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Introduction 

When it comes to graphs, there have always been questions about different ways 

to label the vertices and edges, and the properties that a given method will have. 

These questions have led to many different results regarding a myriad of different 

types of graphs. Some of the more popular derivations are in regards to radio 

labeling, network flows, minimum and maximum matching algorithms and other 

optimization problems that can have real-world applications to things like traffic 

control, infrastructure, logistics, radio frequency assignment, computer networks, 

micro-chip architecture and many, many more. As is the case with many areas of 

mathematics, many of these properties and methods were explored well before 

there were any known applications. Such is sometimes the nature of mathematics 

research. This thesis will cover some topics that have been developed around the 

graceful and k-equitable labeling of graphs and trees (focusing more on trees, 

specifically binary trees) and their relationship to other well-known problems 

including the n-queens problems. First, we must start with some definitions and 

examples. Please note that this thesis will only deal with standard graphs (graphs 

that do not contain multiple edges between any two given vertices). 
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Definitions and Terminology: 

A graph is a 2-list (V, E) where V is a non-empty, finite set and E is a set of 

unordered pairs of V. The set V is the vertex set and the set E is the edge set. The 

elements of Fare called vertices and the elements of E are called edges. 

Figure 1 

V = {a,b,c} 

E = {(a,b), (a, c)} 

A vertex and an edge are incident provided that the vertex belongs to the edge 

(such as vertex a and edge (a,b) in Figure 1). 

The degree of a vertex is the number of edges that are incident to that vertex. For 

example, in Figure 1 vertices b and c are of degree 1 while vertex a is of degree 2. 

Two vertices are adjacent provided they are both contained in a single edge, such 

as vertices a and b in Figure 1 which are contained in edge (a,b). 

An acyclic graph does not contain any sub-graph that is a cycle. The graph in 

Figure 1 is acyclic while the graph in Figure 2 is not. 
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Figure 2 

V = {a,b,c} 

E ={(a,b),(b,c),(a,c)} 

A tree is a connected, acyclic graph. (See Figures 1 and 3.) 

A leaf of a tree is a vertex of degree 1, such as vertices c, d and e in Figure 4. 

Figure 3 

The level of a vertex v within a tree is the number of edges in the shortest path 

between v and the root vertex r of the tree. The level of r is by definition 0. 
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Figure 4 

A v e r t e x l a b e l i n g o f a g r a p h G i s a f u n c t i o n f colon V open parenthesis G closed parenthesis right arrow N 

t h a t m a p s e a c h v e r t e x o f G t o a n i n t e g e r . F i g u r e 4 s h o w s a l a b e l i n g f f o r t h e g r a p h i n F i g u r e 3 f o r w h i c h f of a equals 1,f 

of b equals 2 , f of c equals 3 , f of d equals 4 a n d f of e equals 5 . 

What is Graceful Labeling of a Graph? For any undirected connected graph G with at 

l e a s t o n e v e r t e x a g r a c e f u l l a b e l i n g i s a l a b e l i n g t h a t s a t i s f i e s t h e f o l l o w i n g c o n d i t i o n s : 

i) Each vertex of the graph is labeled by f colon V open parenthesis G closed 

parenthesis right arrow open brace 0,...,e closed brace where e is the 

number of edges in G. 

ii) f of v equals f of w if and only if v equals w. 

iii) f induces a labeling of the edges of G such that edge open parenthesis w,v 

closed parenthesis receives the label 

iv) Each label value from 1 to e is assigned to exactly one edge in G. 
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Figure 6: A gracefully labeled tree. 

The Ringel-Kotzig conjecture states that all trees can be gracefully labeled. This 

is a result of the original conjecture by Ringel in 1963 that essentially claimed that 

every complete graph (K n) can be decomposed into isomorphisms of an arbitrary 

tree. Many papers have been written that attempt to expand the knowledge 

surrounding the graceful labeling of trees and graphs with examples that show 

that many specific types, or classes of graphs or trees can be gracefully labeled. 

Although there has been much work on this topic, the Ringel-Kotzig conjecture 

has not yet been proven, and so remains a significant open problem in graph (and 

tree) labeling. The focus of this paper is a more general version of labeling called 

k-equitable labeling. 
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What is k-Equitable Labeling? 

F o r a n y u n d i r e c t e d c o n n e c t e d g r a p h G w i t h a t l e a s t o n e v e r t e x , a k - e q u i t a b l e l a b e l i n g i s a l a b e l i n g s u c h t h a t t h e f o l l o w i n g 

c o n d i t i o n s a r e s a t i s f i e d : 

i ) E a c h v e r t e x i n G i s l a b e l e d w i t h f colon v open parenthesis G closed parenthesis right arrow 

open brace 0,...,k-1 closed brace. 

i i ) f i n d u c e s a l a b e l i n g o f t h e e d g e s o f G s u c h t h a t e d g e open parenthesis w , v closed parenthesis 

r e c e i v e s t h e l a b e l vertical line f open parenthesis w closed parenthesis minus f of v vertical line. i i i ) T h e c o u n t o f v e r t i c e s 

a n d e d g e s w i t h v a l u e s 0 t o open parenthesis k-1 closed parenthesis a r e e q u i t a b l e . T h a t i s , t h e a b s o l u t e v a l u e o f 

t h e m a x i m u m d i f f e r e n c e b e t w e e n t h e c o u n t s o f v a l u e s o f a n y e d g e o r v e r t e x l a b e l i s 1 f o r a l l v e r t e x a n d e d g e 

v a l u e s 0 t o open parenthesis k minus 1 closed parenthesis. 

Since a tree is a type of graph, a k-equitably labeled tree will satisfy these same 

conditions. Looking at Figure 7, we see that the trees are labeled with the values 

0,1, and 2. The edges are labeled in accordance with condition ii above. 

Condition iii is satisfied in the tree on the left as we can see in the table beneath 

the tree shows that all values 0 to 2 are applied as a vertex label exactly five times 

and the resulting edge labels 1 and 2 are each applied five times and 0 is applied 4. 

This is in contrast to the tree on the right that shows the potential effect of 

changing a vertex label. The result is the vertex label 2 appearing six times while 

the label 0 appears only 4 times. Therefore the tree on the right is no longer 3-

equitably labeled. 
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Figure 7: A 3-equitably labeled tree and a non-equitably labeled variation. 

Value 0 1 2 
Vertex C t 5 5 5 
Edge C t 4 5 5 

Value 0 1 2 
Vertex C t 4 5 6 

Edge C t 5 5 4 

What is a Complete Binary Tree? 

A binary tree is a connected tree in which each vertex has either two leaves or 

zero leaves. A complete binary tree is a binary tree with the added condition that 

only vertices in the final (let's call it nth) level have no leaves and thus are of 

degree 1 while any vertices in levels 0 to n minus 1 have 2 leaves each and are of degree 

3 except the root, which is of degree 2. 
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Figure 8 

Complete Binary Tree Incomplete Binary Tree 

Observations: 

A complete binary tree with n levels will have 2 n plus1 minus 1 vertices. 

A complete binary tree with n levels will have 2 n plus 1 minus 2 edges. 

All binary trees are 2-equitable, as may be demonstrated using the algorithm 

described next. First, the root vertex is labeled either 0 or 1. For n equals 0, the case is 

trivial. Otherwise, the vertices adjacent to the root are then labeled 0 and 1 

respectively... For n equals 1, the tree is 2-equitable because it either has two vertices 

labeled 0 (and one vertex labeled 1) or two vertices labeled 1 (and one vertex 

labeled 0). In either case, we end with one edge labeled 0 and one edge labeled 1. 

T o label v e r t i c e s in level n f o r n greater than 1, o n e ve r t ex in level n a d j a c e n t t o any g iven 

vertex in level n minus 1 is labeled 0 and the other is labeled 1. The binary property of 

the tree ensures that this labeling will always be equitable (See Figure 9). 
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Figure 9: 2-equitably labeled trees for n = I and n = 3. 

Value 0 1 
Vertex C t 2 1 
Edge C t 1 1 

Value 0 1 
Vertex C t 8 7 
Edge C t 7 7 

Similarly, all complete binary trees are 3-equitable. A k-equitable labeling is 

produced by labeling the vertices 0,1,2,0,1,2,0,1,2,... as ordered from top to 

bottom and left to right (See Figure 7). The vertex labels are clearly equitably 

distributed by this labeling. The resulting algorithm is such that a vertex in level 

n labeled 0 be adjacent to vertices in level labeled 1 and 2. Similarly, n-level 

vertices labeled 1 will be adjacent to level n plus 1 vertices labeled 0 and 1 while n-

level vertices labeled 2 will be adjacent to level n plus 1 vertices labeled 2 and 0. 

These vertex labels induces edge values of open brace 1,2 closed brace,open brace 1,0 

closed brace, a n d open brace 0 , 2 closed brace, r e s p e c t i v e l y w h i c h b y d e f i n i t i o n m a i n t a i n s t h e e q u i t a b i l i t y o f t h e e d g e 

v a l u e s ( S e e T a b l e 1 0 ) . I n f a c t , D a v i d S p e y e r a n d Z s u z s a n n a S z a n i z l o p r o v e d t h a t a l l t r e e s a r e 3 - e q u i t a b l e i n 1 9 9 9 [footnote 3]. 
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Table 10 

Level n vertex label 
0 
1 
2 

Adjacent level n+1 
vertex label 

1st 2nd 
1 2 
0 1 
2 0 

Induced e d g e labe l s 

1st 2nd 
1 2 
1 0 
0 2 

Problem 

While there is a substantial number of examples of many different types of k-

equitable graphs in general, there is much that is as of yet unknown. There are 

few theorems that generalize the k-equitable labeling of anything but very specific 

types of trees or graphs. While complete binary trees certainly fit into the 

category of a very specialized type of tree, anything we can do to expand the 

knowledge in this area is meaningful. My interest in this topic came after 

discussions with my advisor, Doctor Wyels, who had done some interesting work in 

this area using a modified n-queens type of solution. I decided to try to expand 

this base of solutions by developing algorithms that can take a k-equitable tree 

and modify it in such a way as to create a tree that is m-equitable for some value 

m ≠ k. I found some interesting results that also tie into the work of another 

student quite well, all of which will be discussed in the following results. Given 

the importance and applications of binary trees in combinatorics and other 
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branches of mathematics, we can only benefit by expanding what we know about 

them and their labeling. 

Results 

Theorem 1 (Doubling Algorithm): 

L e t T1 b e a c o m p l e t e b i n a r y t r e e w i t h n l e v e l s s u c h t h a t 

a ) T1 i s k - e q u i t a b l y l a b e l e d b y t h e l a b e l i n g f u n c t i o n f1 open parenthesis v 

closed parenthesis, 

b ) t h e l a s t l e v e l o f T1 i s i t s e l f k - e q u i t a b l y l a b e l e d b y f1 open parenthesis v closed parenthesis, a n d 

c ) 2 n plus 1 m o d 2 k i s n o t g r e a t e r t h a n k. T h e n a 2 k - e q u i t a b l y l a b e l e d , n plus 1 l e v e l c o m p l e t e 

b i n a r y t r e e (T 2) c a n b e c o n s t r u c t e d f r o m T1. 

P r o o f : W e s p e c i f y a l a b e l i n g f 2 of t h e f i r s t n l e v e l s o f a n (n plus l ) - l e v e l c o m p l e t e 

b i n a r y t r e e a n d a r g u e t h a t f 2 m a y b e e x t e n d e d t o c r e a t e a 2 k - e q u i t a b l e l a b e l i n g o f 

t h e e n t i r e t r e e . I d e n t i f y t h e v e r t i c e s o f T1 w i t h t h e f i r s t n l e v e l s o f a n (n plus l ) - l e v e l t r e e T 2. 

D e f i n e f 2 colon V open parenthesis T2 closed parenthesis right arrow Z by f2 open parenthesis v closed parenthesis\ 

equals 2 f 1 open parenthesis v closed parenthesis f o r a l l v e r t i c e s v i n l e v e l s 0 t o n. L e t w b e a v e r t e x i n l e v e l n plus 1. W e 

n e e d t o d e f i n e f 2 open parenthesis w closed parenthesis. U s e vw t o d e n o t e t h e v e r t e x i n l e v e l 
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n t h a t i s a d j a c e n t t o w. S p e c i f y f 2 open parenthesis w closed parenthesis equals open parenthesis 

2 k minus 1 closed parenthesis minus f 2 open parenthesis v w closed parenthesis u n t i l e a c h v a l u e o f f 2 

open parenthesis w closed parenthesis h a s 

o c c u r r e d open bracket 2 n plus 1 divided by k closed bracket t i m e s . T h e r e m a i n i n g ( 2 n minus 1 m o d 2 k) 

v e r t i c e s a r e t h e n l a b e l e d b y i d e n t i f y i n g a l l p o s s i b l e l a b e l s t h a t w o u l d i n d u c e a n e d g e l a b e l e d w i t h t h e v a l u e 

2 k minus 1. S e l e c t o n e o f t h e s e p o s s i b i l i t i e s ( i f o n e e x i s t s ) t o b e a l a b e l v a l u e , t h e n 

r e p e a t o n t h e r e m a i n i n g u n l a b e l e d v e r t i c e s f o r 2 k minus 3, 2 k minus 5, . . . o r u n t i l n o 

u n l a b e l e d v e r t i c e s r e m a i n . 

S i n c e T1 i s k - e q u i t a b l y l a b e l e d , d o u b l i n g t h e v a l u e s o f a l l t h e v e r t e x l a b e l s i n T1 

w i l l a l s o d o u b l e a l l o f t h e e d g e v a l u e s i n T1. T h u s T2 i s e q u i t a b l y l a b e l e d w i t h a l l 

e v e n v a l u e s f r o m 0 t o 2 k minus 2. S i n c e t h e v e r t i c e s o n l e v e l n a r e e q u i t a b l y l a b e l e d 

w i t h t h e s e v a l u e s , f 2 w i l l r e s u l t i n a n (n plus l ) st l e v e l t h a t c o n t a i n s a l l o f t h e o d d 

v a l u e s f r o m 1 t o 2k minus 1 o n t h e v e r t i c e s . E d g e s b e t w e e n v e r t i c e s i n t h e nth a n d 

(n plus 1 ) s t l e v e l s w i l l b e a s s i g n e d v a l u e s t h a t t a k e t h e s a m e o d d v a l u e s f r o m 1 t o 2 k minus 

1; t h e s e v a l u e s w i l l b e e q u i t a b l y d i s t r i b u t e d a s a r e s u l t o f t h e a l g o r i t h m . S i n c e 

t h e r e a r e 2n plus 1 v e r t i c e s i n t h e (n plus l ) s t l e v e l o f t h e t r e e , a n d t h e r e a r e 2n plus1 minus 1 v e r t i c e s 

i n a c o m p l e t e b i n a r y t r e e w i t h n l e v e l s , w e k n o w t h a t c r e a t i n g a n (n plus l ) s t l e v e l 

w i t h a n e q u i t a b l e n u m b e r o f t h e o d d v a l u e s f r o m 1 t o 2 k minus 1 w i l l r e s u l t i n a 

c o m p l e t e b i n a r y t r e e t h a t h a s n plus 1 l e v e l s a n d i s 2 k - e q u i t a b l e . 

E x a m p l e : 

W e s t a r t w i t h T w h i c h i s 4 - e q u i t a b l e w i t h n equals 3 a n d h a s a l l t h e 

n e c e s s a r y c o n d i t i o n s s a t i s f i e d . 
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T 
Value 0 1 2 3 

Vertex C t 4 4 4 3 
Edge C t 3 4 4 3 

Level n Vertex C t 2 2 2 2 

D o u b l i n g a l l o f t h e v e r t e x l a b e l s o f T r e s u l t s i n t h e f o l l o w i n g p a r t i a l T apostrophe w h i c h i s 

e q u i t a b l y l a b e l e d ( b o t h i n i t s e n t i r e t y a n d i n t h e 3 r d l e v e l ) w i t h 0 , 2 , 4 , a n d 6 . 
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T apostrophe ( p a r t i a l ) 

Value 0 1 2 3 4 5 6 7 
Vertex C t 4 0 4 0 4 0 3 0 
Edge C t 3 0 4 0 4 0 3 0 

Level n Vertex C t 2 0 2 0 2 0 2 0 

We then fill level n plus 1 according to our described algorithm, which 

in this case results in the adjacency label mapping: 

Level n is adjacent to Level n plus 1 
0 right arrow 7 
2 

right arrow 
5 

4 right arrow 3 
6 

right arrow 
1 



19 

T h i s r e s u l t s i n T apostrophe a s s h o w n b e l o w w h i c h i s s h o w n b y i t s t a b l e t o b e 

8 - e q u i t a b l e w i t h n plus 1 equals 4 l e v e l s . 

T apostrophe 

Value 0 1 2 3 4 5 6 7 
Vertex C t 4 4 4 4 4 4 3 4 
Edge C t 3 4 4 4 4 4 3 4 

Level n Vertex C t 2 0 2 0 2 0 2 0 

I n t h i s e x a m p l e , n equals 3 a n d k equals 4 . T h e r e f o r e , w h e n w e c h e c k c o n d i t i o n ( c ) , 2 n plus 1 

m o d 2 k equals 2 to the fourth power m o d 8 equals 0 i s c l e a r l y n o t g r e a t e r t h a n 4 . B u t w h a t h a p p e n s 

i f i t i s ? T h a t i s t o s a y , w h y i s t h e c o n d i t i o n i m p o r t a n t ? I f 2n plus 1 m o d 2 k i s e q u a l t o o r 

g r e a t e r t h a n k , i t w o u l d r e q u i r e t h a t t h e s e c o n d p a r t o f t h e a l g o r i t h m c r e a t e a t l e a s t 

o n e e d g e l a b e l e d w i t h e a c h o d d v a l u e f r o m 1 t o 2 k minus 1. D e p e n d i n g o n t h e v a l u e s o f 

t h e nth l e v e l v e r t i c e s a d j a c e n t t o ( n plus l ) s t l e v e l v e r t i c e s t h a t r e m a i n t o b e l a b e l e d i n 

t h i s s t e p , t h i s m a y n o t b e p o s s i b l e . 
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F o r e x a m p l e , i f n equals 3 a n d k equals 5 , t h e n 2 to the fourth power m o d 1 0 equals 6 . I f 2 , 4 , a n d 6 a r e t h e v a l u e s 

o f t h e 3 r d - l e v e l v e r t i c e s a d j a c e n t t o 4 l h l e v e l v e r t i c e s t h a t r e m a i n t o b e l a b e l e d , 

t h e n t h e r e w o u l d b e k n o w w a y t o l a b e l t h o s e v e r t i c e s w i t h t h e o d d v a l u e s f r o m 1 

t o 9 i n s u c h a w a y a s t o i n d u c e a n e d g e l a b e l e d 9 . T h i s m e a n s t h a t w e w o u l d n o t 

b e a b l e t o e q u i t a b l y l a b e l t h a t r e m a i n i n g p o r t i o n o f t h e 4 t h l e v e l s i n c e t h e r e a r e 

o n l y 4 o d d l a b e l s f r o m w h i c h t o c h o o s e a n d 6 t o t a l e d g e s t h a t n e e d t o b e l a b e l e d 

e q u i t a b l y w i t h a l l o f t h o s e o d d v a l u e s a s s h o w n b e l o w . 
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T h e o r e m 2 ( E x t e n d e d D o u b l i n g A l g o r i t h m ) : 

L e t b e a c o m p l e t e b i n a r y t r e e w i t h n plus 1 l e v e l s s u c h t h a t 

a ) T 2 i s 2 k - e q u i t a b l y l a b e l e d b y t h e l a b e l i n g f u n c t i o n f 2 open parenthesis v closed parenthesis, 

b ) t h e l a s t l e v e l o f T2 i s i t s e l f e q u i t a b l y l a b e l e d w i t h t h e o d d v a l u e s f r o m 1 

t o 2 k minus 1 b y f 2 open parenthesis v closed parenthesis, a n d 

c ) 2 n plus 2 m o d 4 k i s n o t g r e a t e r t h a n 2 k. 

T h e n a 4 k - e q u i t a b l y l a b e l e d , (n plus 2 ) - l e v e l c o m p l e t e b i n a r y t r e e ( T 3 ) c a n b e 

c o n s t r u c t e d f r o m T2. 

P r o o f : W e s p e c i f y a l a b e l i n g f 3, o f t h e f i r s t n plus l l e v e l s o f a n (n plus 2 ) - l e v e l c o m p l e t e 

b i n a r y t r e e a n d a r g u e t h a t f 3 m a y b e e x t e n d e d t o c r e a t e a 4 k - e q u i t a b l e l a b e l i n g o f 

t h e e n t i r e t r e e . I d e n t i f y t h e v e r t i c e s o f T2 w i t h t h e f i r s t n plus 1 l e v e l s o f a n (n plus 2 ) - l e v e l t r e e T 3 . D e f i n e 

f 3 colon V open parenthesis T 3 closed parenthesis right arrow Z b y f 3 open parenthesis v closed parenthesis equals 2 f 2 

open parenthesis v closed parenthesis plus 1 f o r a l l v e r t i c e s v i n l e v e l s 0 t o n plus 1. L e t u, w b e v e r t i c e s i n l e v e l n plus 2 

a d j a c e n t t o t h e s a m e v e r t e x i n l e v e l n plus 1. W e n e e d t o 

d e f i n e f 3 open parenthesis u closed parenthesis a n d f 3 open parenthesis w closed parenthesis. U s e v u,w t o d e n o t e t h e v e r t e x 

i n l e v e l (n plus1) t h a t i s a d j a c e n t t o u a n d w. S p e c i f y f 3 open parenthesis u closed parenthesis equals open parenthesis 4 k minus 1 closed 

parenthesis minus f 3 open parenthesis v u,w closed parenthesis while f 3 open parenthesis w closed 

parenthesis equals open parenthesis 4 k minus 3 closed parenthesis minus f 3 open parenthesis v u,w closed parenthesis u n t i l e a c h v a l u e o f f 3 open parenthesis w 

closed parenthesis h a s o c c u r r e d open bracket 2 n minus 1 divided by k closed bracket t i m e s . T h e r e m a i n i n g 

open parenthesis 2 n minus 2 m o d 4 k closed parenthesis v e r t i c e s a r e t h e n l a b e l e d b y i d e n t i f y i n g a l l p o s s i b l e l a b e l s t h a t w o u l d i n d u c e a n e d g e 

l a b e l e d w i t h t h e v a l u e 4 k minus1. S e l e c t o n e o f t h e s e p o s s i b i l i t i e s ( i f o n e e x i s t s ) t o b e 
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a label value, then repeat on the remaining unlabeled vertices for 4 k minus 3, 4 k minus 5, ... 

or until no unlabeled vertices remain. 

As defined, T 2 is a 2 k-equitably labeled tree with n plus 1 levels and is equitably 

labeled on the (n plus l)st level with all of the odd values from 1 to 2 k minus 1. By 

doubling the vertex labels in T 2 and adding 1, we create a new tree whose 

vertices are equitably labeled with all odd values 1 to 4 k minus 1 and such that the 

(n plus 1)st level is equitably labeled with every other odd value from 3 to 4 k minus 1. All 

of the edge values within the tree were simply doubled by this step so the edges 

are now equitably labeled with all of the even values from 0 to 4 k minus 2. f 3 will 

result in an (n plus 2)nd level that contains all the even values between 0 and 4 k minus 2 on 

the vertices. Edges between vertices in the (n plus l)st and (n plus 2)nd levels will be 

assigned values that take the odd values f rom 1 to 4 k minus 1; these values will be 

equitably distributed as a result of the algorithm. Therefore, the new tree (T 3) is 

a 4 k-equitable complete binary tree with n plus 2 total levels. 
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Example: 

We start with T which is 8-equitable with n equals 3 and has all the 

necessary conditions satisfied. 

T 
Value 0 1 2 3 4 5 6 7 

Vertex C t 2 2 1 2 2 2 2 2 
Edge C t 1 2 1 2 2 2 2 2 

Level n Vertex C t 0 2 0 2 0 2 0 2 

D o u b l i n g all o f t h e ver tex l abe l s o f T a n d a d d i n g 1 resu l t s in t h e f o l l o w i n g 

par t ia l T apostrophe w h o s e v e r t i c e s a re equ i t ab ly l abe l ed w i t h t h e o d d v a l u e s f r o m 1 

to 15 w h i l e the v e r t i c e s in level n a re e q u i t a b l e l abe l ed wi th eve ry o the r 

o d d v a l u e f r o m 3 to 15 and t h e e d g e s a r e equ i t ab ly l abe l ed wi th t h e even 

v a l u e s f r o m 0 to 14. 
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T apostrophe ( p a r t i a l ) 

Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Vertex C t 0 2 0 2 0 1 0 2 0 2 0 2 0 2 0 2 
Edge C t 1 0 2 0 1 0 2 0 2 0 2 0 2 0 2 0 

Level n Vertex C t 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 

We then fill level n plus 1 according to our described algorithm, which 

in this case results in the adjacency label mapping: 

Level n is adjacent to Level n plus 1 Level n plus 1 

3 right arrow 12 14 
7 right arrow 8 10 
i i right arrow 4 6 
15 right arrow 0 2 

T h i s r e s u l t s i n t h e t r e e T apostrophe a s s h o w n b e l o w , w h i c h i s s h o w n b y i t s 

t a b l e t o b e 1 6 - e q u i t a b l e w i t h n plus 1 equals 4 l e v e l s . 
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Value 
0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Vertex C t 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 
Edge C t 1 2 0 2 1 2 2 2 2 2 2 2 2 2 2 2 

Level n Vertex C t 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 
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Other Results: 

T o l e a d i n t o t h e n e x t r e s u l t , w e m u s t f i r s t d e s c r i b e w h a t i s k n o w n a s a n " n -

q u e e n s " p r o b l e m . T h e r e a r e s e v e r a l v a r i a t i o n s o f t h i s p r o b l e m . T h e 

v e r s i o n o f i n t e r e s t i n t h i s t h e s i s a s k s w h e t h e r i t i s p o s s i b l e t o p l a c e n 

q u e e n s o n a n n x n c h e s s b o a r d i n s u c h a w a y t h a t t h e y a r e n o n - a t t a c k i n g . 

R e l e v a n c e t o m y t o p i c c o m e s w h e n w e c o n s i d e r a s p e c i a l i z e d v e r s i o n o f 

t h i s p r o b l e m . F i r s t w e n e e d t o d e f i n e a s p e c i a l t y p e o f m a t r i x . A s y m m e t r i c T o e p l i t z 

m a t r i x i s a n n by n m a t r i x t h a t h a s c o n s t a n t n e g a t i v e d i a g o n a l s w i t h t h e 

f u r t h e r r e s t r i c t i o n t h a t e n t r y open parenthesis i 1, j 1closed parenthesis equals 

open parenthesis i 1, j 2 closed parenthesis w h e n e v e r vertical line i 1 minus j 1 

vertical line equals vertical line i 2 minus j 2 vertical line ( S e e F i g u r e 1 1 ) . L e t u s t h e n c o n s i d e r 

t h e n - q u e e n s p r o b l e m o n a n n by n s y m m e t r i c T o e p l i t z 

m a t r i x i n s t e a d o f t h e s t a n d a r d c h e s s b o a r d . L e t ' s a l s o r e p l a c e t h e u s u a l 

d i a g o n a l r e s t r i c t i o n b y s p e c i f y i n g t h a t q u e e n s m a y a t t a c k o t h e r q u e e n s i f 

t h e y o c c u p y s q u a r e s w i t h t h e s a m e n u m b e r v a l u e i n t h e m a t r i x . T h e n i t 

h a s b e e n s h o w n t h a t n q u e e n s c a n b e p l a c e d o n t h i s s p e c i a l i z e d c h e s s b o a r d 

f o r v a l u e s o f n equivalent to 0 , 1 m o d 4 , a n d t h a t t h e r e i s n o s o l u t i o n w h e n n equivalent to 2 , 3 

m o d 4 [footnote 4]. 
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Figure 11: A 5 by 5 symmetric Toeplitz matrix with 5-queens solution 

highlighted and negative diagonal boxed. 

0 1 2 3 4 

1 0 1 2 3 

2 1 0 1 2 

3 2 1 0 1 

4 3 2 1 0 

Jennifer Russell is a Master's student at California State University 

Channel Islands who is currently working to apply solutions to the n-

queens problem on a symmetric Toeplitz matrix to the equitable labeling 

of binary trees. The idea is that such a solution provides an algorithm for 

taking a tree that is equitably labeled above what she calls the interface 

layer, and using the solution to continue the labeling indefinitely for any 

number of levels of the tree. The interface layer is split between at most 

two levels of the tree and represents a partition of the tree into a "top" and 

"bottom." This layer also contains exactly one each of the label values 0 

to k minus 1 on the vertices. Figure 12 shows the resulting labeling algorithm 

from the solution shown in Figure 11, the interface layer for k equals 5, and the 

application of the algorithm to continue the labeling. 
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Figure 12 

Permutation to 
continue equitable 

labeling 
0 right arrow 4 
1 right arrow 1 
2 right arrow 3 
3 right arrow 0 
4 right arrow 2 

Induced 
edge values 

4 
0 
1 
3 
2 

So far, Ms. Russell has been able to find tops (parts of the tree above the 

interface layer) that are k-equitable for many different values of k. The 

results of her process are equitably labeled binary trees that are not 

necessarily complete in and of themselves. It is conjectured that under 

most circumstances, these trees can be completed; an algorithm has not yet 

been developed. In either case, the tree that is created through this process 

has a familiar condition: the leaves of the tree are k-equitably labeled. 

Ms. Russell has shown for specific values and conjectured in general that 

given an appropriate interface layer, there can be found a top to the tree 

that satisfies the requirements for a k-equitable labeling. From there the 

Toeplitz solution can be applied to continue the labeling for any number of 
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levels. It is important to note that the results of her process are equitably 

labeled binary trees that are not necessarily complete. However, with the 

correct choice of interface layer, it is conjectured that these trees can be 

completed. Since the Toeplitz solution has been shown to exist if and only 

if the dimensions of the chessboard are congruent to 0, 1 mod 4, Miz 

Russell's work as of the writing of this thesis has resulted in Conjecture 3 

below: 

Conjecture 3 (Toeplitz-based k-equitable labeling for k is equivalent to 0 ,1 mod 4) 

Let T4 be a complete binary tree with n levels for n sufficiently large. Then 

there exists a Toeplitz solution-based k-equitable labeling of T 4, for all 

values of k such that k is equivalent to 0,1 mod 4. 

The next theorem is inspired by this conjecture. This is due to the fact that 

a binary tree labeled in accordance with Conjecture 3 will have a condition 

somewhat analogous to those described in Theorem 1. 
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Theorem 4 (Doubling Toeplitz based solutions): 

Let T 4 be an n-level binary tree such that 

a) T 4 is k-equitably labeled using a Toeplitz-based solution as described 

in Conjecture 3 (prior to being completed by any non-Toeplitz 

algorithm), and 

b) 2 n plus 2 mod 2 k is not greater than 2 k. 

Then a 2 k-equitably labeled, n plus l)-level complete binary tree (T 5) can be 

constructed from T 4. 

Proof: We first note that any k-equitable complete binary tree labeled in 

accordance with Conjecture 3 results in an interface-like layer (spanning levels 

n minus 1 and n) that is also k-equitably labeled. 

Then by Theorem 1, and the same idea for completion as in Conjecture 3, we can 

create T 5 where T 5 is a 2 k-equitably labeled, (n plus l)-level complete binary tree. 

Conjecture 5 is a direct result of Conjecture 3 and Theorem 4. This is 

because any value congruent to 1 mod 4 can be doubled to a value 

congruent to 2 mod 4. 
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C o n j e c t u r e 5 ( T o e p l i t z - b a s e d k - e q u i t a b l e l a b e l i n g f o r k is equivalent to 0, 1 m o d 4 a n d e v e r y 

o t h e r v a l u e o f k equals 2 m o d 4) : 

L e t T b e a c o m p l e t e b i n a r y t ree w i t h n l eve l s f o r n s u f f i c i e n t l y l a rge . 

T h e n t h e r e ex i s t s a T o e p l i t z s o l u t i o n - b a s e d k - e q u i t a b l e l a b e l i n g of T f o r all 

v a l u e s of k s uch t ha t k is equivalent to 0, 1 m o d 4 as w e l l as eve ry o t h e r v a l u e of k such 

tha t k is equivalent to 2 m o d 4. 

P r o o f : C o n j e c t u r e 3 i m p l i e s t h i s is t r u e f o r k is equivalent to 0, 1 m o d 4. F o r k is equivalent 

to 2 m o d 4, w e s i m p l y a p p l y C o n j e c t u r e 3 f o r a n y k is equivalent to 1 m o d 4 to t h e first n minus 1 

l eve l s o f T a n d t h e n app ly T h e o r e m 4 t o label T such tha t T is k - equ i t ab l e f o r k is equivalent to 2 

m o d 4. S ince eve ry o t h e r v a l u e of k is equivalent to 2 m o d 4 can b e r e a c h e d mu l t i p l i c a t i ve ly 

b y d o u b l i n g s o m e v a l u e c o n g r u e n t to 1 m o d 4 ( t h e o t h e r v a l u e s o f k c o n g r u e n t t o 2 m o d 4 a r e t h e 

d o u b l e of a v a l u e c o n g r u e n t t o 3 m o d 4) , w e c a n d o th is f o r e v e r y v a l u e of k is equivalent to 2 

m o d 4 w h e r e k divided by 2 is equivalent to 1 m o d 4. 

A r e a s f o r C o n t i n u e d R e s e a r c h 

T h e log ica l n e x t s tep of t h i s w o r k w o u l d b e t o d e v e l o p a p r o o f tha t c o m p l e t e 

b ina ry t r ees a r e k - e q u i t a b l e f o r all k is equivalent to 3 m o d 4 u s i n g a n o t h e r o p e r a t i o n - b a s e d 

a l g o r i t h m a n d p o s s i b l e T o e p l i t z so lu t ions . D e p e n d i n g on t h e cha rac t e r i s t i c s o f t h e 

r e su l t i ng t rees , th i s c o u l d i m p l y tha t all c o m p l e t e b ina ry t r e e s a r e k - e q u i t a b l e f o r 
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all k. Ideally, we would then be able to generalize the results to more types of 

trees, and eventually to all trees. If all trees are found to be k-equitable, then the 

Ringel-Kotzig Conjecture is directly implied. Therefore, it may be prudent to 

focus on the Ringel-Kotzig Conjecture first, as the special case should be less 

cumbersome to prove than the more general k-equitability problem, although even 

the special case has eluded proof for almost 40 years. In lieu of the most general 

results, one can always expand the base of information regarding tree labeling for 

other families of trees, or graphs. 
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