapper. These wrappers are used to create
data modules and to call the command line resources represented by the module. Each
module is executed in turn and the results of the execution are stored in a log file which
will be made available to the end user. If any data is created by executing the module
those data are placed in the users data bucket. When the lab has been processed
completely it is then removed from the active queue.

Currently the AMI must be activated and deactivated manually, either by logging in
to CloudSuite or by logging in to the AWS management console. As discussed in chapter
six: future work, in the future it will be possible to start and stop the AMI on a
predetermined schedule. However, since this feature was not discussed in the initial
description of CloudSuite it was determined to be outside the scope of this thesis and is
not implemented in the present iteration of CloudSuite.

Master Thesis bv Drew Alex Clinkenbeard
Chapter 4:Analysis of CloudSuite

The following chapter analyzes the efficacy of CloudSuite by working through the
use cases presented in chapter one. This chapter analyzes the efficacy of our
implementation and identifies areas of improvement.

I. Standard User

Each use case requires the user to have valid credentials for accessing CloudSuite.
The login button in the upper right corner is used to access the username and password
form fields.

a. Logging in
Login

Figure 11. Login button

When clicked, the login button triggers a JavaScript function that displays the
username and password fields. The user then supplies their authentication credentials to
enter CloudSuite.

Username : Drew

Password : [eees

Lo_g_in

Retum
Figure 12. Username and password fields

If the user enters an incorrect username or password they are presented with an error
message alerting them to the issue. Currently there are no provisions for processing
repeated failed login attempts. This will be discussed in chapter seven: Future Work.

Please try again!
Usemame . Drew

Password : [eees|

Figure 13. Failed login alert

38

Master Thesis bv Drew Alex Clinkenbeard

Once the user has successfully authenticated the Login’ button changes to show the
username as shown in Figure 14. This serves to notify the user that they have successfully
logged in as well as serving as a logout button.

Drew

Figure 14. The username is displayed after a successful login

Clicking the username button provides the user with the option to Log out of
CloudSuite or return to their session, shown in Figure 15. Additional user options, such as
changing their email address or password, are discussed in chapter seven.

Log out Drew?
Return

Figure 15. Logout options

Once the user has successfully authenticated they are then able to access the features
of CloudSuite. As seen in Figure 16, all users will be able to save, load, queue, and create
new labs. We will discuss each of these operations in depth in the following sections.

Save Lab Load Lab | Newlab Queue Lab

Figure 16. The task bar showing the current user options

b. Creating a Lab

When the user clicks the 'New Lab button they are presented with the ‘new lab
dialog shown in Figure 17. Here the user will specify the name and description of the lab
they wish to create.

Lab Name : GA_graph_data
Lab Description : |Run a GA graph previous data, and generate a random data set

Crealte Lab

Cancel

Figure 17. New lab dialog

39

Master Thesis bv Drew Alex Clinkenbeard

Lab Name : |New Lab
Whitespace not allowed in Labname.

Figure 18. Warning when trying to use whitespace in a lab name

Currently CloudSuite lab names may not contain white space characters. If a white
space character is entered a warning is displayed and the lab name is highlighted. The lab
description may contain whitespace.

Once a lab has been created the name and description are displayed above the main
lab area as seen in Figure 19. Additionally the ‘Delete “labname™ button is also present
which allows the user to delete the lab if they so desire.

GA_graph_data

Run a GA graph previous data, and generate a random data set

Delete GA_graph_data

Figure 19. Lab name and description displayed in the main lab area

¢. Adding Modules to a Lab

After creating a lab, the next step is to add modules. Modules are listed by collection
on the left side of the main screen, shown in Figure 20. A module is selected by clicking
the button beneath the module description. When a user selects a module a number of
configuration options are presented, an example of which may be seen in Figure 21. Once
the user has selected their desired options the module is placed in the lab by clicking the
*Add to Lab button. The module is then listed in the main lab area, as shown in Figure
22. Currently the name and description of the module is listed as depicted in Figure 22.
As discussed in chapter seven, in future versions of CloudSuite the configured options
will be reflected in the module listing as well as the name and description.

40

Master Thesis by Drew Alex Clinkenbeard

€« - C [doudsuite.info

Queued Labs) Complete Labs } Admin 3 Settings }
Collections N
Run a neural
graphing
A Collection of modules used to display quantative data.
graphs > |
cryptography
A Collection of modules used for cryptographic purposes.
rsa J
hash-crack)
biological
A Collection of modules used in genetically inspired
computing.
ga)
neuro)

Figure 20. Modules displayed in CloudSuite

Crossover

@ Choose a single crossover point randomly
() Choose two crossover points randomly

Add to GA_graph_data 3) .Canceu'

Figure 21. Configuration options for the module ga’

41

Master Thesis bv Drew Alex Clinkenbeard

GA_graph_data

Run a GA graph previous data, and generate a random data set

+ Module Name ‘ga
« Description :Use a Genetic Algorithm to optimize data

dule Name :graphs
« Description :Plot data using a varity of methods

Figure 22. Modules displayed in a lab

d. Removing modules from a lab.

Modules may be removed by clicking the ‘Remove’ button located in the lower right
of the module listing within the lab. The user is prompted if they wish to remove the lab.
Clicking the Remove button will remove the module and return to the lab, clicking
‘Cancel will return to the lab without removing the module.

Remove the module from the lab?

Remove Cancel

Figure 23. Confirmation upon removing a module

e. Editing Modules
Currently there is no mechanism for editing a module in place to change a module it
must be removed from the lab and added with the new configuration options.
f. Saving a Lab

Saving a lab is accomplished by clicking the Save Lab Button illustrated in Figure
16. When the lab is successfully saved a dialog is presented to the user as presented in
Figure 24.

42

Master Thesis by Drew Alex Clinkenbeard

The page at cloudsuite.info says:
28027.Neruo_and_GCA.xml saved

Figure 24. Lab saved success alert

g. Loading a Lab

When the user initially logs in to CloudSuite they are presented with a list of their
available labs. Clicking on a lab will load it in the main lab area of CloudSuite.
Additionally when working in CloudSuite, labs may be loaded at any time by clicking the
‘Load Lab button shown in Figure 16. Clicking the Load Lab’ button presents a list of
available labs. Clicking on the desired lab will load it in the main lab area. Any unsaved
work done on the currently loaded lab will be lost. This is true even when the currently
open lab is re-loaded. This allows the user an option to ‘'undo’ any unsaved changes.

Labname : Neruo_and_GA

Owner : Drew

Description : Run a neural network and a genetic algorithm

ID : 28027 y

Labname : grapher

Owner : Drew

Description : Graph some data

ID : 28044 P

Labname : three_neuros

Owner : Drew

Description : run three neural networks

ID : 28050)

Cancel)

Figure 25. Display of labs available to load

43

Master Thesis bv Drew Alex Clinkenbeard

h. Queueing Labs

Queuing a lab is accomplished similarly to saving a lab. By clicking the 'Queue
Lab button located on the status bar, pictured in Figure 16 the lab is placed in the queue
for processing. Users may click on the ‘Queued Labs button to view the labs currently in

the queue.

| ﬁ The page at cloudsuite.info says:
- Lab 31252.CA_graph_data.xml has been queued.
N

e

Figure 26.Quecued lab alert

i. Deleting Labs

To delete a lab it must first be loaded as outlined in the previous section. Once the
lab has been loaded the user then clicks on the "delete lab button located at the bottom of
the list of modules. The user is presented with an alert indicating the success or failure of

the delete action.

Remove the module from the lab?

Remove Cancel

Figure 27. Confirm delete lab dialog

j. Results from a lab

Once a lab has been run the user is able to view the data from the individual modules
as shown in Figure 28. When the user clicks on the data module then a data dialog screen
is displayed, Figure 29, from this dialog the user is able to download or delete their data.
To view the output from this lab, and a sample experiment, please see chapter five.

44

Master Thesis by Drew: Alex Clinfenbeard

Drew's data

three_neuros -> neuro.py
generated on : Wed Feb 27 18:38:56 2013
three_neuros -> neuro.py
generated on : Wed Feb 27 18:47:45 2013
GA_graph_data -> grapher
generated on : Wed Mar 27 22:07:58 2013
GA_graph_data -> ga
generated on : Wed Mar 27 22:07:09 2013
GA_graph_data -> dataGen
generated on : Wed Mar 27 22:07:58 2013
GA_graph_data -> ga
generated on : Wed Mar 27 22:07:57 2013

A e b e S

Figure 28. Listing of users data modules

Data from running GA_graph_data.grapher

Owner : drew

Created on : Wed Mar 27 22:07:58 2013
data_name : 312522712.grapher.htmi|
Module ID : 312522712

Module Name : grapher

‘Open File : 312522712.grapher.html

Close Delete

Figure 29. Data dialog

1. Superusers

Currently only CloudSuite administrators or professors may start and stop
CloudSuite AMI instances. Additionally only CloudSuite administrators may distribute
labs to other users. In the future normal, or "student’, users will be able to submit labs to
their instructors for review.

a. Distributing Labs

Labs are distributed by selecting the lab, or labs, to be distributed as well as the users
who will receive the lab(s). Clicking the 'Distribute Lab” button will make the selected
labs available for the chosen users to load, modify, and queue.

45

Master Thesis by Drew: Alex Clinfenbeard

Distribute Labs

— Users
Drew

Gabbo

Jenny

—Labs

10429.CloudSuite_lab_001.xml
Labname : CloudSuite lab_ 001
Description : A lab for demos and screen shots.

18772.copyTest.xml
Labname : copyTest
Description : testing the copy

18793.copyTest004.xml
Labname : copyTest004
Description : Lab copy test 004

Figure 30. Example lab distribution page

b. Starting / Stopping the Server

The AMI used for lab processing is started and stopped with a simple push button
interface pictured in Figure 29. The interface updates to inform the user of the current
state of the AMI. The interface also provides the current DNS value for the AMI if the
administrator requires SSH access to the server.

Server Status

Server Status for : ami-aecd60c7

Instance Type : t1.micro

Launch Time : 2013 Mar 12 12:44:21

DNS Name : ec2-23-22-194-39.compute-1.amazonaws.com
Status : running

Stop

Figure 31. Example server status dialog when a server is running

46

Master Thesis bv Drew Alex Clinkenbeard
Chapter 5: CloudSuite OQutput

In this chapter we examine the practical output from CloudSuite. We first look at the
results from the lab which we configured in chapter four. Then in the second section we
examine an experiment performed using CloudSuite.

I. Lab Results

In chapter four we discussed the steps necessary to configure and run a lab using
CloudSuite. This section will discuss, in detail, the configuration of the modules as well
as the output from the execution of those modules.

First we look at the configured "graphs module shown in Figure 32. The 'graphs’
module illustrates the data visualization potential of CloudSuite. The module requires the
user to supply a title and a data file. Currently the module requires the data to be stored in
a specific AWS S3 bucket. The format of the data is a CSV file as illustrated in Figure 34.
The 'graphs module is capable of parsing numerous columns of data though in our case
we are using two columns. It is worthwhile to note that the data being used is the output
from a previously executed ‘ga module.

graphs

Title
Sample_data Name for the chart
—Dalta

3121523887.ga.csv File to plot

Add to GA_graph_data | Cancel

Figure 32.'graph module Configured with existing data

Figure 33 shows the chart that was generated from running the ‘graphs’ module. By
storing the results in a publicly accessible S3 bucket, the graph may be accessed by
anyone. The chart shown in Figure 33 is available at http://
cloudsuite.data warehouse.s3.amazonaws.com:312522712.grapher html.

47

Master Thesis bv Drew Alex Clinkenbeard

sample_dara

(X

Figure 33.Results from running the graph module.

"max"."min"
" l[)l!ﬁ!l l 1]
Flll":l!ll!
"]_L)":NZN
M l llF:lF3IF
L] l llF:lF"!‘)IF
"13":"4"
n l 4".'"4"

n l 3"'"3 "

n l 4".'"5"
n '15".'"5"
n '15".'"6"
" '15".'"5"
Fllsl!trl6rl
Fll60:!l?!l
lell‘rl((L]
"16"_‘"8"
n l 6".'"7"
n l 6".'"9"
Nl?lr.:rl(L]
Fll60:!llt)l!
Fll6lF:F18N
"lS'I‘"lL)"
Nl?":!l("
Fll?":!ls!l
n l ?"_."8"
" l ?"_."9"
" l ?"_." l 0"
" l 8".'" l 0"
n l 8".'" l l n
n l 9".'"9"
FllSlF:NlL)IF
Fll()l!trllzlr
Fllglr.:rllt)lr
L] 180.:!1 l l L]
Fll()":!llt)lr
Fll()l!trllt)lr
n l 9"'"9"
FIZOIF'" l l n

Figure 34. The data used to generate Figure 33

48

Master Thesis bv Drew Alex Clinkenbeard

The next module used in chapter four is the ga module. This module runs a genetic
algorithm written in C. This particular implementation of a genetic algorithm was
originally written by John LeFlohic [76 and modified for our use. As shown in Figure 35
the user selects which type of crossover to use when running the genetic algorithm. The
type of crossover determines which parts of a pair alleles are used to generate a new
organism.

Crossover
=) Choose a single crossover point randomly
Choose two crossover points randomly

Add to GA_graph_data Cancel

Figure 35. A configured ga module

Once the user has selected the desired type of crossover the algorithm will output a
CSV file listing the maximum and minimum gene fitness value per generation. This is
data is shown in Figure 36. By allowing the user to select the type of crossover it is
possible to examine the effects of single and two point crossover on the eventual outcome
of a genetic algorithm.

49

Master Thesis by Drew Alex Clinkenbeard
"max"."min"
I!] ‘ll!‘.!l ll!
l!9ll=|!2"
"10"_._"1"
Illlll_llzll
".]2“.“2"
l!l l"_.""""
Illlll_ll_.l.“
I!']]|!1!|4|!
I!'] 3 II-II_I-"
"13"3"6"
|l13l|-l|6ll
"']3"-"6"
"13"3"6"
|l14l|-l|6ll
|l13l|-l|6ll
"']3"-"6"
"l".l"|3"7"
H]Sli-"()ll
"]5"-"_‘_"
IllGlI-II_I-II
"15"-"7"
|!]5l|3l|8"
"15“-“7"
"15"-"7"
"]5"3"8"
"16“-“7"
"16“-“7"
"16"-"8"
"]6"?‘"7"
"16“-“8"
"16"-"8"
"]6"?‘"8"
"]6"?‘"8"
"16“-“7"
"16"-"7"
I!]7II=I|8!I
"17“-“9"
"17"-"8"

Figure 36.A CSV file showing the minimum and maximum gene values {rom the “ga’ module

Master Thesis bv Drew Alex Clinkenbeard

II. Example Experiment

This section examines an experiment that was run with the modules currently
available in CloudSuite. The experiment compares the output from single and two point
crossover in a genetic algorithm. We present this example experiment to show a practical
application of the results from section I of this chapter. To perform this experiment we
first configure a lab with both single and two point crossover. Figure 37 illustrates the
configured ‘ga lab.

single_and_double

Run two GAs

+ Module Name :ga
« Description :Use a Genelic Algorithm to optimize data
« Command String :(—crossover single

+ Module Name :ga
+ Description :Use a Genelic Algorithm to optimize data
« Command String :—crossover double

Figure 37.The configured genetic algorithm lab

Once we have results from running both of these labs, we then configure another lab
containing the ‘grapher module as shown in Figure 38. This lab will produce two charts
which will demonstrate how the process of crossover can affect the eventual outcome of a
genetic algorithm.

result_graphs
The graphs of the results
¢ Module Name :graphs

« Description :Plot data using a varity of methods
+ Command String :~title ga_test_1 —in 312714815.ga.csv

¢ Module Name :graphs
« Description :Plot data using a varity of methods
+« Command String :~title ga_graph_2 —in 312718637 ga.csv

Figure 38. The configured result_graphs lab

51

Master Thesis bv Drew Alex Clinkenbeard

The results from the single point crossover module are shown in Figure 39. When
looking at the graph online (http://cloudsuite.data,warehouse,s3.amazonaws,com/
312803154 grapher html) it is possible to see that the genetic algorithm found an optimal
gene in 75 generations. When examining the two point crossover graph shown in Figure
40 we see that 473 generations were needed to find a solution. The graph is available at
http;/cloudsuite, data warehouse,s3,amazonaws, com:312804608, grapher html. From this we can
determine that single point crossover may be more desirable over two point crossover
depending on the intended results.

ga_graph_2

!-n

Figure 39.Graph showing single point crossover

=
s

4

Figure 40.Graph showing two point crossover

52

http://cloudsuite.data.warehouse.s3.amazonaws.com/
http://cloudsuite.data.warehouse.s3.amazonaws.com/
http://cloudsuite.data.warehouse.s3.amazonaws.com/312804608.grapher.html
http://cloudsuite.data.warehouse.s3.amazonaws.com/312804608.grapher.html

Master Thesis by Drew Alex Clinkenbeard
Chapter 6:Thesis Results

The primary goal of this thesis was to provide a proof of concept for the feasibility of
a cloud based ad hoc laboratory system. The system was to be composed of several parts
that would facilitate the creation, modification, and execution of lab assignments.
Additionally CloudSuite was to provide teacher/administrator access to specific
functions. This chapter discusses how the execution of CloudSuite matches the goals set
forth in chapter one.

I. Use Cases

The use cases defined in chapter one served as a guideline for the development of
CloudSuite. In this chapter we compare our results with the expectations defined earlier.
Any deviations from the initial requirements will be enumerated and solutions will be
discussed in the following chapter.

a. Undergraduate Students

The primary goal for undergraduate students was the ability to create and run their
own or preconfigured labs. This goal was met completely. Labs are built and executed
and the results are delivered to students exactly as the goal defined. The students are only
able to view labs that have been shared with them, or that they have created. Once labs
have been distributed to students they are able to modify and run the labs as they see fit.
One potential issue is that, currently, when a lab is distributed to a student the student
becomes the owner of their copy of the lab. It might be more desirable to simply share the
lab with the student while the originator retains ownership.

Once a lab has been executed the student has access to the data that has been
generated by the lab. This allows the student to analyze the data and draw conclusions
from that data. This concludes the requirements for undergraduate use of CloudSuite. In
the next section we examine how upper division or graduate students interact with

CloudSuite.

b. Upper Division or Graduate Students

Upper division or graduate students have the same ability to access CloudSuite as an
undergraduate. These students are able to create, modify, and execute labs in the same
way as an undergraduate. An additional use case for graduate, and upper division,
students is the ability to create custom modules and functionality for CloudSuite. This is
accomplished by supplying the XML schema and generic Python wrapper for use in
creating CloudSuite modules. Using these elements as a framework upper division and
graduate students are able to create their own modules which may be used in CloudSuite.
As mentioned earlier the full text of the XML schema as well as the Python wrappers, are
included in appendix E and F, respectively. Adding more documentation would make this
easier.

Master Thesis by Drew Alex Clinkenbeard

¢. Professors

Professors retain all the access of undergraduate and graduate students. Professors
have the additional functionality of being able to start and stop the CloudSuite AMI at
will as well as distributing labs to students. Starting and stopping the server at preselected
times is an additional requirement not discussed in chapter one; however, through the
development of CloudSuite it became obvious that this feature would be of great use.

Another requirement put forth in chapter one was the ability for professors to view
and edit student generated labs. This functionality is present however it requires the
instructor to manually move a lab from the students S3 bucket, to their own lab bucket on
Amazon S3. Adding a front end to this functionality 1s left for future work.

I1. Functional Requirements

Functional requirements address areas of CloudSuite that are necessary for the
software to be considered functionally complete. Chapter one presented several areas that
were necessary for this requirement and chapter four discussed the implementation of
these requirements, This chapter will investigate how well the implementation matches
the initial requirement starting with creating labs.

a. Creating Labs

Labs are created using a point and click interface exactly as described in the chapter
one. Each lab is represented by a unique file that adheres to the criteria defined by the
XML schema that defines a lab. This ensures each lab is compatible with CloudSuite.
Each lab may contain zero or more modules.

Labs are stored using Amazon S3 which meets the requirement of making the labs
available even when the AMI is not running. Through the completion of CloudSuite it
became apparent that including data in a lab was not necessary. Data may be operated on
by modules contained within a lab but including a data module in the lab itself serves no
purpose. Instead data is stored in a collection that is available to the user that generated
the data. The user is then able to share a link to that data to whomever they wish.

b. Saving Labs

Labs are saved by clicking the save lab button located in the task bar of CloudSuite.
This alerts the user to the success or failure of the save. Additionally each lab is tagged
with a unique TD that prevents it from overwriting the labs of other users. Finally the user
1s able to save as many labs as they wish. Currently there 1s not mechanism to limit the
number of labs a user may create. Limiting the number of labs the user creates maybe an
unnecessarily limiting factor. This functionality could be added at a future date if needed.

54

Master Thesis by Drew Alex Clinkenbeard

¢. Loading Labs

When a user first logs in to CloudSuite, if a lab has previously been saved, a list of
labs is presented for the user to load. Additionally if the user wishes to load other labs
clicking a button in the task bar presents a list of labs to which the user has access. Users
may access labs they have created or labs that have been distributed to them.

d. Distributing Labs

When distributing a lab the professor is presented with a list of users, and a list of
labs. The professor may choose as many users and/or labs as necessary. Once the users
are selected the labs are distributed by clicking the ‘Distribute Lab(s)’ button. Each lab is
then copied to each selected user Once labs are distributed they retain the same
functionality of a lab that had been created by that user.

One area where the requirement and the implementation differ is that the necessary
components of the lab, the modules and/or data, contained within the lab are not
distributed. This is simply because the underlying architecture of CloudSuite makes this
procedure unnecessary. The modules, as well as the data, have been decoupled from the
users and require no additional actions for them to be available for use.

e. Modifying Labs

As the requirements state, each user is only able to modify their own labs, or labs
that have been distributed to them. This functionality is currently built in to the system.
The ability for administrators or professors to modify labs 1s not currently implemented.
Manipulating the labs of other users requires further development of user authentication.
User and group authentication has been left for future work and, as such, does not factor
in to the users ability to access labs.

f. Configuring Modules

Configuring modules works precisely as described in chapter one with one
exception. Operating on data produced by a module requires the module to be run first
then the data may be used in a module.

g, Running a Lab

Labs are processed exactly as described in chapter one. An AMI is activated by a
user with the appropriate level of security and a custom daemon process each lab in a
“first-in-first-out’ queue. As discussed in chapter one, activating the AMI requires the user
to posses the correct level of security to start the AMI. Currently the credentials needed to
access the AMI are read from a configuration file. However it would be trivial to read the
credentials from a user instead of the file. This would facilitate users supplying their own
credentials and thus being able to run CloudSuite whenever they wish. This 1s, of course,
predicated upon the user having all the appropriate software as well as an AMI instance.
The option to allow users to supply their own credentials has been left for future work.

35

Master Thesis by Drew Alex Clinkenbeard

1t is important to note that the way modules, and therefore labs, interact with data is
entirely dependent upon how the module was created. Supplying the URI for the data is
sufficient for a module to access the data. Additionally it 1s possible for a module to
access data in the S3 bucket directly assuming the proper AWS credentials are supplied.

h. Accessing Student Data

Student data is accessible in two ways. The student may send a URL pointing to their
data in an S3 bucket, or the professor may access the students data in the S3 bucket by
logging in to the AWS management console and downloading the data directly. A user
interface element for this procedure would be more in line with the functional
requirements than the current implementation.

36

Master Thesis by Drew Alex Clinkenbeard
Chapter 7:Future Work

Through developing the software that makes up CloudSuite several areas of
improvement were identified. These include, but are not limited to, general user
management, security, the lab distribution process, and exposure of the data produced by
modules. As the goal of this thesis was to provide a proof of concept for CloudSuite,
addressing these areas does not fall within the scope of this thesis. However,
documenting the changes and identifying areas for improvement will aid in the future
development of CloudSuite.

I. User Management

Further development of CloudSuite would necessitate the improvement and
expansion of user management. Currently adding a new user is performed by directly
editing the underlying XML. Adding a set of API calls and a front end user interface to
create and modify CloudSuite users would be an obvious first step. The current user
schema is sufficient to support many more functions than are currently offered. Following
the outline of the schema would serve as a viable guide for developing users.

Additional users would require the expansion of the group class. Like the user class,
a schema exists to define the group structure however group functionality has largely
been overlooked. The design of CloudSuite followed standard POSIX/UNIX user
management and so much of the needed foundation to implement groups already exists.
This limits the amount of rework that is necessary to implement groups. As with users, a
group API would need to be developed as would a group user interface element. One of
the more challenging aspects of implementing groups would be enforcing the read, write,
and execute rights for all of the CloudSuite elements. Though the schemas that have been
created all take these permissions into account it would still be necessary to parse these
levels and modify the view layer accordingly.

Creating users and groups is currently defined as an administrator or professor level
action. It should be possible to add users to a group of sufficient privilege that would
allow them to create other users or groups as well as assign group affiliation to users. In
this way a ‘normal’ user would become an administrator granting the ability to generate
New USers or groups.

Users will also be able to edit their own information. This would include changing
their password, contact information, and supplying their own Amazon EC2 credentials.
The user will only be able to change their group affiliation if they belong to a group of
sufficient privilege to change user groups. These elements would requires a new user
interface element and would follow the design pattern of CloudSuite as well as best
practices for user based manipulation of data. This information should be presented when
the user clicks on their username in the upper right corer of CloudSuite. This would
present the user with an account screen that would include the current ‘Logout’ and
‘Cancel” buttons.

Additionally it should be possible to generate users from a CSV file, or by uploading
a file. The user interface for this functionality would follow the same design pattern

57

Master Thesis by Drew Alex Clinkenbeard

already present in CloudSuite. This would be accomplished by making use of the same
APIs used to generate single users but applied to a batch process. Additional API calls
will be necessary to facilitate increased security when dealing with user data.

IL. Security

Any web based application must be secure, especially any application that stores user
data. CloudSuite security is especially important because it is dealing with student data.
And, as outlined by FERPA|77] there are numerous student data confidentiality concerns.
Additionally using Amazon EC2 instances can lead to monetary charges. Currently
CloudSuite does not use secure passwords nor does it encrypt user data. Additional
security measures would include limiting the number of failed login attempts and adding
a password retrieval mechanism,

Encrypting user data would be achieved by storing the data in an encrypted Amazon
S3 bucket, This would be addressed when upgrading the user APIs. No view layer
changes would be required. Secure passwords would be implemented at the same time.
Securing passwords has a known solution, typically by salting and encrypting the
password string, and could be implemented when the user API is upgraded.

An additional feature to be added when modifying the user class would be the
addition of a password reset function. This function would require the user to supply the
email address associated with their account. CloudSuite would then send an email
venfication string which would take them to a page where they could enter a new
password. This could also be used to unlock the account in the event of multiple failed
log in attempts.

Limiting the number of failed login attempts would be accomplished by
incrementing a counter for each failed attempt and storing that value in the user object.
After each failed attempt the counter would be checked and if a predetermined limit is
reached the user would either be locked out until an administrator unlocked them, or for a
predetermined amount of time. Either option should be configurable by administrators or
professors. These tools will require a user interface element for administrator use.

Finally the API must be secured before it can be made available to the public. This
would be accomplished by requiring a valid APT key to be sent with each API request. A
valid session ID would also be required for calls that return user information.

II1.Sessions

Currently CloudSuite does store some user information in a session object; however,
it does not make use of this data. When active, persistent sessions would allow
CloudSuite to store the username and the last active lab, restoring them when the user
returned to CloudSuite. This would require modification of the index.php file to check for
session data and load the appropnate view. This feature would be enabled or disabled by
a ‘Remember Me’ checkbox.

58

Master Thesis by Drew Alex Clinkenbeard

IV.Lab Management and Distribution

Deleting CloudSuite labs currently requires a user to load each lab before it’s
removal. Adding a checkbox and a ‘remove lab’ button would make this process much
simpler. Lab distribution could likewise benefit from the implementation of user groups.

Once user groups are implemented administrators or professors should be able to
select individual students, the current functicnality, or groups of students for lab
distribution. This would work by giving the administrator the choice of listing either
individual users, or groups. Toggling between group view, or user view would not
deselect the previously chosen recipients of the lab. Once all the users and groups have
been selected clicking the ‘Distribute Lab’ button will copy the lab to all the selected
users using the current process.

The option to allow users other than professors or administrators to distribute labs 1s
a configuration option that can be allowed once user groups have been implemented. Any
user that has the appropriate level of security, or the appropriate level group, will be able
to distribute labs.

V. Editing modules

Currently the only method of editing modules, once they have been added to a lab, is
by removing the module and re-adding it to the lab. Ideally it would be possible to edit a
module ‘in place’ by changing the settings present in the lab. There are three ways this
could be accomplished: ignoring the previous settings and presenting the user with a
‘blank’ module configuration screen; by parsing out the XMLRPC string that is stored in
the module object and using that data to supply module values; or by restructuring how
modules store configuration data to make it more readily accessible.

The third option, restructuring the module, is the most time consuming but offers the
best solution. In addition to enabling module editing, by implementing this option it
would be possible to list the configuration options on the lab screen when the lab is
viewed. This would allow the user to see, instantly, how the lab has been configured.

V1.Collections

Improving the functionality of collections would be a vital part in making CloudSuite
extensible. Currently, collections must be created by hand coding the XML necessary to
represent them. The APl would consist of calls to create, delete, populate and distribute
collections. Creating a collection would require a name and a security setting. Deleting a
collection would require the user to be of the appropriate level to perform the action. Also
deleting a collection would not delete any of the contents of the collection. Populating the
collection would require the name of the collection and the name of the module to add to
that collection. Distributing a collection would require the correct security level and the
name ofithe user to receive the collection. Finally, collections may be distributed to users
of any level, however, accessing the modules contained within the collection would
require the correct security level for at least one of the modules contained within the
collection. All of these API calls would also require a user interface components.

39

Master Thesis by Drew Alex Clinkenbeard

VIL.View Layer

The view layer was largely created in an ‘as needed’ process. Redesigning the view
layer in a more deliberate fashion would aid in the usability and extensibility of
CloudSuite. Reworking the view layer of CloudSuite to make use of modern JavaScript
libraries, like backbonejs and bootstrap.js, would make adding functionality to
CloudSuite much simpler. This would also increase the overall portability and platform
agnostic nature of CloudSuite.

VIIL.Data Import and Use

Data sets must be manually uploaded, or created within CloudSuite, to be used in
CloudSuite. A user interface element that allows the upload of data files and
automatically configured the appropriate XML file for use in CloudSuite would be a
welcome addition to the software. Parsing the XML file and ensuring the integrity of the
data, as well as protecting against malicious data, would be the largest challenges when
adding the ability to import data.

Currently, a data set must already exist before it is can be flagged for use in a
module. In order to allow data to be flagged for use in a module before the originating
module has been run, a script that would generate a dummy file would be necessary. This
script would be run whenever a module would produce data. Additionally any module
that would make use of current system data would require code to scan for extant data
and present a list for user selection. This list would be either an HTML multi-select box
or an HTML drop down box. Selecting this data would then flag it for use at execution
fime,

IX.AMI / Data Processing

One of the few areas from the original CloudSuite concept that did not get
implemented is the ability for user to supply their own AWS credentials. In the end this
may not be a feasible option as the user would also need a complete copy of the
CloudSuite backend to make use of their own credentials. Whereas this is possible, by
making the AMI available to the user, it does not necessarily fit the philosophy of
CloudSuite.

One area that could be improved in CloudSuite is to make use of the parallel
processing nature of Amazon EC2. Since each lab can be run independently, and indeed
many modules can be run independently as well, CloudSuite is a prime candidate for
parallel computing. By making use of the AWS High Performance Computing (HPC)
capabilities it would be possible to process each lab simultaneously. However, running a
more powerful EC2 instance to handle all the labs could be more expensive.

Processing each lab independently while using the current instant size could be
accomplished by spawning a child thread for each lab that needed to be processed instead
of processing them in a FIFO queue. Although this would require little change to the
code, a great deal of thought and planning would be necessary to ensure maximum
efficiency and system stability.

60

Master Thesis by Drew Alex Clinkenbeard

X.Module Uploading / Package Manager

Currently adding a module to CloudSuite requires the creation of several components
by hand. Whereas some aspects of module creation, notably the code called by modules,
will always need to be created by hand, many aspects could be handled programmatically.
A mechanism could be designed by which the module configuration XML and the
processing code could be archived and uploaded. This archive could then be parsed by
CloudSuite and added automatically to the available modules.

A future possibility for CloudSuite that does not fit within the scope of this thesis is
the creation of an APT [66] like package manager. Creating a system where modules may
be created, uploaded, and distributed would make CloudSuite much more extensible. This
functionality would have to borrow heavily from systems like APT, Easy_Install [67], or
Homebrew [68].

XL API

The current API offers limited access to CloudSuite functionality. Additional work
on the API to both expand the API and to make use of the SLIM library would allow
greater exposure of CloudSuite functions. Additionally the existing APT is not entirely
consistent nor does it rigorously follow best practices. Adding these improvements offers
enough work for an excellent followup project even though they fall outside the scope of
the boundaries of this thesis.

6l

Master Thesis by Drew Alex Clinkenbeard
Chapter 8:Conclusion

In this paper we present a proof of concept for CloudSuite through the design,
implementation, and analysis of the major necessary components. CloudSuite is a cloud-
based software framework to create virtual labs for the demonstration of scientific
computer techniques. The software created clearly demonstrates that CloudSuite 1s a
feasible idea and serves as a viable proof of concept.

CloudSuite 1s considered within the larger context of the applications of cloud-based
computing to an educational setting. First, we designed the user interface and necessary
functional components, including a modular lab framework accessible by multiple types
of users. We then reviewed the existing tools and resources available to assist in the
creation of such a framework. We also reviewed existing virtual lab environments. We
implemented these ideas into a functional framework that includes a web based user
interface, as well as a well-planned, robust backend to carry out the tasks discussed in
chapter one. Finally, we analyzed the outcomes, both in terms of CloudSuite itself and
how well the original objectives had been met. The few areas where our implementation
did not meet the initial requirements have been addressed. We have laid the ground work
for addressing them in future versions of CloudSuite,

1t is our hope that CloudSuite will continue to grow and evolve over time. 1t is our
belief that this thesis has performed the task it set out to do, namely, demonstrating the
validity of the concept of an ad hoc¢, cloud based, laboratory environment. This thesis
presents a vision of the future where advanced ideas in computer science are not limited
to those with the knowledge of how to implement them. CloudSuite presents a
mechanism by which students in fields other than computer science can make use of
computing resources that would otherwise be out of their reach. By allowing students
across the disciplines to make use of computer resources we pave the way for new
discoveries and new innovations.

62

Master Thesis bv Drew Alex Clinkenbeard
References

1. Armbrust, Michael, Armando Fox, et al. 'Above the Clouds: A Berkeley View of Cloud
Computing.' Berkley: 2009. <http:/:x-integrate.de-X-in-cms.nsf id-
DE_Von_Regenmachern_und_Wolkenbruechen -_Impact_2009_Nachlese $file’
abovetheclouds.pdf =.

2. Frey, Regis, and Wdror-wsu-ap. MVC-Process. 2010. Wikipedia: The Free
Encyclopedia.Web. 13 Jan 2012. <http:/-en.wikipedia.org'wiki File: MV C-Process.png=.

3. Mell, Peter and Timothy Grance. '"The NIST Definition of Cloud Computing.' NIST
Special Publication. 800-145 <http:/:csrc.nist. gov/publications:nistpubs‘800-145/
SP800-145.pdf =.

4. Blackboard “About Bb' http:iwww.blackboard.com About Bb'Overview.aspx n.d. Web.
Accessed on 3 February 2012

5. OmniUpdate. "About OmniUpdate” http:romniupdate.com’company'about n.d. Web.
Accessed on 13 March 2013

6. Cloud9. "About Cloud9’ http:fiwww.cloud9analvtics.com about n.d. Web. Accessed on 13
March 2013

7. "History of CP-CMS’ , Wikipedia: The Free Encyclopedia.
Wikimedia Foundation, n.d. Web. 3 November 2012, http://en.wikipedia.org'wiki!
History of _CP-CMS

8. “Timeline of Virtualization Development”, Wikipedia: The Free Encyclopedia.
Wikimedia Foundation, n.d. Web. Accessed on 3 November 2012, http: :en.wikipedia.org?
wiki:Timeline of virtualization development

9. 'Computer Terminal”, Wikipedia: The Free Encyclopedia.
Wikimedia Foundation, n.d. Web. 3 November 2012, “http://en. wikipedia.org'wiki’
Computer terminal

10. "History of Computer Clusters”, Wikipedia: The Free Encyclopedia.
Wikimedia Foundation, n.d. Web. 3 November 2012, http://en. wikipedia.org‘wiki’
Historv of computer clusters

11. Milberg, Ken. 'TBM and HP virtualization, A comparative study of UNIX virtualization on
both platforms." IBM DeveloperWorks. IBM, 29 Sept 2009. Web. 5 NOV 2012. <http:/{
www.ibm.com'developerworks:aix:libraryv:au-aixhpvirtualization'index.html >.

12. Barham, Paul, et al. 'Xen and the art of virtualization." ACM SIGOPS Operating Systems
Review. Vol. 37. No. 5. ACM, 2003.

13. VMware, “Virtualize Your I'T Infrastructure”™ VMWare.com, n.d. Web. Accessed on 13
March 2013

14. Xen® Hypervisor The open source standard for hardware virtualization, *What is the Xen
Hypervisor?' hitp:fixen.org’. n.d. Web. Accessed on 13 March 2013

15. Virtualbox, “User Manual® https:iiwww.virtualbox.org'manual'chO1 .html n.d. Web.
Accessed on 13 March 2013

16. Warford, Stanley J.. Computer Systems. 2nd Ed. Sudbury, MA: Jones and Bartlett
Publishers, 2002. Print.

17. Oracle “The Structure of the Java Virtual Machine™ htip:’idocs.oracle.com'javase specs’
Jjvms'se7 html'jvms-2 .html n.d. Web. Accessed on 13 March 2013

18. (Bressoud, and Schneider 90-117) Bressoud, Thomas, and Frew Schneider. '‘Hypervisor-
Based Fault-Tolerance." ACM Transactions on Computer Systems. 14.1 (1996): 90-117. Web.
13 Mar. 2013. <http:i:roc.cs.berkelev.edu 294fallO1/readingsbressoud. pdf=.

63

http://x-integrate.de/x-in-cms.nsf/id/%e2%80%a8DE_Von_Regenmachern_und_Wolkenbruechen_-_Impact_2009_Nachlese/$file/%e2%80%a8abovetheclouds.pdf
http://x-integrate.de/x-in-cms.nsf/id/%e2%80%a8DE_Von_Regenmachern_und_Wolkenbruechen_-_Impact_2009_Nachlese/$file/%e2%80%a8abovetheclouds.pdf
http://x-integrate.de/x-in-cms.nsf/id/%e2%80%a8DE_Von_Regenmachern_und_Wolkenbruechen_-_Impact_2009_Nachlese/$file/%e2%80%a8abovetheclouds.pdf
http://en.wikipedia.org/wiki/File:MVC-Process.png
http://csrc.nist.gov/publications/nistpubs/800-145/%e2%80%a8SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/%e2%80%a8SP800-145.pdf
http://www.blackboard.com/About-Bb/Overview.aspx
http://www.blackboard.com/About-Bb/Overview.aspx
http://omniupdate.com/company/about
http://www.cloud9analytics.com/about
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/History_of_CP/CMS
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/Computer_terminal
http://en.wikipedia.org/wiki/
http://xen.org/'
https://www.virtualbox.org/manual/ch01.html
http://docs
http://roc.cs.berkeley.edu/294fall01/readings/bressoud.pdf

Master Thesis bv Drew Alex Clinkenbeard

19. Goldberg, Robert. ‘Architectural Principles for Virtual Computer Systems.' Thesis.
Harvard University, 1973. Web. <http:/:www.dtic.mil‘cgi-bin'GetTRDoc?
AD=AD772809&1ocation=U2&doc=GetTRDoc. pdf=.

20. "Hypervisor™, Wikipedia: The Free Encyclopedia. Wikimedia Foundation, n.d. Web. 12
November 2012, http:/:en.wikipedia.org wiki:Hypervisor

21. Xen® Hypervisor The open source standard for hardware virtualization, “How does Xen
work?' hitp:irwww.xen.orgfiles Marketing HowDoesXenWork pdf n.d. Web. Accessed on 13
March 2013

22. “SIMON (Batch Interactive Test), Wikipedia: The Free Encyclopedia.
Wikimedia Foundation, n.d. Web 12 November 2012, <http: ‘en.wikipedia.org wiki‘
SIMON (Batch Interactive test debug)=

23. "CP-40”, Wikipedia: The Free Encyclopedia.
Wikimedia Foundation, n.d. Web 12 November 2012, <http: “en.wikipedia.org'wiki‘
IBM CP-40=

24. IBM, “VM History and Heritage’ http:rwww.vm.ibm.comhistory! n.d. Web. Accessed on
13 March 2013

25. Smith, J., and R. Nair. Virtual machines: Versatile platforms for systems and processes. 1st.
Burlington, MA: Morgan Kaufmann, 2005. Print.

26. Bezos, Jeff *Amazon EC2 Beta® Amazon Web Services Blog, http:iiaws.typepad.com’aws’
2006. 08 amazon_ec2_beta.html, 25 August 2006 Web. 14 November 2012

27. Amazon Web Services "What is AWS?" http:iraws.amazon.comwhat-is-aws' n.d. Web.
Accessed on 13 March 2013

28. Amazon Web Services “Amazon S3 Pricing’ http:{iaws.amazon.com's3t n.d. Web.
Accessed on 13 March 2013

29. Boto boto: A Python interface to Amazon Web Services™ http:iidocs pvthonboto.org en!
latest: n.d. Web. Accessed on 13 March 2013

30. Amazon Web Services “Simple Command-Line Access to Amazon EC2 and Amazon S3”
http:fhraws.amazon.com developertools' 739 n.d. Web. Accessed on 13 March 2013

31. Amazon Web Services “Sample Code & Libraries’ http:{iaws.amazon.com’code’ n.d. Web.
Accessed on 13 March 2013

32. Google Cloud Platform “Google Compute Engine” htip:iicloud.google com products’
compute-engine.html n.d. Web. Accessed on 13 March 2013

33. Heroku “Cloud Application Platform’ Attp:iiwww.heroku.com’ n.d. Web. Accessed on 13
March 2013

34. Rackspace “The Open Cloud Company’ http:iiwww.rackspace.conv n.d. Web. Accessed
on 13 March 2013

35. Dreamhost, “About Us’ dreamhost.comabout-us' n.d. Web. Accessed on 13 March 2013

36. Robinson, Tom. 'Re: How does Heroku Work" Attp:iwww.quora.com: Scalability: How-
does-Heroku-work n.d. Web. Accessed on 13 March 2013

37. git “About’ git-scm.com'about n.d. Web. Accessed on 13 March 2013

38. Heroku Devcenter “Dynos and the Dyno Manifold" https:{devcenter.heroku.comiarticles’
dynos n.d. Web. Accessed on 13 March 2013

39. Heroku Devcenter “Slug Compiler’ https:idevcenter.heroku.com’articles slug-compiler
n.d. Web. Accessed on 13 March 2013

40. Coursera “About Coursera” www.coursera.org n.d. Web. Accessed on 13 March 2013

64

http://www.dtic.mil/cgi-bin/GetTRDoc?%e2%80%a8AD=AD772809&Location=U2&doc=GetTRDoc.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?%e2%80%a8AD=AD772809&Location=U2&doc=GetTRDoc.pdf
http://en.wikipedia.org/wiki/Hypervisor
http://www.xen.org/files/Marketing/HowDoesXenWork.pdf
http://www.vm.ibm.com/history/
http://aws.typepad.com/aws/
http://aws.typepad.com/aws/
http://aws.amazon.com/what-is-aws/
http://aws.amazon.com/what-is-aws/
http://aws.amazon.com/s3/
http://docs
http://aws.amazon.com/developertools/739
http://aws.amazon.com/code/
http://cloud.google.com/products/
http://cloud.google.com/products/
http://www.heroku.com/
http://www.rackspace.com/
http://www.quora.com/Scalability/How-
http://www.quora.com/Scalability/How-
https://devcenter.heroku.com/articles/
https://devcenter.heroku.com/articles/
https://devcenter.heroku.com/articles/slug-compiler
https://devcenter.heroku.com/articles/slug-compiler
http://www.coursera.org

Master Thesis bv Drew Alex Clinkenbeard

41. Google Developers “Google App Engine General Questions’ https:
developers.google.comiappengine kb.general n.d. Web. Accessed on 13 March 2013

42. Bucalyptus “Why Eucalyptus® http:iwww.eucalyptus.comwhy-eucalyptus n.d. Web.
Accessed on 13 March 2013

43. Appscale "Appscale Wiki" https:f github.com AppScale appscale'wiki n.d. Web. Accessed
on 13 March 2013

44. PHP "General Information” http:4us3.php.net'manual en'fag.general php n.d. Web.
Accessed on 13 March 2013

45. Slim Framework “Slim Documentation’ http:%idocs slimframework.com' n.d. Web.
Accessed on 13 March 2013

46. ElementTree. "ElementTree Overview’ hitp:1dffbot .org zone:element-index.htm n.d. Web.
Accessed on 13 March 2013

47. Resig, John. “Selectors in Javascript’ htip:liiejohn.org:blog selectors-in javascript' n.d.
Web. Accessed on 13 March 2013

48. GitHub. ‘Popular Forked Repositories’ htips:/igithub.com popular/forked n.d. Web.
Accessed on 13 March 2013

49. jQuery. “Sites Using jQuery” http:idocs.jquery.com:Sites Using_jOuery n.d. Web.
Accessed on 13 March 2013

50. jQuery, Wikipedia: The Free Encyclopedia. Wikimedia Foundation, n.d. Web Accessed on
13 March 2013, <http:i-en.wikipedia.org ' wiki: JOuery=

51. Coursera, “‘Support Center’ http:irhelp.coursera.orgicustomer portal articles 557884-will-
i-receive-a-certificate-or statement-of accomplishment -for each-class-that -i-complete- 02
January 2013 Web. 13 March 2013

52. Kahn Academy. 'Talks and Interviews’ htip:iwww.khanacademy.org'talks-and-interviews'
vikhan-academy-computer science-launch n.d. Web. Accessed on 13 March 2013

53. Department of Educational Technology ‘Home' etec.hawaii.edu n.d. Web. Accessed on 13
March 2013

54. Stuckey-Mickell, Tracey, Stuckey-Danner, Bridget, Taylor, Brandon. *Virtual Labs in the
Online Perceptions and Implications for Policy and Practice™, TCC 2007 Proceedings Web.
Accessed on 13 March 2013 <http: ‘etec.hawaii.edu proceedings: 2007 stuckey. pdf =

55. Cristi, Roberto. “EC3400 Digital Signal Processing FFPGA Laboratory™ http:’/
Jaculty.nps.edu:dleo3404 dl lab' n.d. Web. Accessed on 13 March 2013

56. DiFranco, Mark. “Off Campus Engineering Students Get Virtual Access to NPS Labs.”
http:t'www.nps.edu About News' Off Campus- Engineering-Students-Get-Virtual Access-to-
NPS Labs.html n.d. Web. Accessed on 13 March 2013

57. “Grid Computing’ , Wikipedia: The Free Encyclopedia. Wikimedia Foundation, n.d. Web.
Accessed on 13 March 2013 http:i/en.wikipedia.orgwiki'Grid_computing

58. SETI@home "What is SETI@home?’ http:iisetiathome ssl.berkeley.edu n.d. Web.
Accessed on 13 March 2013

59. Bonic. “Open-source software for volunteer computing and grid computing.” n.d. Web.
http:iiboinc berkeley.edu Accessed on 13 March 2013

60. WLCG "Worldwide LHC Computing Grid' n.d. Web. http:iiwlcg web.cern.ch Accessed on
13 March 2013

61. EGI "European Grid Infrastructure’ n.d. Web. http:iiwww.egi.eu'about’ Accessed on 13
March 2013

62. Top 500 "Top 500 super computers’ June 2012 http:irwww.topS00.0rg!lists: 2012:06
Accessed on 13 March 2013

65

http://www.eucalyptus.com/why-eucalyptus
https://github.com/AppScale/appscale/wiki
https://github.com/AppScale/appscale/wiki
http://us3.php.net/manual/en/faq.general.php
http://us3.php.net/manual/en/faq.general.php
http://docs.slimframework.com/
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://ejohn.org/blog/selectors-in-javascript/
http://ejohn.org/blog/selectors-in-javascript/
https://github.com/popular/forked
http://docs.jquery.com/Sites
http://en.wikipedia.org/wiki/JQuery
http://help.coursera.org/customer/portal/articles/557884-will-
http://help.coursera.org/customer/portal/articles/557884-will-
http://www.khanacademy.org/talks-and-interviews/
http://www.khanacademy.org/talks-and-interviews/
http://etec.hawaii.edu/proceedings/2007/stuckey.pdf
http://www.nps.edu/About/News/Off-Campus-Engineering-Students-Get-Virtual-Access-to-
http://www.nps.edu/About/News/Off-Campus-Engineering-Students-Get-Virtual-Access-to-
http://en.wikipedia.org/wiki/Grid_computing
http://setiathome.ssl.berkeley.edu
http://boinc.berkeley.edu
http://wlcg.web.cern.ch
http://www.egi.eu/about/Accessed
http://www.top500.org/lists/2012/06
http://www.top500.org/lists/2012/06

Master Thesis bv Drew Alex Clinkenbeard

63. Debian Administration “Maintaining apache? sites and modules lists” n.p. Web. http://
www.debian-administration.org-articles: 207 Accessed on 13 March 2013

64. PHP ‘phpinfo’ n.d. Web. http:/ php.net manual-en’function.phpinfo php Accessed on 13
March 2013

65. Stenberg, Daniel “curl.1 the man page’ January 2013 Web. http:i;curl.haxx.se:docs’
manpage.himl Accessed on 13 March 2013

66. "Advanced Packaging Tool' , Wikipedia: The Free Encyclopedia.
Wikimedia Foundation, n.d. Web Accessed on 13 March 2013, <http:{;en. wikipedia.org: wiki:
Advanced Packaging Tool>

67. PEAK “Easylnstall” October 2009 Web. http:{, peak .telecommunity.com:DevCenter!
EasyInstall Accessed on 13 March 2013

68. Homebrew "The missing package manager for OS X" n.d. Web. http: :mxcl. github.com?
homebrew. Accessed on 13 March 2013

69. Ubunut “Getting Started with Ubuntu Enterprice Cloud”, n.d. Web. https:;!
help.ubuntu.com'communitv: UEC accessed on 24 March 2013

70. Fielding, Thomas "Architectural Styles and the Design of Network-based Software
Architectures”, 2000, Web. http:{-www.ics.uci.edu’~ielding/pubs:dissertation’
rest_arch_stvle.htm accessed on 24 March 2013

71. "Representational state transer’ , Wikipedia: The Free Encyclopedia.
Wikimedia Foundation, n.d. Web Accessed on 24 March 2013, <http:/:en.wikipedia.org: wiki:
Representational state transfer=

72. “Uniform resource identifier’ , Wikipedia: The Free Encyclopedia.
Wikimedia Foundation, n.d. Web Accessed on 24 March 2013, <http:/:en. wikipedia.org wiki:
Uniform_resource_identifiers

73. builtwith.com “Top in JavaScript Libraries and Functions™, n.d. Web. http:;¢
trends. builtwith.com javascript top accessed on 24 March 2013

74. World Wide Web Consortium “Document Object Model’ 06 January 2009 Web. http::{
www.w3.org: DOM #what accessed on 24 March 2013

75. Highcharts JS “Interactive JavaScript charts for your web projects’ http:i!
www.highcharts.com n.d. Web. Accessed on 25 March 2013

76. LeFlohic, John “Genetic Algorithm”, 24 Februrary 1999, Web. http:{{www-cs-
students.stanford.edu'~jl Accessed on 25 March 2013

77. Family Educational Rights and Privacy Act (FERPA) "General” n.d. Web. http:{/
www2.ed.gov:policvigen’guid: fpco:ferpa:index.html Accessed on 27 March 2013

78. Nurmi,Daniel, Wolski,Rich, Grzegorczyk, Chris, Et. Al."Eucalyptus : A Technical Report
on an Elastic Utility Computing Archietcture|sic_ Linking Your Programs to Useful Systems”,
Aug 2008, Web. http:{iwww.cs.ucsb.edu'research:tech reports:reports:2008-10.pdf Accessed
on 25 March 2013

66

http://www.debian-administration.org/articles/207
http://php.net/manual/en/function.phpinfo.php
http://php.net/manual/en/function.phpinfo.php
http://curl.haxx.se/docs/
http://curl.haxx.se/docs/
http://en.wikipedia.org/wiki/%e2%80%a8Advanced%20Packaging%20Tool
http://en.wikipedia.org/wiki/%e2%80%a8Advanced%20Packaging%20Tool
http://peak.telecommunity.com/DevCenter/
http://peak.telecommunity.com/DevCenter/
http://www.ics.uci.edu/~fielding/pubs/dissertation/
http://www.ics.uci.edu/~fielding/pubs/dissertation/
http://en.wikipedia.org/wiki/%e2%80%a8Representational%20state%20transfer
http://en.wikipedia.org/wiki/%e2%80%a8Representational%20state%20transfer
http://en.wikipedia.org/wiki/%e2%80%a8Uniform%20resource%20identifier
http://en.wikipedia.org/wiki/%e2%80%a8Uniform%20resource%20identifier
http://www.w3.org/DOM/%23what
http://www.highcharts.com/
http://www.cs.ucsb.edu/research/tech

Master Thesis by Drew Alex Clinkenbeard
Appendix
Appendix A. PHP Classes

I. cloudsuite.class.php

<?php

’,»’**
* This file is used to call the other C8 class files.
* Tt should be included whenever (S classes are needed

*

* @author Drew A. Clinkenbeard

*/

if (file exists(dirname(FILE) . DIRECTORY SEPARATOR . ‘'config.php')) {
include once dirname(FILE) . DIRECTORY SEPARATOR . 'config.php';
}

[h®

* CloudSuite: Class include files.

*/
include_once "collection.class.php";
include_once "exceptions.class.php";
include once "“lab.class.php";
include once "module.class.php";
include_once "user.class.php";
include once "utils.class.php";

include once "group.class.php";

67

Master Thesis by Drew Alex Clinkenbeard

IL. collection.class.php

<?php

frx
* Collections are used for grouping and distributing
* modules.
*
* @author Drew A. Clinkenbeard
*/
class Ceollection {
private $schema;
private $xmlFile;
private $name;
private $id;
private Sclearance;
private $collection;
private $fileName;
private $data = array('id' => '',
‘name' => '',
'cwnerID' => '',

‘clearance' => '',);

function _ set($name, $value) {
if (array_key_ exists($name, $this->data)) {
$this->data[$name] = $value;
return true:
} else {
throw new Exception('No Such Element', '0')

return FALSE;

-~

function get($name) {
if (array key exists($name, S$this->data)) {
return $this->data[$name];
} else {
throw new Exception('No Such Element', '0');
return FALSE;

 function gonstruct($desc, $ownerID, $name = NULL,
$xmlFile = NULL, $schema = NULL) {

if ($desc == NULL || $desc == "") {

throw new Exception("Description can't be null”,
return false;

68

$clearance =

|1|’

null);

10,

Master Thesis by Drew Alex Clinkenbeard

if ($schema == NULL) {

$schema = § ENV['cs']['collection dir'] . "collection.xsd";

$this-»id = Utils::genID();
$this->name = ($name == NULL) ? Utils::randomName() : $name;

if ($xmlFile == NULL) {

$xmlFile = Utils::fileName($this->id, $this->name);

$this->fileName = $xmlFile;

$this->schema = $schema;
$this->xmlFile = $xmlFile;

$collection = new SimpleXMLElement("<collection></collection>"};

$collection->addAttribute('id’', $this->id);

$collecticon->addAttribute('name', S$this-»name);

$collection->addChild("desc", $desc);
$collection->addChild("ownerID", $ownerID);
$collection->addChild("clearance", $clearance);
$collection->addChild("created", date('¥Y-m-d'));

$this->collection = $Scollection;

return $collection:

function destruct() {
foreach ($this as $key => $value) {
unset ($this->$key);

public static function listModules($schema, S$xmlFile) {

$ret = array();

if (!Utils::load xml($schema, $xmlFile, $xml)) {
return false;

h

$result = $xml->xpath("//module");

return $result;

/*

foreach ($result as $key => $value) {

6Y

Master Thesis by Drew Alex Clinkenbeard

$id = intval({(string) $result[$key]["id"]);:
$name = (string) $result[$key]["name"];

Sret[$id] = S$name;
}

return Sret; */

public static function getDesc($schema, $xmlFile) {
if (!Utils::load_xml($schema, $xmlFile, S$xml)) {

return false;

return $xml->xpath("/collecticon/desc");

pubklic static function getModuleByID($schema, $xmlFile, $id) {
if (!'Utils::lcoad_xml($schema, $xmlFile, S$xml)) {
return false;

return $xml->xpath("//module[@id=$id]");

pubklic function listTheseModules() {

$ret = array();

if (!Utils::load xml($schema, $xmlFile, $xml)) {
return false;

}

$result = $xml->xpath({"//module");

foreach ($result as S$key => $value) {
$§id = intval({string) Sresult[Skey]["id"]);

$name = (string) $result[$key]["name"];
Sret[$id] = S$name;

return S$ret;

public function addModule($moduleChject) {

if (!Utils::lcad xml ($xmlSchema, $xmlFile, $xml)) {

throw new Excepticns{"Couldn't access data");

0

71

Master Thesis by Drew Alex Clinkenbeard

$module = $xml->collection[0]-raddchild(s$module);

$modName = S$moduleObject->getName;
$id = Utill::genlID();

$module->addAttribute('name', SmodName);
Smodule->addAttribute('id', $id);

$module->addAttribute('filename', $modName . *

LvoL $id L v.xmlvy:

$sysReqList = S$moduleObject->getSystemRequiremts;

reset ($sysReqlist);
while (list($key, $val) = each($sysReqgList)) {

$sysReq = Smodule->addChild('systemRequirement');
$sysReqg->addChild('product', $modulelbject-rgetProduct);
// $sysReg->addChild({'version', $moduleCbject->get)

}
§fileInfo = $module->addChild('fileInfo');

$fileInfo->addChild('kind', S$moduleObject->getKind);
§fileInfo->addChild{ 'path', SmoduleObject->getPath);

$param = $fileInfo->addchild('parameter');
$param->addChild('flag');
$param->addchild('type');

Soutput = $fileInfo->»addChild('cutput’');

function writeCecllection($filename = NULL) {

//convert to XML and store to the system.

Utils::ishowStuff($this->fileName, 'This file name'):

if ($filename == NULL) {

$filename = §_ENV['cs']['collection_dir']

if (file exists($filename)) {
//TODC: add lock code.

$dom = new DOMDocument(1.0);
$dom->preservelWhiteSpace = false;
$dom->formatOutput = true;
$dom->loadXML($this->collection->asXML{));

if (!$dom->save($filename)) {

$this->fileName;

Master Thesis by Drew Alex Clinkenbeard

Throw new Exception("Could not save file $filename", '2', NULL);

return false;

}

//return $this->fileName;

return true:

public static function delCocllection($fileName, $clearance = 0) {

if (!($clearance >= $ ENV['cs']['DEL LEVEL'])) {

throw new Exception("Not autheorized to delete $fileName", '401°',
NULL) ;
}
$col = § ENV['cs']['collection dir'] . $fileName;
if(1file_exists($col)) {
throw new Exception("File $col not found", "404", NULL);
}
try {
unlink($cel);
} catch (Exception $e) {
throw new Exception("Could not Delete file $fileName", "500", S$e);
}
return true;
}
’,»’**

*

* @return String

*/
function getFileName(){

return (String) $this->fileName;

2

Master Thesis by Drew Alex Clinkenbeard

IIL.group.class.php

<?php

S Ex
* Groups are used for user managment, security, and access rights.
*

* @author Drew A. Clinkenbeard
*f

class Group {

private $ groupXMLFile;
private § groupSchema;

private SmyXML;

function _ construct($schema = NULL, $xmlFile = NULL) {

$this-> ﬁroupSchema = (Sschema != null) ? $schema : $ ENV['cs’]
['schema dir'] . "group.xsd"; -
$this-> groupf(MLFile = ($xmlFile != null) ? $xmlFile : § ENV['cs']

['groupFile'];

if (Utils::load xml({$this-> groupSchema, $this-> groupXMLFile, $this-
>myXML)) {

return true;
} else {

return false;

function destruct() {
foreach ($this as $key => §$value) {
unset ($this->$key);

function getUserData($id, $value) {
switch ($value) {

case "lab":

case "collection"':

case "lab":
$xpath = "/groups/group/user[@id=$id]/../$value";
Utils::showStuff ($xpath, "XPATH ");
return $this->myXML->xpath($xpath):;
break;

case "groups':
$returner = array():

eidr) $ret _val = $this->myXML->xpath("/groups/group/user[€id=$id]/../
idvy; —

foreach ($ret val as $key => $value) {
echo "key = $key and value = $value";
//print_r($value["id"1[01);

Master Thesis by Drew Alex Clinkenbeard

$bar = $value["id"]1[0]:

$foo = $thig->myXML->xpath("/groups/group[€id=$bar]/€name");
//$returner[(int)$value] = $foo[0];

echo"bar":;

$returner[$bar] = S$foo[0][0]:

print r($bar);

echo "foo';

print r($foo[0][0]);

}

return $returner;
////|/groups/group/user[Rid=$id]/../Bname");
break;

default
return false;

function addMemberToGroup($id, $type, Sgroup) {

switch ($type) {

case "lab":

case "collection":

case "lab":
$xpath = "/groups/group/user[@id=$id]l/../$value";
Utils::showstuff ($xpath, "XPATH ");
return $this->myXML->xpath($xpath);
break:

case "groups':
return $this->myXML->xpath("//user[@id=$id]/..@id");
break;

default

return false:

74

Master Thesis by Drew Alex Clinkenbeard

IV.lab.class.php

<?php
S Ex
* Labs are used to process modules.
* This class contains all the helper functions to create
* and manage Labs
*
* @author Drew A. Clinkenbeard
*/
class Lab {

private $labSchema;
private $user;
private $id;
private $labname;
private $fileName;
private $bucket;
private S$description;
private $lastRunDate;
private $lastRunUser;
private Sowner;
private $permissions = array('owner' => '',
‘group' => '',
'everyone' => ''});
private $module = array('l' =>
array(‘'id' == '',
'moduleName' => '',
/ /' segqNumber' == ',
‘methed' => '',
‘xmlrpcString' => '',
‘filename' = '"',
‘input' =>
array({'type' = ’
‘filename' = '',
‘locatien' =>
Ve
‘output' =>
array('type' => '
‘filename' => '"',
'location' = '

)
)i
private $lab;

/* * DEPRICATED The data element contains all the data needed for a lab.

* DEPRICATED Owner, permisions, and an array of module objects stored
with

* DEPRICATED the sequence number as the array key.

Master Thesis by Drew Alex Clinkenbeard

*
* The correct way to access data is by calling it directly. The

* 'magic' getters and setters were too confusing.

*/
private $data = array('owner' => '‘',
'permissions' => array('owner' => '7',
‘group' => '5',
'everyone' => '4'),
'filename' => '"',

'modules' => array(0 => 'moduleQCbject')):

function set($key, $value) {
if (array_key_exists($key, $this->data)) {
$this->data[$key] = $value;
return true;
} else {
throw new Exception('No Such Element', '0');

return FALSE;

function __ get($key) {
if {(array_key exists($key, $this->data)) {
return $this->data[$key];

} else {
throw new Exception('No Such Element', '0');

return FALSE;

function construct($owner, $id = NULL, $labName = NULL, Sdescription =
NULL, $xml=NULLJ} {

$this->user = S$owner;

Utils::showStuff ($labName, 'IN CONSTRUCT LABNAME');

$this-»id = ($id == NULL) ? Utils::genID() : $id;

if ($labName != NULL) {
$this->labname = $labName;

} else {
$this->labname = Utils::randomName();
}
$this->bucket = "cs.user.$this->user.labs";

$this->bucket = strtolower($this->bucket);

if ($description != NULL) {

$this->description = $description;

76

Master Thesis by Drew Alex Clinkenbeard

} else {

$this->description = "Sowner made an unknown lab.";
Utils::showStuff($this->labname, 'this lab name...');
$lname = Utils::fileName($this->id, $this->labname);
$this->fileName = Utils::fileName({$this->id, $this->labname);
if ($xml != NULL) {

$this->lab = $xml;

return true;

$lab = new SimpleXMLElement('<lab></lab>');
$lab->addattribute('id', $this->id);
$lab->addAttribute(' labName', $this->labname);

$lab->addChild('owner', S$owner);
$lab->addChild('description', S$description);

$permissicns = $lab->»addChild('permissicns');
$permissions->addChild{'owner', '7');
$permissions->addChild{ 'group', '4');

$permissiocns->addChild({'everycne’, '4'};

$lab->addchild('lastRunDate', '0');
$lab->»addChild('lastRunUser', '0’');:
i*

$module = $lab->addChild('module');
Smodule->addAttribute{'id', '-1');
$module->addAttribute($name, $value)
*/

$this->lab = $lab;

return $lab;

function setFileName($lakName) {

$labName = str replace(" ", " ", $labName);

$this=->lab['labName'] = $labName;
$this->fileName = Utils::fileName($this->lab['id’'], $labName);

78

Master Thesis by Drew Alex Clinkenbeard

$foo = new SimpleXMLElement("<lab></lab>");
$foo->addchild('bar');

function getFileName() {

return $this->fileName:

function setBucket($bucket) {
$this->bucket = S$bhucket;

function getBucket() {

return $this->bucket;

’,»’**
*
* @param string $filename
* @return Success String

* @return fail False
*

* hlways expects a FULL path name so append $ ENV['ecs']['labs dir']

*/
function writeLab($filename = NULL) {

//convert to XML and store to the system.

// if (! Utils::validate($this->labSchema, $this->lab->as¥ML())){

// Throw new Exception("invalid Labk structure.", '1°',
// return false;

/7 0}

//Utils rishowStuff($this->fileName, 'This file name');

if ($filename == NULL) {

Null);

$filename = § ENV['cs']['labs dir'] . $this->fileName;

if (file exists($filename)) {
//TODO: add lock code.

$dom = new DOMDocument{1.0);
$dom->preserveWWhiteSpace = false;
$dom->formatOutput = true;
Sdom->loadXML({$this->lab->asXML());

if (!Sdom->save($filename)) {

Throw new Exception("Could not save file $filename”,

'2', NULL);

Master Thesis by Drew Alex Clinkenbeard

return false;

}

//return $this->fileName;

return true;

function getLab({) {

return $this->lab;

static function readLab(String $filename) {
$domDoc = new DOMDocument();

$domDoc->1load($_ENV['labs_dir'] . $filename);

//81lab = $dombDoc->1i

return $dombDoc;

JEx
*
* @param type $xmlFile must append lab directory
* @param string $xmlSchema
* @return Lab
*/
public static function loadLab($zxmlFile, $xmlSchema = NULL) {

if ($xmlSchema == null) {
$xmlSchema = $ ENV['es']['schema dir'] . 'lab.xsd';

}

if ($xmlFile == null) {
throw new Exception("XML File must not be null”, "1", null);
return false:

}

if (!Utils::lecad xml($xmlSchema, $xmlFile, $xml)) {
throw new Exception("could not load file.", "2", null);

return false;

Sowner = (String) $xml->owner;
$id = (String) $xml['id'];
$labName = (String) $xml['labName'];

$description = (String) $xml->description;

return new Lab($owner, $id, $labName, S$description, $xml);

public static function cleoudLocadLab{$xmlFile, $xmlSchema = NULL)}

Master Thesis by Drew Alex Clinkenbeard

if ($xmlsSchema == null) {
$xmlSchema = § ENV['es']['schema dir'] . 'lab.xsd';

if ($xmlFile == null) {
throw new Exception("XML File must not be null", "1", null);

return false;

if (!Utils::load xml($xmlSchema, $xmlFile, $xml, TRUE)) {
throw new Exception("could not load file.", "2", null);

return false;

}
Sowner = (String) $xml->owner;
$id = (String) $xml['id'];

$labName = (String) Sxml['labName'];
$description = (String) $xml->descriptiong

return new Lab($owner, $id, $labName, S$description, S$xml);

public static function cloudWriteLab($filename, $bucket) {

$s3 = Utils::getS3Instance();
$filelocal = "./labs/" . $filename:
$file = array('fileUpload' => $filelocal);

try {
$s3->create bucket ($bucket, AmazonS3::REGION US STANDARD);

L catch (Exception $e) {
//don't really care if it fails.

$response = §$s3->create_object($bucket, $filename, $file);
print r{$response);

return $response->isOK();

public static function cloudListLabs({Suname) {

$s3 = Utils::getS3Instance();

$bucket = "cs.user." . strtolower($uname) . ".labs";

return $s3->get_object_list($hucket);

[Hx

80

Master Thesis by Drew Alex Clinkenbeard

* @param SimpleXMLElement $moduleXML
* @param String $xmlFile

* @param String $xmlSchema

* @param String $segNumber

* @return Boolean

*/

function addMcodule($mocduleXML, $xmlFile = NULL, $xmlSchema = NULL,
$seqNumber = NULL) {

if ($xmlSchema == NULL && $this->labSchema != NULL) {
$xmlSchema = $this->labSchema;

} else {
$xmlSchema = $ ENV['ces']['schema dir'] . 'lab.xsd';

}
//Utils::showStuff($xmlSchema, 'schema'});

Smodules = $this->lab->module;

$segNumber = {($segNumber > sizeof(Smodules) + 1) ? (sizeof($modules) +
1) : $segNumber;

$id = ($moduleXML->module['id'] == NULL) ? Utils::genID{)
SmoduleXML['id"'];

if ($segNumber != NULL && $segNumber < sizeOf($modules)) {
foreach ($medules as $medule) {
if ($module->segNumber == $moduleXML->segNumber) {
Smodule->segNumber = $module->segNumber + 1;
} elseif ($module->segNumber > $moduleXML->segNumber) {

S$module->seglumber = $mocdule->segNumber + 1;

h
} else {

$segNumber = sizeof($modules) + 1;

Smodule = $this->lab->addChild('module');

$module->addAttribute('id', $id);
Smodule-raddAttribute('moduleName’', (String) $moduleXML['name']);

$module->addChild (' segqNumber', $segNumber);

Smodule->addChild('method', SmoduleXML->methodName);
//$module->addchild('xmlrpesString', SmoduleXML->xmlrpeString);
//$module->addChild('filename', $moduleXML->filename);
//TEMPORARY HACK FIX

$paramString = "";
foreach ($ GET as $key => $value) {
if (!($key == "addModuleToLab" || $key == "moduleToLoad")) {

81

Master Thesis by Drew Alex Clinkenbeard

$paramString = $paramsString . S$key . " “;
if (is array($value)) {

foreach ($value as $key2 => $value2) {

$paramString = $paramString . $value2 . ",";
}
} else {
SparamString = $paramString . S$value;
}
$paramString = $paramString . " ";

h
$module->addChild('xmlrpcString', S$paramString);

$module->addChild('filename', Utils::fileName(SmoduleXML['id"'],
$moduleXML['‘name’']));

$module->addChild('description', $moduleXML->description);
/* input and cutput MUST be pulled from the form.

* Tt doesn't make sense to pull it from the module as these values
* ARE NOT KNOWN to the mocdule. The input and output in the module
* would more correctly be lakled 'input TYPE' and 'output TYPE'

* gorry about the confusion.
*

* to add to the confusion the input and output are now known to the
module SOMEWHAT.

* Inputs are now ONLY modules new data is added by creating a new
module.

* Outputs are, alsc, modules. A method will be created to download data

* from modules.

*

*/

//3fieldset = $module->addchild('fieldset');

/*
$input = $module->addChild('input');
$input->addChild('type', 'input type'):
$input->addChild('filename', 'filename');

$input->raddCchild('location’', 'location'):

$output = $module->addchild('output');
$output->addchild('type', 'ocutput->type');
Soutput-raddChild('filename', 'output->filename');
$output->addchild('location', 'output->location');
*/

/* S$input = $module->addChild('input', $moduleXML->input);
$input->addChild('type', S$moduleXML->input->type);
$input->addChild({'filename', $moduleXML->input->filename);
$input->addChild({'location', $moduleXML->input->locaticn);

82

Master Thesis by Drew Alex Clinkenbeard

$output = $module->addchild('output', $moduleXML->ocutputj;
$output->addChild('type', $mcduleXML->cutput->type);
$output->addchild('filename', $moduleXML->cutput->filename);
$output->addChild('location’', $moduleXML->cutput->locatiocn);

*/
// if (! Utils::validate($xmlSchema, $this->lab->asXML())) {
Iy Throw new Exception("Bad module.", '3',NULL);

/7 return false;
/1)

return true;

function getModules() {

return $this->lab->module;

function runLab() {
$request = xmlrpc_encode request($Smethod, S$params);
$context = stream_context create(
array('http' =>
array('methed' => "POST",
'header' => "Content-Type: text/xml",
'content' => $request

public static function runAllLabs(S$xmlSchema = NULL, $labDirectory = NULL)

if ($xmlSchema == null) {
$xmkSchema = § ENV['es']['schema dir'] . 'lab.xsd';

}
if ($labDirectory == null) {

$labDirectory = $_ENV['cs']['labs_dir'];

$labs = Utils::returnFiles($labDirectory);

print r($labs);

public function getSimpleXML() {

return $thig->lab;

Master Thesis by Drew Alex Clinkenbeard

public static function dellLab($fileName, $clearance = 0) {

if (!($clearance »= § ENV['cs']['DEL LEVEL']})) {

throw new Exception("Not authorized to delete $fileName", '401°',
NULL) ;
}
$lab = $ ENV['cs']['labs dir'] . $fileName;
if (!file exists($lab)) {
throw new Exception("File $lab not found", "404", NULL);
}
try {
unlink($lab);
} catch (Exception $Se) {
throw new Exception("Could not Delete file $fileName", "500", Se);
}
return true;
}

static function removeModuleById($labID, $id) {
$labs = Utils::returnFiles($_ENV['cs']['labs_dir'1);
$xmlSchema = $ ENV['cs']['schema dir'] . "lab.xsd";
Utilss::ishowstuff($labID, "lab ID");
Utils::showstuff(sid, "id");

Utils::showStuff(S$labs, "labs");

foreach ($labs as $lab) {

$parts = explede(".", $lab);
if ($parts[0] == $labID) {
$filename = § ENV['cs']['labs dir'] . $lab;
Utils::load_xml($xmlSchema, $filename, $xml);
break;
}
h
//Utils: :showStuff($xml->xpath("//module[@id="'%id"']1"));

//Utils:sshowStuff ($xml->xpath("//module[@id=$id]"), 'direct');
// Utils::showStuff($xml,"after unset");

$dom_sxe = dom_import_simplexml($xml);

if (!%dom sxe) {

throw new Exception("Could not load file", "1", null):

84

Master Thesis by Drew Alex Clinkenbeard

exit;

$dom = new DOMDocument('1.0'});
Sdom sxe = $dom->importNode($dom sxe, true);

$dom->appendChild($dom sxe);

Sdom sxe
$xpath = new DOMXPath($dom);

foreach ($xpath->query("//module[@id=$id]") as $node) {

$node->parentNode->removeChild($node);

Sdom->preservelfhiteSpace = false;
$dom->formatOutput = true;

if (!$dom->save($filename)) {
Throw new ExXception("Could not save file $filename", '3', NULL);:

return false;

h

//return $this->fileName;

return true;

public static function loadLabbyID($labID) {

$labs = Utils::returnFiles($ ENV['ces']['labs dir']);

$xmlSchema = § ENV['cs']['schema dir'] . "lab.xsd";

Utils::showstuff($labID, "lab ID");
Utils::showStuff($labs, "labs"):

foreach ($labs as $lab) {
$parts = explede(".", $lab);

if ($parts[0] == $labID) {
$filename = § ENV['cs']['labs dir'] . §$lab;
Utils::load_xml(S$xmlSchema, $filename, $xml);

break;

h

Utils::showsStuff ($xmlSchema, 'schema');
Utils::showStuff($filename, 'filename');

Utils::load xml($xmlSchema, $filename, $xml);

return new Lab($xml->owner, $labID, $xml['labName'], $xml->descriptiocn,
$xml);

Master Thesis by Drew Alex Clinkenbeard

public static function cloudCHOWN(Sowner, S$filename) {
$s3 = Utils::getS3Instance();

Sbucket = "cs.user." . strtolower($owner) . ".labs";

if ($s3-»if bucket exists($bucket)) {
Sresponse = $s3->get cbject($bucket, $filename);

if (!$response->isOK{)) {

return false;

$lab = simplexml locad string($response->bedy);

$lab->owner = Sowner;

$response = §s3->create_object($bucket, $filename, array('body'’

$lab->rasXML()));
//print r($response);

return $response->isOK();

//load $filename from $owner bucket
//use body to create simpleXMLElement

//use simpleXML->lab->owner = Sowner

//use $response = $s3->create_object($bucket, $filename, $file);

//print_r($response);

public static function cloudRM($owner, $filename) {
$s3 = Utils::getS3Instance();

S$bucket = "cs.user." . strtoclower($owner) . ".labs";

if ($s3-»if bucket exists(S$bucket)) {
S$response = $s3->delete object($bucket, $filename);
//print r($response);
return $response->isOK();

} else {

return false;

86

=

Master Thesis by Drew Alex Clinkenbeard

V. module.class.php

<?php

J

* The code used for managing mecdules.
* @author Drew A. Clinkenbeard

*/

class Medule {

*
Qe Fe o de e e g d e e ok de o e e e g g e e ok g o sk sk o sk g o ok ok o ok ke sk ok ok e ok ok ok e ok ke sk o ke sk ok ok e ok ok ok o ke sk o ok e ok ok ok o ok ok sk o ok e e ok ke ok
khhhhhhhhhky &/

// CORE DEPENDENCIES

// Look for include file in the same directory (e.g. “./config.inc.php').

private SmyXML;
private $fileName;
private $§ moduleSchema;
private § moduleXmlFile;
private $__ data = array('id' => '',
'name' => '',
'systemRequirments' => array('product' => 'wversion'),
'fileInfo' => array('kind' => 'path'),
'parameter’ => array(),
/* ‘'parameter' =» array('flag' =>
array('value' =>'",
'degceription' =»'',
'required' =>'",
‘dataType' =>'",
‘default' = '',
'exclusive' => array('flag'),
‘output’ =>''}),
*/
"input' => ‘',

‘output' = "',

‘c¢learance’' => '',
'owner' =» '',
‘group’' => '‘',
'everyone' => '');

S H*

* Creates and returns a module object

* @param String $schema
* @param String $xmlFile

* @param String $name

* @return module Object
*/

function construct($creator, $type, $schema = NULL, $xmlFile = NULL,
$name = NULL) {

87

88

Master Thesis by Drew Alex Clinkenbeard

if ($schema != NULL) {
$this-> moduleSchema = $schema;
} else {
$this-> moduleSchema = $ ENV['es']['schema dir'] . "module.xsd";
}
if ($xmlFile != NULL) {
$this—> moduleXmlFile = $xmlFile;
Utils::load_xml{$schema, $xmlFile, $xml);
$this-—>myXML = $xml;
$this—>fileName = Utils::fileName($xml['id'], $xml['mname']);
return true;
}

$myXML = new SimpleXMLElement('<module></module>');

$id = Utils::igenID();
$name = ($name == NULL) ? Utils::randomName() : Sname;

$this->fileName = Utils::fileName($xml['id'], S$xml['name']});

Smy XML->addAttribute('id', $id):
$myXML->addattribute(' name', $name);

$moduleType = $myXML->addchild('moduleType', $type);

$description = $myXML->addChild('description’);

$systemReq = S$myXML->addChild('systemRegquirement');
$systemReq->addChild (' 'product');
$systemReg->addChild('version');

$fieldset = $myXML->addChild('fieldset');
$fieldset->addChild('legend');

Selement = $fieldset—>addChild('element');
Selement->addChild('type'):
$element->addChild('name');
S$element->addChild('value');
Selement->addChild('description');
$element->addChild(' input'};
$element->addChild(' cutput');
Selement->addChild('required');
$element->addChild('defualt’');

$permissions = S$myXML->addChild('permissions');
$permissions->addChild(' owner'});
$permissicns->»addChild{ 'group');

$permissions—->addChild('everyocne');

Master Thesis by Drew Alex Clinkenbeard

$permissions->addaAttribute('clearance', '9');

S$methodName = $myXML->addChild('methodName');
$createdBy = $myXML->addchild('createdBy', $creator);
S$dateCreated = $myXML->addChild('dateCreated', date('¥-m-d'));

$modType = $myXML->addChild('moduleType');
Sthis->myXML = $myXML;

return true;

function destruct() {
foreach ($this as $key == $value) {
unset ($this->%key);

function get($name) {
if (array_key_exists($name, $this->_ data)) {
return $this->__ data[$name];
} else {
throw new Exception('No Such Element', '0D');

return FALSE;

function set($key, $value) {

if (array_key_exists($key, $this->_data)) {
$thig-> data[$key] = $value;

} else {
throw new Exception('no such element', '0', NULL):
return FALSE;

static function getModuleForm{$xmlFile, S$xmlSchema = NULL, $labFileName =
NULL) {

if ($xmlSchema == NULL) {

SxmlSchema = § ENV['cs']['schema dir'] . "medule.xsd";
}
if ($labFileName != NULL) {
echo "<input type='hidden' value='$labFileName' name='labFileName' /
>y
}

if (!Utils::load xml($xmlSchema, $xmlFile, $xml)) {

89

Master Thesis by Drew Alex Clinkenbeard

throw new Exception("Could not lcad file $xmlFile", 'l1', NULL);
return false;

}

echo "<hd class="modTitle'>" ., $xml['name'] . "</hd>";

eche "<form id='addModFecrm' onSubmit='addFormTolab()' action=''>";

//echo "<form id='addModForm' onSubmit='"' action='cloudCommand/
modForm'>";

eche "<input id='edit-mod-name' type='hidden' wvalue='$xmlFile' />";

$module['moduleType'] = $xml->xpath("//moduleType");

$module| 'description'] = $xml->xpath("/module/description");
$module| 'systemRequirement'] = $xml->xpath("//systemRequirement");
$module[' fieldset'] = $xml->xpath("//fieldset");

$module['permissicns'] = $xml->xpath("//permissions");
$module['methedName'] = $xml->xpath({"//methodName");
$module['createdBy'] = $xml->xpath("//createdBy");
$module['dateCreated'] = $xml->xpath("//dateCreated");

Smodule['id'] = S$xml['id'];

$fs = $xml->xpath("//fieldset");

foreach ($fs as $key) {
echo "<fieldset>";
echo "<legend>" . S$key->legend . "</legend>";
foreach ($key->element as $element) {

//print_r($element);

$id = Selement['id'];
echo "<input type='hidden' wvalue='§id'>";

echo "<input id='$id' type='" . Selement->type . "' name="
Selement->name . " value='S$element->value'> Selement->description </input>";

if ($element->input) {
echo "<div class=\"moduleInput\">$element->input</div>";
}
//echo "</input>";
eche "
";
}
echo "</fieldset>";
}
$labName = explode('.', $labFileName);

echo "<div id='cancelModForm-button' class='modButton chiClick
csshadow'> Cancel </div>";

if (array key exists(1l, $labName)) {

// echo "<button id='addModForm-button' type='submit'
class='modButton chiClick csshadow'>» Add to $labName[l] </button>";

echo "<div id='addModForm-button' class='modButton chiClick csshadow'>
Add to $labName[l] </div>";

} else {

echo "<div id='"' class='modButton csshadow'> No lab loaded. </div>";

90

Master Thesis by Drew Alex Clinkenbeard

t

echo "</form>";

static function lecadDataModule($bucket, $filename, $labFileName,

$xmlSchema=null}

$data_bucket = 'cloudsuite.data.warehouse';

if ($xmlSchema == NULL) {

$xmlSchema = § ENV['es']['schema dir'] . "module.xsd";

}
if ($labFileName != NULL) {

eche “<input type='hidden' wvalue='$labFileName' name='labFileName'
}

$s3 = Utils::getS3Instance();

$response = $s3->get object($bucket, $filename);

if (!$response->isOK()) {

return false;

$xmlFile = $response->bhody;

if (!Utils::load xml($xmlSchema, $xmlFile, $xml, true)) {

throw new Exception("Could not load file $xmlFile", 'l', NULL);
return false;

}

¢module['moduleType'] = $xml->xpath("//moduleType");

$module['description'] = $xml->xpath("/module/description");

$module['systemRequirement'] = $xml->xpath("//systemRequirement");

//%module[' fieldset'] = $xml->xpath{"//fieldset");
$module['permissions'] = $xml->xpath("//permissions");
$module['methodName'] = $xml->xpath("//methodName");

$module['createdBy'] = $xml->xpath("//createdBy");
$module['dateCreated'] = $xml->xpath("//dateCreated");
Smodule['id'] = S$xml['id'];

$module['name’]

Smodule['data’']

$xml['name’'];

S$xml->data;

echo "<h4 class='modTitle'>" . $module['description'][0] . "</hd>";
//eche "<form id='addModForm' onSubmit='addFormTolab()' action=''>";
echo "<div id='dataDisplay'>";

//echo "<form id='addModForm' onSubmit='"' action='cloudCommand/

moedForm'>";

91

/

Master Thesis by Drew Alex Clinkenbeard

// echo "<input id='edit-mod-name' type='hidden' wvalue='S$xmlFile' />";

try {
$s3->set object acl($data bucket, Smodule['data'][0], array(

arra;&'id' =>» AmazonS3::USERS ALL, 'permission' =>
Amazons3: :GRANT FULL CONTROL) -

)
)i

$data url = $s3->get object url{'cloudsuite.data.warehouse',
$module['data'][01]1);

fdata_name = $module['id'] . "." . $module['name'] . ".xzml";
} catch (Exception $e) {

$data url = $data name = false;

echo "";

//echo " </li»";

echo "<li»Owner : " . Smodule['createdBy'][0] . "</1li>";

echo "Created on : " . Smodule['dateCreated'][0] . "";

echo “data name : " . $%data name . "";

echo "Module ID : " . $module['id'] . "";

echo "<li»Module Name : " . S$module['name'] . "</li»";

if ($data url) {

echo "Download Data

File : ".$module['data’'][0].""7 -

} else {

eche "»Warning : could not find associated data.</1i>";

}

echo "";

eche "<input id=\"hiddenDataMcd\" type=\"hidden\" value=\""
$data name . "\"></input> ";

$labName = explode('.', $labFileName);

//echo "<div id='closeData' class='modButton chiClick csshadow'> Close
</div>";

; //echo "<div id='deleteData' c¢lass='modButton c¢hiClick cgshadow'> Delete
</div>";

//echo "</form>";
echo "</div>";
static function delDataMod($filename, Sbucket) {
$bucket = strtolower($bucket);
$s3 = Utils::getS83Instance();
$data bucket = 'cloudsuite.data.warehouse';
$xmlSchema = $ ENV['cs']['schema dir'] . "module.xsd";
$s3 = Utils::getS3Instance();

92

Master Thesis by Drew Alex Clinkenbeard

$response = $s3->get object(Sbucket, $filename);

if (!$response->is0K()) {
throw new Exception("Could not load file $filename", '1', NULL);

return false;

$xmlFile = $response->body:

if (tUtils::load xml($xmlSchema, $xmlFile, $xml, true)) {
throw new Exception("Could not load file $xmlFile", '1', NULL);

return false;

$data = $xml->data;
echo "deleting $data[0]";

return $s3->delete cobject($data bucket, $data[0])->isOK{) && $s3-
>delete object($bucket, $filename)->isOK();

h

static function loadModule($xmlFile, $xmlSchema=NULL) {

if {$xmlschema == NULL) {

$xmlSchema = $ ENV['es']['schema dir'] . "module.xsd";

if ('Utils::load xml($xmlSchema, $xmlFile, $xml)) {
throw new Exception("Could not load file $xmlFile", '1', NULL);

return false;

NULL) //__construct($creator, $type, $schema = NULL, $xmlFile = NULL, $name =

return new Mcodule($xml->createdBy, $xml->moduleType, S$xmlSchema,
$xmlFile, NULL);

h

function removeParam($flag) {

if (tarray_key_exists($this->__ data['parameter'][$flag])) {
throw new Exception('value not found');
return false;

} else {

unset ($this-> data[$flag]);

return true:

Master Thesis by Drew Alex Clinkenbeard

function addParam($parameterArray) {
if (!is array($parameterArray)) {
throw new Exceptiocn('Array excpected');

return false;

}

if (larray key exists('flag', S$parameterArray)) {
throw new Exception('Flag reguired');
return false;

}

$this-> data['parameter'][$parameterArray['flag']] =
array('description' => $parameterArray|['description'],
'value' => S$parameterArray['value'],
'required' => $parameterArray['required'],
‘dataType' => S$parameterArray['dataType'],
‘default' => $parameterArray['default'],
‘exclusive' => $parameterArray|'exclusive'],
‘input' => $parameterArray['input'],
‘output' => S$parameterArray['ocutput']);

function listParamters() {
$params = $this-> data['parameter’'];
//print r({$params);

return $params;

function listParametersByID($id) {

YKL

*

* @return SimpleXMLElement
*/
public function getSimpleXML() {

return $this->myXML;

94

Master Thesis by Drew Alex Clinkenbeard

VL1

<?php
S Ex
* The code to create, load, and manage users.
* Most of this class is TED
* @author Drew A. Clinkenbeard
*/
class User {
’,»’*
private $ id;
private § name;
private $__ fname;
private $ lname;
private $ clearance;

*/

private $users = array('l' => 'Drew',
'2' =>» 'Gabbo',
'3' =>» 'Jenny',
'4' =>» 'AJ'):

private $data = array('id' => '',
'name' => '',
'fname' => '',
'lname' => '',
'clearance' => ''});

function _ set($name, $value) {
if (array key exists($name, $this->data)) {
$this->data[%name] = $value;
return true;
} else {
throw new Exception('No Such Element', '0');

return FALSE;

function get($name) {
if (array_key_ exists($name, $this->data)) {
return $this->data[$name];
} else {
throw new Exception('No Such Element', '0');
return FALSE;

function construct() {

" Portions of this class have been edited for security.

95

Master Thesis by Drew Alex Clinkenbeard

$this->data['id'] = Utils::genID();

function _ destruct({) {
foreach ($this as $key => §value) {
unset ($this->Skey);

public static function login ($uname, $pass, $id=NULL) {

Susers = /*data remcoved for security reasons*/

if (Susers|[$uname] === $pass){
if (!isset($_SESSION)) {
session_start():

}
$ _SESSION|['cs']['username'] = $uname;
$ ENV['cs']['username'] = $Suname;

setcockie("cookie[cs_uname]",$uname);
return 1;

// return array ($id => $name);

return false;

public static function checkSession(){
if (isset($ SESSICN]['cs']['username'])) {

return $_SESSION['cs']['username'];

if (isset($_COOKIE['cs_uname'])){

return $ COCKIE['cs uname'];

else return false;

public static function logout () {

try {
if (isset($_SESSION['cs']['username’])){
unset($ SESSION['cs']);
}

if (isset($ COCKIE['cs uname'])){
unset ($$ COCKIE['‘cs uname']);
}

96

Master Thesis by Drew Alex Clinkenbeard

return true;

} catch (Exception $e) {

return false:;

public static function getAWSSettings($xmlFile, $xmlSchema = NULL, $id =
NULL) {

if ($xmlSchema == NULL){

$xmlSchema = $ ENV['ces']['schema dir']."user.xsd";

if ($id == NULL && isset($ SESSION)) {

"W e

97

Master Thesis by Drew Alex Clinkenbeard

VIlutils.class.php

<?php

Jrx

* utils.class.php is a central location for helper functions.
*

* @author Drew A. Clinkenbeard

*/

include once dirname DIR . DIRECTORY SEPARATOR . 'aws' .
DIRECTORY SEPARATCR . 'sdk=1.5715' . DIRECTCRY SEPARATOR . 'sdk.class.php';

class Utils {

public static funection genID() {
$idFile = dirname{ FILE) . DIRECTORY SEPARATOR . '.idGen';
$fh = fopen($idFile, 'r') or die("Cecunldn't get ID file!");
if (!flock($fh, LOCK EX)) {
throw new Excepticn('Could not get file lock. Try again', '6’);

return -1;

$id = file get_contents{$idFile);
SretID = $id + rand(2, 5);
#$retID = str pad($retID, 12, "0", STR PAD LEFT);

if (!file put contents($idFile, $retID)) {
flock($fh, LOCK UN);
throw new Exception('Could not write file'):

return =-1;

flock($fh, LOCK UN);
feclose($fh);

return $retlD;

public static function fileWrite($xml, $fileDir, $filename) {
Utils::showStuff($fileDir, 'In utils file directory');
Utils::showStuff($filename, 'filename');
Utils::showStuff($xml, 'mml is');
$fileToWrite = $fileDir . $filename;
$fh = fopen($fileToWrite, 'r') or die("Couldn't get file!");
if (!flock($fh, LOCK EX)) {
throw new Exception('Could not get file lock. Try again', '6'};

return -1;

if (!file put contents($fileToWrite, $xml)) {
flock($fh, LOCK_UN);

98

Master Thesis by Drew Alex Clinkenbeard

throw new Exception('Could not write file');

return =-1;

flock($fth, LOCK UN);
fclose($fth);
// return $retID;

public static function validate({$schema, $xmlFile = NULL, $isString=FALS3E)

//PROPER ERROR AND RETURN
//Utils::showStuff($xmlFile, 'UTILS XML FILE');
//Utils::showstuff($schema, 'UTILS SCHEMA');

$doc = new DOMDocument();

try {
if ($isString) {

$doc->loadXML{$xmlFile);
} else {
$doc->lecad(SxmlFile);
s
} catch (Exception $e) {

. throw new Exception("Could not load $xmlFile", S$e->getCode(), $e-
>getPrevicus());

return false;

try {
if ($doc-»schemavalidate($schema)) {
return true:
} else {
return false;
}
} catch (Exception $e) {
echo "Neither";

throw new Excepticn("Could not validate $xmlFile"”, $e->getCecde(), $e-
>getPrevicus());

return false;

* @param type $xmlSchema

* @param type $xmlFile

* @param SimpleXMLElement $zml
* @return type

*/

99

Master Thesis bv Drew Alex Clinkenbeard
. ublic_static function load xml{$xmlSchema, $xmlFile, &$xml,
$isString=False -
if [!Utils::validate($xmlSchema, $xmlFile, 3isString) |
return false;

F
if($isStringj){

gxml = simplexml load String{$xmlFile):
return true:

] else {
$xml = simplexml load file($xmlFile);

return true;

4 The following was found at http://www.php.net/manual/en/book.array.php
4 dparam type jitem
*+ dparam type jkey

* dparam string jarray name

4 produces a javascript array
&

x/f
public static function array print($item, $key, jarray name) {
if 'is array{$item) [
jarray name = jarray name . "['' skey . "t
echo jarray name ‘= Array{};' v

php array to js array($item, Sarray name);

else |
%

echo jarray name v ikey . "' = y"" . Sitem . "N';';

public static function php array to Jjs array($array, $array name {

array walk{Sarray array print' 3array name);

public static function showStuff($string, $label = NULL |
if % ENV['cs']['debug' == TRUE [
echo '\n<hl> 3%label </hl><pre>";
print r($stringj;
echo '«/pre><hl> 3label </hl><pre>\n";

public static function returnFiles($folder |

Sret = array();

if !$handle = opendir($folder) (
while false !|== !Sentry = readdir($handle)}) [

100

Master Thesis by Drew Alex Clinkenbeard

if ($entry != "." && $entry != ".."} {
array push(ret, Sentry);

closedir ($handle);

return $ret;

public static function randomName({) {

$name = array{'Malcom',
'Kaylee',
‘Jayne',
'Book ',
'Inara’,
'Simon',
'River',
'Wash',
'Luke',
‘Leia’,
'Anaken’',
‘Han',
'Chewie',

'BobbaFett'

return strtolower ($name[rand(0, sizeof ($name) - 1)1);:

public static function fileName({$id, $filename) {
$fname = $id . '.' . $filename . '.xml':

return $fname:

A2

* @param Lab $lab
* @param XML String $lab
* @param boolean $source

* @return string

* gource is a flag to determine if the XML data comes from

* a Lab cbject or a string.

* Formates data for display.

1ol

*

Master Thesis by Drew Alex Clinkenbeard

*/
public static function formatLab($lab, $source=false) {
if ($source) {
$lab = simplexml locad string($lab);
} else {
$lab = $lab->getSimpleXML{);
ks
$labname = $lab['labName']:
$filename = Utils:t:fileName($lab['id']l, $labname);
$return = "\n";
$return = $return . "\t<h2>" ., $labname . "</h2>\n";
Sreturn = $return "\t<h4>" , $lab->description "</ha>\n";
$return = $return . "\n";
$return = $return . "<input id=\"labFileNameHidden\" type=\"hidden\"

name=\"filename\"

value=\"$filename\" />";

foreach ($lab-*module as $module) {
$return = $return . "<div class=\"lab-content c¢sshadow lab-slider\">";
Sreturn = Sreturn t<yl>ts
Sreturn = Sreturn "Module Name :" ., $module['moduleName'] n/
1i>" s
$return = Sreturn "Description :" . S$module->description . "</
li»";
$return = $return "< ful=";
Sreturn = Sreturn "<div onclick=\"delMod(" Smodule['id'] . ","
$lab£'id' oMy M. Smodule['‘moduleName']_ . " 'HN" did=A\tt $module['id']
' delete\" class=\"status-bar-item labDisplay labButton\">Remove</div>";
$return = $return "<div onclick=\"editMod(" $module['id'] . ", '".
$module['moduleName'] . "'," . $module->segNumber .",".$lab['id']._ "')\" id=
"t ., Smodule['id'] " _edit\" class=\"status-bar-item labDisplay labButton
\">Edit</div>";
$return = $return "</div>\n";
}
Sreturn = Sreturn "<div onclick=\"delLab('" S$filename "IN class=

\"status-bar-item

return $return;

labDisplay labButton\">Delete $labname</div>";

public static function getS3Instance() {

if (isset($ SESSION['cs']['aws']['credntials'])) {

SawsCredentials

} else {

$awsCredentials

}

$ SESSION['cs']['aws']['credntials'];

$ ENV['es']['aws']['credntials'];

return new AmazonS3($awsCredentials);

public static function getEC2Instance()

{

if (isset($ SESSION['cs']['aws']['credntials'])) {

102

Master Thesis by Drew Alex Clinkenbeard

$awsCredentials = $ SESSION['cs']['aws']['credntials'];
} else {

SawsCredentials § ENV['es']['aws']['credntials'];

return new AmazonEC2($awsCredentials);

public static function getServerStatus($uname) {

$ec2 = Utils::getEC2Instance();

if (Suname != "AJT") {
return;

}

echo "<h2»Server Status</h2>";

//16 == running

//80 == stopped

$response = $ec2->describe instances();

echo "<div>Server Status for : " . S$response->body->reservationSet-
>item->instancesSet->item->imageId . "</div>";
o eche "<div>Instance Type : " . g¥esgonse—>body—>reservationSet—>item—

instancesSet->item->instanceType </div>";

$startTime = date('¥Y M d H:i:s', strtotime($response->body-
»reservationSet->item->instancesSet->item->launchTime));

echo "<div>»Launch Time : $startTime </div>";

$code = Sresponse->body->reservationSet->item->instancesSet->item-
>instanceState->code;

$code = intval($code);

$name = $response->body->reservationSet->item->instancesSet->item-
>ingtanceState->name;

$dnsname = $response->body->reservationSet->item->instancesSet->item-
>dnsName;

echo "<div id='dnsName'>DNS Name : S$dnsname</div>";
echo "<div id='serverCode' name='$code'> Status : Sname </div>":
eche "<div id='statusDiv'></div>";
if ($code == 80) {
$loop = false;

echeo "<div id='startServer' class='module adminDisplay chiClick
cssshadow'>Start</div>";

} elseif ($code == 16) {
$loop = false;

echo "<div id='stopServer' class='medule adminDisplay chiClick
cssshadow'>S8top</div>";

} else {

echo "<div id='refreshServer' class='module adminDisplay chicClick
cssshadow'>Refresh</div>";

}

"o

103

Master Thesis by Drew Alex Clinkenbeard

Appendix B. Server modules

The following s a listing of all the modules installed and activated on the
persistent server hosting cloudsuite.info.

+ alias

- auth_basic

+ authn_file

- authz_default
« authz_groupfile
- authz_host

- authz_user

- autoindex

» Cgi

- deflate

. dir

s env

« mime

+ negotiation

« phpb5

- regtimeout

« rewrite

+ setenvif

+ status

- Wsdi

104

Master Thesis bv Drew Alex Clinkenbeard

Appendix C. Virtual Host File

<VirtualHost #3:80 >
DocumentRoot /home/drew/sites/cloudsuite.info/html
ServerName www.cloudsuite.info
ServerAlias cloudsuite.info
CustomLog /home/drew/sites/cloudsuite.info/log/
cloudsuite-access_log combined
ErrorLog /home/drew/sites/cloudsuite.info/log/cloudsuite-
error log
</VirtualHost>

<Directory '/home/drew/sites/cloudsuite.info/html">
Options None
AllowOverride All
Order allow,deny
Allow from all
</Directory>

105

http://www.cloudsuite.info

Master Thesis bv Drew Alex Clinkenbeard

Appendix D. API Reference

This appendix lists the APIs used for accessing CloudSuite function. The following
is an example of how the APIs are listed:

2. POST
API Path Variables Description
cloudCommand/ rusername alphanumeric Set the birthday belonging
birtday’.username/.date string to username to date.
+ Date yyyy_mm_dd

Unless otherwise noted the structure ofia request is as follows:
cloudsuite info‘cloudCommand/example:drew/1982 02 18

A POST request would set the birthday for the user ‘drew to February 18th, 1982.
Currently these APIs can be called ‘in the clear’. In the future a valid API key and/or
session ID will be required for each transaction as discussed in the chapter seven: Future
Work.

1. Get
The following are called with GET requests.

API Path Variables Description
cloudCommand/ *user alphanumeric username | List the modules that have
listMods/.user been created by the supplied

username.
cloudCommand.queue +N/A Get a list of all queued labs.
cloudCommand/ =uname alphanumeric string Get the lab that belongs
loadLab/ uname/:lab -lab [ab name e.g., to user and format it for
123.lab.xml CloudSuite.
cloudCommand/ uname alphanumeric Saves the lab indicated
savelab/.uname/ filename username by filename to the S3 bucket
«filename lab name e.g., associated with uname
123.lab.xml
cloudCommand/ *uname alphanumeric Verify that uname is allowed
distLab/.uname username to share labs and get a list of
labs to share.
cloudCommand/ *uname alphanumeric Verify that uname is allowed
serverf,uname username to view lab AMI status and get
the status of the AMI.
cloudCommand/ *uname alphanumeric Get a list of labs that belong
labList/:.uname username to uname

106

Master Thesis bv Drew Alex Clinkenbeard

API Path

Variables

Description

cloudCommand/
cloudMod/bucket/ key/lab
name

*bucket an S3 bucket
+key a key storedin
the bucket
«labname the name of alab

Get the lab results indicated
by key from

the bucket. :labname is the
originating lab.

cloudCommand/
labLister/:uname

“uname alphanumeric
username

Get a list of the labs stored in
the S3 bucket belonging
to uname

The following API calls were implemented before using the SLIM library discussed
earlier in this thesis. As mentioned in chapter seven; the following API calls would need
to be re-written to offer a more consistent and accurate interface.

The following REST paths require URL parameters in addition to the path. All ofithe
following require a GET request.

API Path

URL parameter

Description

rest.php.colGetModID

- xmlScheme Optional, the
scheme used to verify the
xmlFile. If it is not supplied a
default scheme is used.

«xmlFile The collection
containing the module.

*modid the id of the module to
load

Load the module indicated by
the ID from the supplied
module.

rest.php.colGetDesc

» xmIScheme : Optional, the
scheme used to verify the
xmlFile. If it is not supplied a
default scheme is used.

» xmlFile : the file representing
the desired collection

Get the description of the
collection indicated by xmlFile

rest.phpiaddModuleToLab

* addModuleTolLab: the
filename of a CloudSuite lab.

+ moduleTolLoad the filename of
an XML file representing a
module

Add moduleTolLoad to the lab
and get the new lab.

rest.phpilistLab

* uname : alphanumeric
username

list the labs belonging
to uname

rest.phpilogout

*N/A

logout the currently logged in
user. This destroys all session
data.

107

Master Thesis bv Drew Alex Clinkenbeard

API Path

URL parameter

Description

rest.phpnewlLab

*newLab : alphanumeric
labname

Create a new lab

named newlab. Uses
Session variable for owner
name.

rest.php /'saveLab

 savelLab : alphanumeric
labname

Writes labname to disk

2. Post

The following commands require a POST request.

gueuef.labName

CloudSuite labname

API Path Variables Description
cloudCommand.sharelLab -N/A Reads the contents of the §_POST
variable and uses the data there to
distribute labs to CloudSuite users.
cloudCommand/ «labName : a Adds labName to the execution

queue.

3. Delete

The following commands require a DELETE request.

bucket

CloudSuite filename
< bucket an S3 bucket

API Path Variables Description
cloudCommand/ »owner: alphanumeric Delete a lab denoted by filename
lab/.owner/ filename username belonging to owner.

- filename
cloudCommand/:filename/: | - filename : a delete module denoted by filename

in S3 bucket denoted by bucket.
Used to remove user generated
modules.

4. Put

The following commands require a PUT request.

API Path

Variables

Description

cloudCommand/
startServerf.uname/ instanc
e_id

* uname: alphanumeric
username

instance_id : the EC2
instance to start

Starts an EC2 instance indicated
by instance_id. Uses uname to
verify the user credentials.

cloudCommand/
stopServer/,uname!/ instanc
e_id

- uname: alphanumeric
username

“instance_id : the EC2
instance to start

Stops an EC2 instance indicated
by instance_id. Uses uname to
verify the user credentials.

108

Master Thesis bv Drew Alex Clinkenbeard
Appendix E. XML Schemas

I. collection.xsd

<?xm] version="1.0' encoding="UTF-8' >
<xsd¢schema

version="0,2"

xmlns ixsd="http://www.w3.0rg/2001/ZMILSchema™

elementFormDefault="qualified":>

<xsd:annotation>

<xsd:appinfo»CloudSuite set schema</xsd:appinfo>

<xsdi:documentation sxml:lang="en">

This is the object defenition for the set type object

used in CloudSuite.info

Copyright 2011 Drew A. Clinkenbeard.

All rights reserved.

</xsdi:documentation?
</xsd:annotation>
<l—- define simple elements -->
<xsdielement name="product' type="xsd:string'/>
<xsdielement name="version' type="xsd:string"/>
<xsdielement name="kind' type='xsdistring"/>
<xsdtelement name="path' type='xsd:string"/>
<xsdrelement name="flag' type='xsd:string'" />
<xsdi:element name="type' type="xsdistring"/>
<xsd:element name="desc' type='xsd:string"/>
<xsd:element name="ownerID' type="xsd:string'/>
<xsd:element name="clearance' type="xsd:string"/>
<xsd:element name="created' type="xsd:string'/>
<xsd:element name="methodName' />
<xsdielement name="parameterString' type="xsdistring"/>
<xsdi:element name="sequenceNumber" type='xsd:string"/>
<xsd:element name="input" type="xsd:string"/>

<xsdtelement name="output' type="xsdistring"/>

<1=- define attributes-->
<xsdiattribute name="name' type="xsd:string' />

<xsd:attribute name="id' type="xsd:string' />
<!—- define complex elements --=

<xsdtelement name="module":>
<xsdicomplexType>
<xsd:sequence’>
<xsd:element ref="methodName' />

<xsd:element ref="parameterString"/>

109

http://www.w3.org/2
http://www.w3.org/2

Master Thesis by Drew Alex Clinkenbeard

<xsd:element
<xsd:element
<xsd:element

<xsd:element

ref="sequenceNumber" />
ref="desc" />

ref="input" />

ref="output" />

</xsdtsequence>

<xsd:attribute ref="name" use="required"/>

<xsd:attribute ref="id" use="reguired"/>

</xsdtcomplexType>

</xsd:element>

<xsd:element name="collecticn">

<xsd:complexType>

<xsd:segquence>

<xsd:element ref="desc" />

<xsd:element ref="ownerID" />

<xsd:element ref="clearance" />

<xsd:element ref="created" />

<xsd:element ref="module" minCccurs="0" maxCccurs="unbounded"/>

</Xsd:sequence>

<xsd:attribute ref="name" use="reguired"/>

<xsd:attribute ref="id" use="required"/>

</Xsd:complexType>

</xsdtelement>

</xsd:schema>

110

Master Thesis bv Drew Alex Clinkenbeard

IL. group.xsd

<?xml version="1.0' encoding="utf-8' >
<xsd:schema xmlns;:xsd="http://www.w3.0orq/2001/XMLSchema":

<l

targetNamespace="http://cloudsuite.info"

xmlns:cs="http://cloudsuite.info"-->

<xsdrannotation>
<xgd:appinforCloudSuite Group schema</xazd:appinfo=
<xgdidocumentation xml:lang='"en'">»
This is the object defenition for the group type object
used in CloudSuite.info
Copyright 2012 Drew A. Clinkenbeard.
All rights reserved.
</xad:documentation>

</xad;i;annotation>

<l-- define simple elements -->

<!-- xsd:element name="group' type="xsd:s tring"/-->
<!=-- xsd:element name="member' type="xsd:string"/-->
<)-- xsd:element name="id' type='zsd:string'/-->

<l-- define attributes-—-=

<xsdrattribute name="name' type="xad:string' /=

<uxsd:attribute name="id' type="xsd:string' />

<!-- define complex types --*>

<xsd:element name="user">
<xsd:complexType>
<xsdtattribute ref="id' use='required" />
</xsd:complexType>
</xsd:element>
<xsd:element name="lab">
<xsd:complexType>
<xsd:attribute ref="id' use="required"/=>
</xsd:complexType>
</xsd:element>
<xad:element name="collection'>
<xsd:complexType>
<xsd:attribute ref="id' use="required"/=>
</xsd:complexType>
</xsd:element>
<xsd:element name='module":>
<xsd:complexType>
<xsd:attribute ref="id' use='required"/>
</xsd:complexType>

</xsdielement>

111

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://cloudsuite.info

Master Thesis by Drew Alex Clinkenbeard

<xsd:element name="group">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="user" minCccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="lab" minOccurs="0" maxOccurs="unbounded" />
<xgd:element ref="collection” minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="module" minCccurs="0" maxCccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute ref="id"” use="required" />
<xsd:attribute ref="name" use="required"/>
</xsd:complexType>

</xsd:element>

<xsd:element name="groups">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="group" minOccurs="0" maxOccurs="unbounded" />
</Xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

112

Master Thesis by Drew Alex Clinkenbeard

I11.1ab.xsd

<?xml version="1.0" encoding="UTF-8"7%>
<xzd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:annotaticn>

<xsd:appinfo>CloudSuite lab schema</xsd:appinfo>

<xsd:dccumentation xml:lang="en">

This is the object defenition for the lab object type

used in CloudSuite.info

Copyright 2012 Drew A. Clinkenbeard.

All rights

reserved.

</xsd:document at ion>

</xsd:annotation>

<l -— define
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element

<xsd:element

<!-- define

simple elements -->
name="cwner" type="xsd:string"/>
name="group" type="xsd:string"/>
name="everyone" type="xsd:string"/>
name="segNumber" type="xsd:string"/>
name="method" type="xsd:string"/>
name="xmlrpceString" type="xsd:string"/>
name="lastRunDate" type="xsd:string"/>
name="lastRunUser" type="xsd:istring"/>
name="filename" type="xsd:string"/>
name="type" type="xsd:string"/>
/>
/>
name="dataType" type="xsd:string"

name="name" type="xsd:string"
name="value" type="xXsd:string"

/>

name="default" type="xsd:i:string" default="0"

name="location" type="xsd:string"/>
name="description" type="xsdistring"/>

/>

name="required" type="xsdiboclean"

name="legend" type="xad:string" />
attributes-->
<xsd:attribute name="id" type="xsd:string" />

<xsd:attribute name="moduleName" type="xsd:string"/>

<xsd:attribute name="labName" type="xsd:string"/>

<xsd:element

name="selected" type="xsd:string" />

<!-- define complex elements -->

<xsd:element

name="input">

<xsd:complexType>

<xsd:sequence>

/>

ref="filename"

<xsdtelement ref="type"
/>

/>

<xsd:element

<xsd:element ref="location"

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

Master Thesis by Drew Alex Clinkenbeard

</xsd:sequence>

<l—-xgd:attribute ref="id" use="required"/-->
</xsd:complexType>

</xXsd:element>

<xsd:element name="cutput">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="type" />
<xsd:element ref="filename" />
<xsd:element ref="leccation" />
</xsd:sequence>
<!--xsd:attribute ref="id" use="required"/-->
</xsd:complexType>
</xsd:element>

<xsd:element name="element">
<xsd:complexType>
<xsd:seguence>
<xsd:element ref="type" />
<xsd:element ref="name" />
<xsdi:element ref="value" />

<xsdtelement ref="description" />

<xsd:element ref="input" maxOccurs="unbounded" minOccurs="0" />

<xsd:element ref="output" minCccurs="0" maxCccurs="unbounded" />

<xsdtelement ref="required" minOccurs="0"/>
<xsd:element ref="default" minOccurs="0"/>
<xzd:ielement ref="selected" minOccurs="0" />
</xsd:sequence>
<xsd:attribute ref="id" />
</xsd:complexType>
</xXsd:element>

<l--xsd:element name="fieldset">
<xsd:complexType>
<xsd:sequence>
<xsdielement ref="legend" />
<xsd:element ref="element" maxOccurs="unbounded"
</xsd:sequence>
</xsd:complexType>

</xXsd:element-->

<xsd:element name="module">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="segNumber" />
<xzd:element ref="method" />

<xsd:element ref="xmlrpcString" />

<xsd:element ref="filename" />

114

/>

Master Thesis by Drew Alex Clinkenbeard
. <l-=-xgd:element ref="fieldset" maxOccurs="unbounded"
minCeccurs="0"/-->
<xsd:element ref="element" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="description" maxOccurs="1" minOccurs="0"/>
</xsd:segquence>
<xzd:attribute ref="id" use="required"/>
<xsd:attribute ref="moduleName" use="required"/>
</xzd:complexType>
<l==xsd:unique name="UniqueSegNumber">
<xsd:selector xpath="//module" />
<xsd:field xpath="f€segNumber"/>
</xsd:unique-->

</xsd:element>

<xsdtelement name="permissions">
<xsd:complexType>
<xsd:seguence>
<xsd:element ref="owner" maxOccurs="1"/>
<xsd:element ref="group" maxOccurs="1"/>
<xsd:element ref="everycne" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

</Xsd:element>

<xsd:element name="lab">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="owner" maxOccurs="1"/>
<xsdielement ref="description" />
<xsd:element ref="permissions" maxOccurs="1"/>
<xsd:element ref="lastRunDate" />
<xsd:element ref="lastRunUser" />
<xsdi:element ref="module" minCccurs="0" maxCccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute ref="id" use="required"/>
<xsd:attribute ref="labName" use="required"/>
</xsd:complexType>
</Xsd:element>
</xsd:zschema>

Master Thesis bv Drew Alex Clinkenbeard

IV.module.xsd

<?xml] version="1.0' encoding="utf-8" 2>
<xsd:schema xmlns:xsd="http://www.w3.orq/2001/XMIlSchema":

<l

targetNamespace="http://cloudsuite.info"

xmlns :cs="http://cloudsuite.info"-->

<xsdrannotation>
<xgd:appinfo>CloudSuite module schema</xsd:appinfo=>
<xgdidocumentation xml:lang='en'">
This is the object defenition for the module type object
used in CloudSuite.info
Copyright 2012 Drew A. Clinkenbeard.
All rights reserved.
</xad:documentation>

</xad;i;annotation>

<l-- define simple elements -->
<xsd:element name='product' type='xsd:string"/>
<xsd:element name="version' type='xsd:string' />
<xsditelement name="type" />
<xsd:element name="name' type="xsd:string' />
<xsd:element name="value' type="Xsd:string' />
<xsdrelement name="required' type="xsdiboolean' />
<usd:element name="dataType' type="xsd:string' />
<xsdrelement name="default' type="xsd:string' default="0' /=
<xsd:element name="description' type="xsd:string* />
<xsd:element name="groupname' type="xsd:string' />
<xsd:element name="everyone' type="xsd:byte' default="4"/>
<xsdi:element name='"group' type="xsd:byte' default="4"/>
<xsd:element name="owner' type="xsd:byte' default="7"/>
<xsdtelement name="input'>
<xsd:complexType>
<xsd:simpleContent>>
<xadiextension base="xsd:string"></xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<xsdtelement name="output' type='"msdistring'/>
<xsdrelement name="methodName" type="xsd:string"/>
<xsd:element name="createdBy' type="xsd:string"/>
<xsdrelement name="dateCreated' type="xsd:string"/>
<xsd:element name="legend' type="xgd:string' 7>
<xsd:element name="selected' type="xsd:string' />
<xsd:element name="data' type="xsd:string' />

<xsd:element name="lab' type="xsd:string' />

<!-- define attributes-—-=

116

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://cloudsuite.info

Master Thesis by Drew Alex Clinkenbeard

<xsd:attribute name="name" type="xsd:string" />
<xsd:attribute name="1id" type="xsd:string" />

<xsd:attribute name="clearance" type="xsd:string" />

<xsd:element name="moduleType" >
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="method" />
<xsd:enumeration value="data" />
<xsd:enumeration value="image" />
</xsd:restriction>
</xsd:simpleType>

</Xsd:element>

<!== define complex types -->

<xsd:element name="systemRequirement">
<xsd:complexType>
<xsd:all>
<xsd:element ref="product"/>
<xsd:element ref="version"/>
</Xsd:all>
</xsd:complexType>

</xsd:element>

<xsd:element name="element">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="type" />
<xsd:element ref="name" />
<xsd:element ref="value" />

<xsd:element ref="description" />

<xsd:element ref="input" maxOccurs="unbounded" minOccurs="0" />

<xsd:element ref="output" minCccurs="0" maxOccurs="unbounded" />

<xsd:element ref="required" minOccurs="0"/>
<xsd:element ref="default" minOccurs="0"/>
<xsd:element ref="selected" minOccurs="0" />
</xsd:seguence>
<xsd:attribute ref="id" />
</xsd:complexType>

</xsd:element>

<xsd:element name="fieldset">
<xsd:complexType>
<xsd:sequence>

<xsdielement ref="legend" />

<xsd:element ref="element" maxOccurs="unbounded"

</xsd:sequence>

</xsd:complexType>

117

Master Thesis by Drew Alex Clinkenbeard

</xsd:element>

<xsd:element name="permissions">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref ="owner"/>

<xzd:element ref ="everyone"/>

<xsd:element ref ="group"/>
<xsd:element ref ="groupname" maxOccurs="unbounded"/>
</xXsdi:sequence>

<xsd:attribute ref="clearance" use="required"/>
</xsd:complexType>

</xsd:element>

<xgd:element name="module">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="moduleType" />
<xsdielement ref="description" />
<xsd:element ref="systemRequirement" />
<xsd:element ref="fieldset" maxOccurs="unbounded" minQOccurs="0"/>
<xsdielement ref="permissions" />
<xzd:element ref="methodName" />
<xsd:element ref="createdBy" />
<xsd:element ref="dateCreated" />
<xsd:element ref="data" minOccurs="0"/>
<xsd:element ref="lab" minOccurs="0"/>
</xsd:segquence>
<xsd:attribute ref="id" use="required" />
<xsd:attribute ref="name" use="required"/>
</Xsd:complexType>
</xsd:element>

</xsd:schema>

118

Master Thesis by Drew Alex Clinkenbeard

Appendix F. Python Wrappers

I. ga.py

#!/usr/local/bin/pythonz.?7

from elementtree.ElementTree import Element, SubElement, dump, ElementTree,
tostring

from elementtree.ElementTree import Comment
from optparse import OptionParser as OP
from subprocess import check ocutput

from boto.s3.key import Key

from ¢s error import *

impeort boto, sys, time, os

logdir = os.environ['HOME'] + '/cs_log/module.log’
logfile = open(logdir,'a')
errcr = False

cause =

def indent(elem, level=0):
i = "\n" + level*" "
if len(elem):
if not elem.text or not elem.text.strip():
elem.text = i + " "
if not elem.tail or not elem.tail.strip():
elem.tail = i
for elem in elem:
indent(elem, level+l)
if not elem.tail or ncot elem.tail.strip():
elem.tail = i
else:
if level and (nect elem.tail or not elem.tail.strip()):

elem.tail = i

parser = QP()

#These options are necessary for ALL modules.

parser.add_option("-u", "--username", dest="username",
help="the user who will own the
file")
parser.add cption("-m", "--modname", dest="mod name",
help="The name for the module")
parser.add option{"--not unique)", dest="not unicue", action="store true",
help="the name of the originating
lab.")
parser.add cption("--labname", dest="labname",
help="the name of the originating
lab.")

119

Master Thesis by Drew Alex Clinkenbeard

parser.add option("--crossover", dest="crossover",
help="Type of crossover to use")

(opticons, args) = parser.parse args()

if (not options.username == Ncne):
username = options.username
uname = username

else:

error = True

cause = cause + "No username suppliedin"

if (not options.mecd name == None):

mod_name = options.mod_name

else:
cause = cause + "No Module name suppliedin®
error = True

if (nect options.labname == None):

print "labname is not none"
labname = options.labname
else:
cause = cause + "No labname suppliedin"
error = True

print "labname IS none"

if (not options.crossover == None):
crossover = options.crossover
else:
cause = cause + "No crossover specifiedin”

error = True

if (not error):

if crossover == 'single':
executable = "ga/ga_cl.exe"
else:
executable = "ga/ga c2.exe"

#executable ="ga/ga.exe -c "+crossover
try:

output = check cutput({executable ,shell=True)
exXcept:

error = True

cause = "\n There was a problem running :\n"+executable

mod _data = "Command called:\n"

for arg in sys.argv:

med data = mod data + arg + " "

if (error == True) :

120

Master Thesis by Drew Alex Clinkenbeard

try:
logfile.write("\n***ERROR***:\n")
logfile.write("cause : " + cause + "\n")
logfile.write("mod data :+" + mecd data + "\n")
logfile.write("***ERROR***:\n\n")
raise

except Exception as Inst:

print "there was an error: + cause

raise PreconditionFail (cause)

finally:
logfile.close()
mod_id = labname.split(".")[0]

if (not options.nct unigque):

mod_id = str(mod_id) + str((long(time.time()*100000))%10000)

filename = mod id + "."
filename = filename + mod_name.split(".")[0]
data = filename + ".csv"

filename = filename + ".xml"

directory = os.path.dirname{os.path.realpath(_file)) + filename

runtime = time.asctime(time.localtime(time.time()))
desc = options.labname.split(".")[1l] + "."
desc = desc + mod name.split(".")[0]

mod name = mod name.split(".")[0]

mcdule = Element(“medule", id=mod id,name=mcd name)

moduleType = SubElement(medule, "moduleType").text = "data"

description = SubElement (medule, "descripticn").text = "Data from running ”
+ desc

systemReqs = SubElement (module, "systemRequirement")

sr preduct SubElement {systemRegs, "product")

sr version = SubElement (systemReds, "version")

fieldset = SubElement (mcdule, "fieldset")
f legend = SubElement (fieldset, "legend")

f element SubElement(fieldset, "element")

e_type = SubElement (f_element, "type")

e_name = SubElement (f_element, "name")

e value = SubElement (f element, "value")
e_desc = SubElement (f_element, "description")
e input = SubElement (f element, "input")

e output = SubElement (f element, "output")

#e required = SubElement(f_element, "regquired")
#e default = SubElement(f element, "default")
#e selected = SubElement(f_ element, "selected")

121

Master Thesis by Drew Alex Clinkenbeard

permissions = SubElement (module, "permissions")

permissions.set("clearance","")

p_owner = SubElement (permissions, "owner").text = "7"

p_everyone = SubElement(permissions, "everyone')

P_group = SubElement (permissions, "group")

p_groupname = SubElement(permissicns, "groupname")

methodName = SubElement(module, "methodName").text = mocd name
createdBy = SubElement (mocdule, "createdBy").text = uname
dateCreated = SubElement (module, "dateCreated").text = runtime

data = SubElement (module, "data").text = data

lab = SubElement (module, "lab"). text = labname.split{".")[1]

indent (module)

#dump (module)

mod_str = dump(module)

#ElementTree (module).write({filename, encoding="UTF-8", xml declaration=True)

#Put file in users s3 bucket. BOOM.

¢ = boto.connect_s3()

bucket = "ecs.user."+unamet".modules"
b = c.create_bucket (bucket)

k = RKey(h)

k.key = filename

k.set contents from string{tostring{mocdule, encocding="UTF-8"))

b
k Key({b)
k.key = data

c.create bucket("cloudsuite.data.warehouse”)

k.content type = ‘text/csv'

k.set_contents_from_string(output)

logfile.write{"bucket == " + bucket +"\n")
logfile.write("filename == " + filename +"\n")
logfile.write("bucket = cloudsuite.data.warehouse"+"\n")
logfile.write("data == " + data + "\n")

logfile.close()

try:
logfile = open(logdir,'a’')
logfile.write({"bucket == " + bucket +"\n")
logfile.write("filename == " + filename +"\n")

logfile.write({"bucket = cloudsuite.data.warehouse"+"\n")
logfile.write("data == " + data + "\n")
except IOError:
pass
finally:
logfile.close()

122

Master Thesis by Drew Alex Clinkenbeard

IL. grapher.py

#!/usr/local/bin/python2.7

from elementtree.ElementTree import Element, SubElement, dump, ElementTree,
tostring

from elementtree.ElementTree import Comment
from optparse import OptionParser as OP
from subprocess import check_output

from boto.s3.key import Rey

from lib import graph

from c¢cs_error import *

import boto, sys, time, os

logdir = os.environ['HOME'] + '/cs_log/module.log’

logfile = open(logdir,'a')

errcor = False

caunse

def indent(elem, level=0):
i = "\n" + level*"
if len(elem):
if not elem.text or not elem.text.strip():
elem.text = 1 + " "
if not elem,tail or not elem.,tail.strip():
elem.tail = i
for elem in elem:
indent(elem, level+l)
if not elem.tail or not elem.tail.strip():
elem.tail = i
else:
if level and (not elem.tail or not elem.tail.strip()):

elem.tail = i

parser = OP()

#These options are necessary for ALL modules.
parser.add option{"-u", "--username", dest="username",
help="the user whec will own the file")
parser.add ocption("-m", "--modname", dest="mod name",
help="The name for the module")
parser.add cption("--not unique)", dest="not unique", action="store true",
help="the name of the originating lab.")
parser.add_option("--labname", dest="labname",
help="the name of the originating lab.")

Modify these options as necesgsary for the module

parser.add_option("--in", dest="infile",

123

Master Thesis by Drew Alex Clinkenbeard

help="The €5V file to graph")
parser.add option("--title", dest="title",
help="The title of the chart")

(cptions, args) = parser.parse_args()

if (not options.username == None):
username = options.username

uname = username

else:

error True

cause = cause + "No username suppliedin”

if (not options.mod name == None):
med name = coptions.meod name
else:
cause = cause + "No Module name suppliedin"”

error = True

if (not options.labname == None):
labname = options.labname
else:
cause = cause + "No labname suppliedin”

error = True

if (not options.infile == None):
infile = coptions.infile
else:
cause = cause + "No input file specified\n”

error = True

if (not options.title == None):
title = options.title
else:
cause = cause + "No input file specifiedi\n"

errcr = True

if (not error):
executable ="graph.graphMaker({"+infile+","+title+","+mod name+"}"
try:
output = graph.graphMaker(infile,title,mod_name)

except:

error = True

cause = "\""t+executable +"\" had a problem"

meod data = "Meodule command called:\n"

for arg in sys.argv:

med data = mod data + arg +

124

Master Thesis by Drew Alex Clinkenbeard

if (error == True) :

trys:
logfile.write("\n***ERROR***:\n")
logfile.write("cause ¢t " + cause + "\n")
logfile.write("mod data :+" + mod data + "\n")
logfile.write("***ERROR***:\n\n")
raise

except Exception as Inst:

print "there was an error: + cause

raise PreconditionFail (cause)

finally:
logfile.close()
mod id = labname.split(".")[0]

if (not options.not_unique):
mod_id = str(mod_id) + str((long(time.time()*100000))%10000)

filename = mod_id + "."
filename = filename + mod_name.split(".")[0]
data = filename + ".html"

filename = filename + ".xml"
directory = os.path.dirname{os.path.realpath(__file)) + filename

runtime = time.asctime(time.localtime(time.time()))

desc = coptions.labname.split(".")[1] +

desc = desc + mod name.split(".")[0]

mod name = mod name.split(".")[0]

medule = Element("module”, id=mod id,name=mod name)

meduleType = SubElement(module, "moduleType").text = “data"
d description = SubElement (module, “"description").text = "Data from running "
+ desc

systemReqs = SubElement (module, "systemRequirement")

sr preduct SubElement {systemReqgs, "product”)

sr version = SubElement (systemReds, "version")

fieldset = SubElement (module, "fieldset")
f legend = BubElement(fieldset, "legend")

f element = SubElement(fieldset, "element")

e_type = SubElement (f_element, "type")

e name = SubElement (f element, “"name")

e _value = SubElement (f_element, "value")

e desc = SubElement (f element, "descripticn")
e input = SubElement (f element, "input")
e_output = SubElement (f_element, "output")

#e required = SubElement(f element, "required")
#e default = SubElement(f element, "default")

#e selected = SubElement(f_element, "selected")

125

Master Thesis by Drew Alex Clinkenbeard

permissions = SubElement (module, "permissions")

permissions.set("clearance","")

p_owner = SubElement (permissions, "owner").text = "7"

p_everyone = SubElement(permissions, "everyone'")

P_group = SubElement (permissions, "group")

P_groupname = SubElement (permissions, "groupname")

methodName = SubElement(module, "methodName").text = mod name
createdBy = SubElement (module, "createdBy").text = uname
dateCreated = SubElement(module, "dateCreated").text = runtime

data = SubElement (module, "data").text = data

lab = B8ubElement (module, "lab"). text = labname.split{"."3)[1]

indent (module)

#dump (module)

mod str = dump(module)

#ElementTree (module).write(filename, encoding="UTF-8", xml_declaration=True)
#Put file in users s3 bucket. BOOM.

¢ = boto.connect_s3()

bucket = "cs.user."+unamet+".modules"
b = c.create bucket (bucket)

k = Key(b)

k.key = filename

k.set contents from string{tostring(module, encoding="UTF-B8"))

b ¢.create bucket{"cloudsuite.data.warehouse")
k Key (b}

k.key = data

k.content_type = 'text/html'

k.set contents from string{cutput)

logfile.write({"bucket == " + bucket +"\n")
logfile.write("filename == " + filename +"\n")
logfile.write("bucket = cloudsuite.data.warehouse"+"\n")
logfile.write("data == " + data + "\n")
logfile.close()
try:
logfile = open(logdir, 'a')
logfile.write({"bucket == " + bucket +"\n")
logfile.write("filename == " + filename +"\n")
logfile.write({"bucket = cloudsuite.data.warshouse"+"\n")
legfile.write{"data == " + data + "\n")

exXxcept IOError:
pass

finally:
legfile.close()

126

Master Thesis by Drew Alex Clinkenbeard

I1LhashCrack.py

#!/usr/local/bin/python2.7

from elementtree.ElementTree import Element, SubElement, dump, ElementTree,
tostring

from elementtree.ElementTree import Comment
#from ElementTree pretty import prettify
from optparse import OptionParser as OP
from subprocess import check output

from boto.s3.key import Key

from c¢s_error import *

import boto, sys, time, os

logdir = os.environ['HOME'] + '/cs_log/module.log’

logfile = open(logdir,'a"')

error = False

canse

def indent(elem, level=0):
i = "\n" + levelx" "
if len(elem):
if not elem.text or not elem.text.strip():
elem.text = 1 + " "
if not elem.tail or not elem.tail.strip():
elem.tail = i
for elem in elem:
indent(elem, level+l)
if not elem.tail or not elem.tail.strip():
elem.tail = i
else:
if level and (not elem.tail or not elem.tail.strip()):

elem.tail = i

parser = OP()

parser.add cptien("-u", "--username", dest="username",
help="the user who will own the file")

parser.add option{"-m", "--modname", dest="mod name",
help="The name for the module")

parser.add cption("--not unique)", dest="not unique", action="store true",
help="the name of the originating lab.")

parser.add cption("--labname", dest="labname",

help="the name of the originating lab.")

parser.add option("--infile", dest="infile",

help="The file to be cracked")

parser.add cption("--dictionaries", dest="dicticnaries",

help="The file to be cracked")

127

Master Thesis by Drew Alex Clinkenbeard

(cptions, args) = parser.parse args()
if (not options.username == None):
username = coptions.username
uname = username
else:
error = True
cause = cause + "No username suppliedin"
if (noct options.mod name == None):
med name = cptions.mod name
else:
cause = cause + "No Mcdule name suppliedin"
error = True
if (not options.labname == None}):

labname = options.labname
else:

cause = cause + "No labname suppliedin”

error True

if (not options.infile == None):
infile = options.infile
else:

cause = cause + "No input file specified\n”

error = True
if (not options.dicticnaries == None):
dictionaries = options.dicticnaries
else:

cause = cause + "No dicticnary files specified\n”

error = True

if (not error):

executable ="hash crack/hash crack.exe”
try:
output = check cutput(executable ,shell=True)
except:
error = True
cause = "There was a problem running\""+executable+"\""
mod_data = "Command called:\n"

for arg in sys.argv:

mod_data = mod_data + arg + " "

if (error == True) :

try:

128

Master Thesis by Drew Alex Clinkenbeard

logfile.write("\n***ERROR***:\n")
logfile.write("cause : " + cause + "\n")
logfile.write("mod data :+" + med data + "\n")
logfile.write("***ERROR***:\n\n")
raise

except Exception as Inst:
print "there was an errcr: " + cause
raise PreconditionFail (cause)

finally:
logfile.close()

med id = labname.split(".")[0]
if (nct options.not_unigue):
med id = str(mod id) + str(({leng(time.time()*100000))%10000)

filename = mod_id + "."

filename = filename + mod name.split(".")[0]
data = filename + ".txt"

filename = filename + ".xml"

directory = os.path.dirname{os.path.realpath(file }) + filename

runtime = time.asctime(time.localtime(time.time{)))

desc = coptions.labname.split(".")[1l] +

desc = desc + med name.split(".")[0Q]

med name = mod name.split(".")[0]

module = Element ("medule”, id=med id,name=mcd name)

meduleType = SubElement (module, "moduleType").text = "data”
d description = subElement (module, “"description").text = "Data from running "
+ desc

systemReqs = SubElement (module, "systemRequirement")
sr preduct = SubElement (systemReds, "product")

sr version = SubElement (systemReds, "version")

fieldset = SubElement(module, "fieldset")
f legend = SubElement(fieldset, "legend")

f _element = SubElement(fieldset, "element")

e_type = SubElement (f_element, "type")

e name = SubElement(f element, "name"

e value = SubElement(f_ element, "value")

e desc = SubElement (f element, "descriptiecn")
e input = SubElement(f element, "input")

e _output = SubElement(f_element, "output")

#e required = SubElement(f_ element, "required")
#e default = SubElement(f element, "default")

#e selected = SubElement(f_element, “"selected")

129

Master Thesis by Drew Alex Clinkenbeard

permissions = SubElement (module, "permissions")

permissions.set({"clearance","")

p_owner = SubElement (permissions, "owner").text = "7"
p_everyone = SubElement (permissions, "everyocne")

p_group = SubElement (permissions, "group")

P_groupname = SubElement(permissions, "groupname")

methodName = SubElement (module, "methodName").text = mod name
createdBy = SubElement (module, "createdBy").text = uname
dateCreated = SubElement (module, "dateCreated").text = runtime
data = SubElement (module, "data").text = data

lab = SubElement (module, "lab"). text = labname.split{".")[1]

indent (module)
#dump (module)

mod str = dump(module)

¢ = boto.connect_s3()

bucket = "cs.user."+uname+".modules"
b = c.create_bucket (bucket)

k = Rey(b)

k.key = filename

k.set contents frem string(tostring(meodule, encoding="UTF-8"))

b ¢.create bucket("cloudsuite.data.warchouse")
k Key (b)
k.key = data

k.set contents from string(mod data)

logfile.write("bucket == " + bucket +"\n")
logfile.write("filename == " + filename +"\n")
logfile.write({"bucket = cloudsuite.data.warehouse"+"\n")
logfile.write("data == " + data + "\n")

logfile.close()

try:
logfile = open(logdir, 'a’')
logfile.write{"bucket == " + bucket +"\n")
logfile.write("filename == " + filename +"\n")

logfile.write("bucket = ¢loudsuite.data.warehouse"+"\n")
logfile.write{"data == " + data + "\n")
except IOError:
pass
finally:
logfile.close()

Master Thesis by Drew Alex Clinkenbeard

IV.rsaEncryptor.py

#!/usr/local/bin/python2.7

from elementtree.ElementTree import Element, SubElement, dump, ElementTree,
tostring

from elementtree.ElementTree import Comment
#from ElementTree pretty import prettify
from optparse import OptionParser as OP
from subprocess import check output

from boto.s3.key import Key

from c¢s_error import *

import boto, sys, time, os

logdir = os.environ['HOME'] + '/cs_log/module.log’

logfile = open(logdir,'a')

errcor = False

canse

def indent(elem, level=0):
i = "\n" + level*"
if len(elem):
if not elem.text or not elem.text.strip():
elem.text = 1 + " "
if not elem.tail or not elem.tail.strip{):
elem.tail = i
for elem in elem:
indent(elem, level+l)
if not elem.tail or not elem.tail.strip():
elem.tail = i
else:
if level and (not elem.tail or not elem.tail.strip()):

elem.tail = i

parser = OP()

#These options are necessary for ALL modules.
parser.add option{"-u", "--username", dest="username",
help="the user who will own the file")
parser.add option("-m", "--modname", dest="mod name",
help="The name for the medule")
parser.add option("--not unique)", dest="not unique", action="store true",
help="the name of the originating lab."}
parser.add_option{"--labname", dest="labname",
help="the name of the originating lab."}

Modify these options as necessary for the module

parser.add_option{"--EnDe", dest="ende",

Master Thesis by Drew Alex Clinkenbeard

help="encrypt or decrypt")
parser.add ocption("--in", dest="infile",
help="the file to encrypt/decrypt")
parser.add option("--ocut", dest="ocutfile",
help="the name cof the output file")
parser.add option("--inkey", dest="inkey",
help="The key to use when encrypting")
parser.add option("--pubin", dest="pubin",

help="the public key used for decryption")
(cptions, args) = parser.parse args()

if (not optiocons.username == None):
usernane = options.username
uname = username

else:

error = True

cause = cause + "No username suppliedin"

if (not options.mecd name == None):
mod_name = options.mod_name
else:
cause = cause + "No Module name suppliedi\n"

errcor = True

if (not options.labname == None):
labname = options.labname

else:
cause = cause + "No labname suppliedi\n"
error = True

#Custom input checking

if (not options.ende == None):
ende = options.ende
else:

cause = cause + "Encrypt or Decrypt not specified\n"
error = True
if (not opticns.infile == None):
infile = options.infile
else:
cause = cause + "No input file specifiedin"

error = True

if (not options.outfile == None):
outfile = options.cutfile
else:

cause = cause + "No output file specified\n"

132

Master Thesis by Drew Alex Clinkenbeard

error = True

if (not options.inkey == None):
inkey = opticns.inkey
else:
cause = cause + "No encryption key specifiedin"

error = True

if (not options.pubin == None):
pubin = options.pubin
else:
cause = cause + "No public key suppliedin"
error = True
if (not error):
executable ="rsa/rsa.exe"
try:
output = check output(executable ,shell=True)
except:

error = True

cause = "\""+executable +"\" exited with status code " + ocutput

med_data = "Command called:\n"

for arg in sys.argv:
med_data = mod data + arg +

if {(error == True) :

try:
logfile.write("\n***ERROR***:\n")
logfile.write{"cause : " + cause + "\n")
logfile.write{"mod data :+" + mod data + "\n")
logfile.write("***ERROR***:\n\n")
raise

except Exception as Inst:

print "there was an error: + cause
raise PreconditionFail (cause)
finally:

leogfile.close()

mod id = labname.split(".")[0]
if {(nect options.not unigue):

mod_id = str(mod_id) + str({(long(time.time()*100000))%10000)

filename = mod id + ".*

filename = filename + mod_name.split(".")[0]
data = filename + ".txt"

filename = filename + ".xml"

directory = os.path.dirname{os.path.realpath({ file)) + filename

Master Thesis by Drew Alex Clinkenbeard

runtime = time.asctime(time.localtime(time.time()))

desc = coptions.labname.split(".")[1l] + "."

desc desc + med name.split(".")[0]

mod name = mod name.split(".")[0]

medule = Element ("medule", id=med id,name=mcd name)

meduleType = SubElement (module, "moduleType").text = "data"

description = SubElement (medule, "descriptien").text = "Data from running "
+ desc

systemReqs = SubElement (module, "systemRequirement")
sr preduct = SubElement (systemRegs, "preduct")

sr_version = SubElement (systemReqgs, "version")

fieldset = SubElement(module, "fieldset")

f legend = SubElement(fieldset, "legend")

f element = SubElement(fieldset, "element")
e_type = SubElement (f_element, "type")

e _name = SubElement (f_element, "name")

e _value = SubElement(f element, "value")
e_desc = SubElement (f_element, "description")
e _input = SubElement(f element, "input")

e output = SubElement(f_element, "cutput")

#e required = SubElement(f_element, "reguired")
#e default = SubElement(f element, "default")

#e selected = SubElement(f element, "selected")

permissions = SubElement (module, "permissions")
permissions.set("clearance","")

p_owner = SubElement (permissions, "owner").text = "7"
p_everycne = SubElement {permissions, "everyone")
P_group = SubElement (permissicns, "group")

p_groupname = SubElement(permissions, "groupname")

methodName = SubElement (module, "methcdName").text = mod name
createdBy = SubElement (module, "createdBy").text = uname
dateCreated = SubElement (module, "dateCreated").text = runtime
data = SubElement (module, "data").text = data

lab SubElement (medule, "lab"). text = labname.split{".")[1]

indent (module)

#dump (module)

mod str = dump(module)

#ElementTree (module).write({filename, encoding="UTF-8", xml declaration=True)

#Put file in users g3 bucket. BOOM.

134

Master Thesis by Drew Alex Clinkenbeard

¢ = boto.connect s3()

bucket = "cs.user."+unamet+".modules"
b = c.create bucket (bucket)

k Key(b)

k.key = filename

k.set contents from string(tostring(module, encoding="UTF-8"))

b c.create bucket("cloudsuite.data.warehouse")
k RKey(b)
k.key = data

k.set contents from string(mod data)

logfile.write("bucket == " + bucket +"\n"})
logfile.write("filename == " + filename +"\n")

logfile.write("bucket = cloudsuite.data.warehouse"+"\n")

logfile.write("data == " + data + "\n")

logfile.close()

try:
logfile = open(logdir,'a')
logfile.write("bucket == " + bucket +"\n")
logfile.write("filename == " + filename +"‘n")
logfile.write({"bucket = cloudsuite.data.warchouse"+"\n")
logfile.write("data == " + data + "\n")

except IQError:
pass

finally:
logfile.close()

