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Introduction

When it comes to graphs, there have always been questions about different ways
to label the vertices and edges, and the properties that a given method will have.
These questions have led to many different results regarding a myriad of different
types of graphs., Some of the more popular derivations are in regards to radio
labeling, network flows, minimum and maximum matching algorithms and other
optimization problems that can have real-world applications to things like traffic
control, infrastructure, logistics, radio frequency assignment, computer networks,
micro-chip architecture and many, many more. As is the case with many areas of
mathematics, many of these properties and methods were explored well before
there were any known applications. Such is sometimes the nature of mathematics
research. This thesis will cover some topics that have been developed around the
graceful and 4£-equitable labeling of graphs and trees (focusing more on trees,
specifically binary trees) and their relationship to other well-known problems
including the #-queens problems. First, we must start with some definitions and
examples. Please note that this thesis will only deal with standard graphs (graphs

that do not contain multiple edges between any two given vertices).



Definitions and Terminology:

A graph is a 2-list (I, £) where Iis a non-empty, finite set and £ is a set of
unordered pairs of 1 The set Iis the vertex set and the set £ is the edge set. The

elements of " are called vertices and the elements of £ are called edges.

o V ={a,b,c}
E ={(a,b),(a,c)}
@ ©

Figure 1

A vertex and an edge are incident provided that the vertex belongs to the edge

(such as vertex a and edge (a.h) in Figure ).

The degree of a vertex is the number of edges that are incident to that vertex. For

example, in Figure 1 vertices » and ¢ are of degree 1 while vertex « is of degree 2.

Two vertices are adjacent provided they are both contained in a single edge, such

as vertices & and & in Figure 1 which are contained in edge (a,5).

An acyclic graph does not contain any sub-graph that 1s a cycle. The graph in

Figure | is acyclic while the graph in Figure 2 is not.



o V ={a,b,c}
E ={(a,bhib,c)la,c)
& &

Figure 2
A tree is a connected, acyclic graph. (See Figures = and 3.)

A leaf of a tree is a vertex of degree |, such as vertices ¢, ¢ and ¢ in Figure 4.

Figure 3

The level of a vertex v within a tree is the number of edges in the shortest path

between v and the root vertex r of the tree. The level of 7 is by definition 0.



A vertex labeling of a graph G is a function £11() — N that maps each vertex of
G to an integer. Figure 4 shows a labeling f for the graph in Figure 3 for which

ARa)y=1Ab)=2, flc)=3,Ad =4 and fle)= 5.

Figure 4

What is Graceful Labeling of a Graph?

For any undirected connected graph (& with at least one vertex a graceful labeling

is a labeling that satisfies the following conditions:

i) Each vertex of the graph is labeled by £1(G) — {0,...,e] where ¢ is the
number of edges in (.

i) Sy = Aw ifand only if v - w.

i11)  finduces a labeling of the edges of & such that edge (w,v' receives the
label |[f(w)— A1)

iv)  Each label value from 1 to e is assigned to exactly one edge in G&.



Figure 6: A gracefully labeled tree.

The Ringel-Kotzig conjecture states that all trees can be gracefully labeled. This
is a result of the original conjecture by Ringel in 1963 that essentially claimed that
every complete graph (K.) can be decomposed into isomorphisms ofian arbitrary
tree. Many papers have been written that attempt to expand the knowledge
surrounding the graceful labeling of trees and graphs with examples that show
that many specific types, or classes of graphs or trees can be gracefully labeled.
Although there has been much work on this topic, the Ringel-Kotzig conjecture
has not yet been proven, and so remains a significant open problem in graph (and
tree) labeling. The focus of this paper is a more general version of labeling called

k-equitable labeling.



What is k-Equitable Labeling?

For any undirected connected graph (& with at least one vertex, a k-equitable

labeling is a labeling such that the following conditions are satisfied:

1) Each vertex in (7 is labeled with £v(G) — {0, .. 4-1}.

i1) £ induces a labeling of the edges of & such that edge (w,v) receives the
label |Aw)—Av)|.

i) The count of vertices and edges with values O to (4-1) are equitable. That
is, the absolute value of the maximum difference between the counts of

values of any edge or vertex label is 1 for all vertex and edge values 0 to

(k-1).

Since a tree is a type of graph, a A-equitably labeled tree will satisfy these same
conditions. Looking at Figure 7, we see that the trees are labeled with the values
0,1, and 2. The edges are labeled in accordance with condition /i above,

Condition #/ is satisfied in the tree on the left as we can see in the table beneath
the tree shows that all values 0 to 2 are applied as a vertex label exactly five times
and the resulting edge labels 1 and 2 are each applied five times and 0 is applied 4.
This is in contrast to the tree on the right that shows the potential effect of
changing a vertex label. The result is the vertex label 2 appearing six times while
the label O appears only 4 times. Therefore the tree on the right is no longer 3-

equitably labeled.

10



Value

Vertex Ct

Edge Ct

3
2 Value 0 1 2
5 I Verex L5 T
5 EdgeCt| 5 5 4

Figure 7: A 3-equitably labeled tree and a non-equitably labeled variation.

What is a Complete Binary Tree?

A binary tree is a connected tree in which each vertex has either two leaves or

zero leaves. A complete binary tree is a binary tree with the added condition that

only vertices in the final (let’s call it #") level have no leaves and thus are of

degree 1 while any vertices in levels 0 to 72-1 have 2 leaves each and are of degree

3 except the root, which is of degree 2.

11



Complete Binary Tree Incomplete Binary Tree

Figure 8
Observations:
o A complete binary tree with # levels will have 2° ' - | vertices
o A complete binary tree with # levels will have 2" - 2 edges.

All binary trees are 2-equitable, as may be demonstrated using the algorithm
described next. First, the root vertex is labeled either 0 or 1 For # = 0, the case is
trivial. Otherwise, the vertices adjacent to the root are then labeled 0 and 1
respectively.. For 2= 1, the tree is 2-equitable because it either has two vertices
labeled 0 (and one vertex labeled * ) or two vertices labeled  (and one vertex
labeled 0). In either case, we end with one edge labeled 0 and one edge labeled 1.
To label vertices in level # for 77 > 1, one vertex in level # adjacent to any given
vertex in level #-1 is labeled 0 and the other is labeled 1. The binary property of

the tree ensures that this labeling will always be equitable (See Figure 9).

12



Value
Vertex C

Edge Ct

0 1 Value 0 1
2 1 Verex Ct] 8 7
1 1 EdgeCt]| 7 7

Figure 9: 2-equitably labeled trees forn =1 and n=3.

Similarly, all complete binary trees are 3-equitable. A ¥-equitable labeling is
produced by labeling the vertices 0,1,2,0,1,2,0,1,2,... as ordered from top to
bottom and left to right (See Figure 7). The vertex labels are clearly equitably
distributed by this labeling. The resulting algorithm is such that a vertex in level
# labeled 0 be adjacent to vertices in level #2+1 labeled and 2. Similarly, n-level
vertices labeled | will be adjacent to level #+1 vertices labeled 0 and 1 while #-
level vertices labeled 2 will be adjacent to level #+1 vertices labeled 2 and 0.
These vertex labels induces edge values of | 1,2},11,0}, and {0,2] respectively
which by definition maintains the equitability of the edge values (See Table 10).
In fact, David Speyer and Zsuzsanna Szanizlo proved that all trees are 3-equitable

in 1999 [3].
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Adjacent level n+1

Induced edge labels

vertex label
Level n vertex label 1st 2nd 1st 2nd
0 1 2 1 2
1 0 1 1 0
2 2 0 0 2
Table 10

Problem

While there is a substantial number of examples of many different types of &-

equitable graphs in general, there 1s much that is as of yet unknown. There are

few theorems that generalize the k-equitable labeling of anything but very specific

types of trees or graphs. While complete binary trees certainly fit into the
category of a very specialized type of tree, anything we can do to expand the
knowledge in this area is meaningful. My interest in this topic came after
discussions with my advisor Dr. Wyels, who had done some interesting work in
this area using a modified #-queens type of solution. 1 decided to try to expand
this base of solutions by developing algorithms that can take a k-equitable tree
and modify it in such a way as to create a tree that is m-equitable for some value
m # k. 1 found some interesting results that also tie into the work of another
student quite well, all of which will be discussed in the following results. Given

the importance and applications of binary trees in combinatorics and other



branches of mathematics, we can only benefit by expanding what we know about

them and their labeling.

Results

Theorem 1 (Doubling Algorithm):

Let 71 be a complete binary tree with 72 levels such that
a) 7)1is k-equitably labeled by the labeling function f(v),
b) the last level of 7; 1s itself k-equitably labeled by £i(v), and

¢) 2"! mod 2k is not greater than £.

Then a 2k-equitably labeled, (n+1)-level complete binary tree (72) can be

constructed from 77.

Proof: We specify a labeling £; of the first 77 levels of an (n+1)-level complete
binary tree and argue that f; may be extended to create a 2k-equitable labeling of

the entire tree.

TIdentify the vertices of 7} with the first # levels of an (st 1)-level tree 75.
Define f,: 1(1z) — Z by f2(v) = 2f1(v) for all vertices vin levels Oton Letw bea

vertex in level n+1. We need to define £z(w). Use v,. to denote the vertex in level



# that is adjacent to w. Specify fo(w) = (2k-1)-f2(v,,) until each value of fz(w) has

1]

occurred {TJ times. The remaining (2" ' mod 2) vertices are then labeled by

identifying all possible labels that would induce an edge labeled with the value
2k-1. Select one of these possibilities (if one exists) to be a label value, then
repeat on the remaining unlabeled vertices for 24-3, 2k-5, ... or until no

unlabeled vertices remain.

Since 77 is k-equitably labeled, doubling the values of all the vertex labels in 7
will also double all of the edge values in 7). Thus 73 is equitably labeled with all
even values from 0 to 24k-2, Since the vertices on level n are equitably labeled
with these values, f> will result in an (#+ 1)st level that contains all of the odd
values from 1 to 24-1 on the vertices. Edges between vertices in the #th and
(n+1)st levels will be assigned values that take the same odd values from 1 to 24-
1; these values will be equitably distributed as a result of the algorithm. Since
there are 2" ' vertices in the (#+1)st level of the tree, and there are 2”''-1 vertices
in a complete binary tree with # levels, we know that creating an (r+1)st level
with an equitable number of the odd values from 1 to 24-1 will result in a

complete binary tree that has 7+1 levels and is 24-equitable.
Example:

We start with 7'which is 4-equitable with » = 3 and has all the

necessary conditions satisfied.

16



Value

Vertex Ct

Edge Ct

N|W| O
[\ o8 N ]
N L] WL G

1
4
4
2

Doubling all of the vertex labels of 7 results in the following

Level n Vertex Ct

partial 7" which is equitably labeled (both in its entirety and in the

3" level) with 0,2,4, and 6.

17



Value

Vertex Ct

Edge Ct

Level n Vertex Ct

N|WlA|O
ojojo]|—=
N N N N )
(@] o] e] g
N1 I N N N
(@] Kool Ne) Ré) ]
Njw|w|®»

We then fill level #+1 according to our described algorithm, which

in this case results in the adjacency label mapping:

Leveln 1sadjacentto Levelr+1

0 —» 7
2 — 5
4 — 3
6 —> 1

18



This results in 7" as shown below which is shown by its table to be

8-equitable with n+1 — 4 levels.

level

2
3
4
T’
Value 0 1 2 3 4 5 6 7
Vertex Ct 4 4 4 4 4 4 3 4
Edgect | 3 4 4 4 4 4 3 4
Level n Vertex Ct | 2 0 2 o 2 0 2 o
In this example, # = 3 and k = 4. Therefore, when we check condition (c), 2" :

mod 24 = 2" mod 8 = 0 is clearly not greater than 4. But what happens if it is?
That is to say, why is the condition important? If2"" mod 2k is equal to or
greater than 4, it would require that the second part of the algorithm create at least
one edge labeled with each odd value from 1 to 24-1. Depending on the values of
the nth level vertices adjacent to (72+1)st level vertices that remain to be labeled in

this step, this may not be possible.

19



For example, if # =3 and £ = 5, then 2 mod 10 = 6. If 2, 4, and 6 are the values
of the 3rd-level vertices adjacent to 4™ level vertices that remain to be labeled,
then there would be know way to label those vertices with the odd values from 1
to 9 in such a way as to induce an edge labeled 9. This means that we would not
be able to equitably label that remaining portion of the 4th level since there are
only 4 odd labels from which to choose and 6 total edges that need to be labeled

equitably with all of those odd values as shown below.

o ®

1 @ @

| .,. .’.

. OO0 OO
SIS ISIS N
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Theorem 2 (Extended Doubling Algorithm):

Let 75 be a complete binary tree with 7+1 levels such that

a) 7>is 2k-equitably labeled by the labeling function £(v),

b) the last level of 7;1s itself equitably labeled with the odd values from 1
to 2k-1 by fo(v), and

¢} 2™7? mod 4k is not greater than 2k.

Then a 4k-equitably labeled, (#+2)-level complete binary tree (73) can be

constructed from 7.

Proof: We specify a labeling £ of the first rt1 levels of an (n#+2)-level complete
binary tree and argue that /3 may be extended to create a 4%k-equitable labeling of

the entire tree.

Identify the vertices of T3 with the first #+1 levels of an (7+2)-level tree 75.
Define f3:}(73) — Z by fa(v) = 2/2(v)+1 for all vertices v in levels 0 to #+1. Let &,
w be vertices in level #+2 adjacent to the same vertex in level n+1. We need to
define fi(«) and f5(w). Use v, ., to denote the vertex in level (#+1) that is adjacent
to # and w. Specify fa(uw) = (4h-1)-£3(v, ) while £0v) = (44-3)- f3(v,.,.) until each

) n-1
HA J times. The remaining (2" % mod 4%) vertices

value of fz(w) has occurred {

are then labeled by identifying all possible labels that would induce an edge

labeled with the value 4&-1. Select one of these possibilities (if one exists) to be

21



a label value, then repeat on the remaining unlabeled vertices for 44-3, 44-5, ...

or until no unlabeled vertices remain.

As defined, 73 is a 2k-equitably labeled tree with #+1 levels and is equitably
labeled on the (r+1)st level with all of the odd values from 1 to 24-1. By
doubling the vertex labels in 75 and adding 1, we create a new tree whose
vertices are equitably labeled with all odd values 1 to 4%4-1 and such that the
(n+1)st level 1s equitably labeled with every other odd value from 3 to 44-1. All
of the edge values within the tree were simply doubled by this step so the edges
are now equitably labeled with all of the even values from 0 to 44-2. f; will
result in an (#+2)nd level that contains all the even values between 0 and 44-2 on
the vertices. Edges between vertices in the (7r+1)st and (#+2)nd levels will be
assigned values that take the odd values from 1 to 44-1; these values will be
equitably distributed as a result of the algorithm. Therefore, the new tree (73) is

a 4k-equitable complete binary tree with #+2 total levels.



Example:
We start with 7 which is 8-equitable with # = 3 and has all the

necessary conditions satisfied.

Value

Vertex Ct

Edge Ct

Q=M a
o|=]=|~N
MMM W
QNN &~
M| NN 5
OO
[y%1 T E R BN

1
2
2
2

Lewel n Vertex Ct

Doubling all of the vertex labels of /"and adding 1 results in the following
partial 7 whose vertices are equitably labeled with the odd values from 1
to 15 while the vertices in level # are equitable labeled with every other
odd value from 3 to 15 and the edges are equitably labeled with the even

values from 0 to 14.

23



level

0

1

2

3

4
Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Vertex Ct 0 2 0 2 0 1 o 2 o 2 0 2 0 2 0 2
Edge Ct 1 0o 2 0 1 b 2 0 2 0 2 0 2 0 2 0
leveln VertexCt | O 0 0 2 O O O 2 © O 0 2 0 0 O 2

We then fill level #+1 according to our described algorithm, which

in this case results in the adjacency label mapping:

Leveln isadjacentto Leveln+1 Leveln+1

3 — 12 14
[/} = 8 10
11 — 4 6
15 — 0 2/

This results in the tree 7" as shown below, which is shown by its

table to be 16-equitable with #+1 - 4 levels.

24



9 10 11 12 13 14 15

8

2

1

0

0

Value
Vertex Ct

Edge Ct
Level n Vertex Ct

25



Other Results:

To lead into the next result, we must first describe what is known as an “n-
queens” problem. There are several variations of this problem. The
version of interest in this thesis asks whether it is possible to place #
queens on an # x 7 chessboard in such a way that they are non-attacking,
Relevance to my topic comes when we consider a specialized version of

this problem.

First we need to define a special type of matrix. A symmetric Toeplitz
matrix is an # x # matrix that has constant negative diagonals with the
further restriction that entry (i1, j1) = (71, j2) whenever |i1-f1| = |iz-f2| (See

Figure 11).

Let us then consider the #-queens problem on an # x # symmetric Toeplitz
matrix instead of the standard chessboard. Let’s also replace the usual
diagonal restriction by specifying that queens may attack other queens if
they occupy squares with the same number value in the matrix. Then it
has been shown that # queens can be placed on this specialized chessboard
{or values of # =0, 1 mod 4, and that there is no solution when n=2, 3

mod 4 [4].



2 N =] O
W N = =

2
1
0
1
2

= | O = N W
O = N W

Figure 11: A 5 + 5 symmetric Toeplitz matrix with 5-queens solution

highlighted and negative diagonal boxed.

Jennifer Russell is a Master’s student at California State University
Channel Islands who is currently working to apply solutions to the #-
queens problem on a symmetric Toeplitz matrix to the equitable labeling
of binary trees. The idea is that such a solution provides an algorithm for
taking a tree that is equitably labeled above what she calls the interface
layer, and using the solution to continue the labeling indefinitely for any
number of levels of the tree. The interface layer is split between at most
two levels of the tree and represents a partition of the tree into a “top” and
“bottom.” This layer also contains exactly one each of the label values 0
to -1 on the vertices. Figure 12 shows the resulting labeling algorithm
from the solution shown in Figure 11, the interface layer for £ = 5, and the

application of the algorithm to continue the labeling.

27



loval

Permutation to
continue equitable Induced

labeling edge values
0 > 4 4
1= 1 0
o @& ) 2 3 I
This is the interface layer for k= 5. 3> 0 3
4o 2 2

4

Figure 12

So far, Ms. Russell has been able to find tops (parts of the tree above the
interface layer) that are k-equitable for many different values of &. The
results of her process are equitably labeled binary trees that are not
necessarily complete in and of themselves. Itis conjectured that under
most circumstances, these trees can be completed; an algorithm has not yet
been developed. In either case, the tree that 1s created through this process

has a familiar condition: the leaves of the tree are &-equitably labeled.

Ms. Russell has shown for specific values and conjectured in general that
given an appropriate interface layer, there can be found a top to the tree
that satisfies the requirements for a k-equitable labeling. From there the

Toeplitz solution can be applied to continue the labeling for any number of

28



levels. It is important to note that the results of her process are equitably
labeled binary trees that are not necessarily complete. However, with the
correct choice of interface layer, it is conjectured that these trees can be
completed. Since the Toeplitz solution has been shown to exist if and only
if the dimensions of the chessboard are congruent to 0, 1 mod 4, Ms.
Russell’s work as of the writing of this thesis has resulted in Conjecture 3

below:

Conjecture 3 (Toeplitz-based k-equitable labeling for £ = 0, 1 mod 4)

Let 74 be a complete binary tree with s levels for # sufficiently large. Then
there exists a Toeplitz solution-based 4-equitable labeling of 7 for all

values of & such that ¥ =0,1 mod 4.

The next theorem is inspired by this conjecture. This is due to the fact that
a binary tree labeled in accordance with Conjecture 3 will have a condition

somewhat analogous to those described in Theorem 1.



Theorem 4 (Doubling Toeplitz based solutions):

Let 74 be an n-level binary tree such that

a) 74is k-equitably labeled using a Toeplitz-based solution as described
in Conjecture 3 (prior to being completed by any non-Toeplitz
algorithm), and

b) 2™ mod 2k is not greater than 2k.

Then a 24-equitably labeled, (#1+1)-level complete binary tree (7s) can be

constructed from 7.

Proof: We first note that any A-equitable complete binary tree labeled in
accordance with Conjecture 3 results in an interface-like layer (spanning levels

n-1 and #7) that is also k-equitably labeled.

Then by Theorem 1, and the same idea for completion as in Conjecture 3, we can

create /s where 75 is a 2k-equitably labeled, (#+1)-level complete binary tree.

Conjecture 5 is a direct result of Conjecture 3 and Theorem 4. This is

because any value congruent to 1 mod 4 can be doubled to a value

congruent to 2 mod 4.

30



Conjecture 3 (Toeplitz-based k-equitable labeling for k& = 0,1 mod 4 and every

other value of £ =2 mod 4):

Let T be a complete binary tree with # levels for # sufficiently large.
Then there exists a Toeplitz solution-based 4-equitable labeling of 7 for all
values of & such that £ =0, 1 mod 4 as well as every other value of & such

that =2 mod 4.

Proof. Conjecture 3 implies this is true for k=0, | mod 4. For 4 =2 mod 4, we
simply apply Conjecture 3 for any ¥ = 1 mod 4 to the first -1 levels of 7 and then
apply Theorem 4 to label 7 such that 7'is k-equitable for £ =2 mod 4. Since every
other value of £ = 2 mod 4 can be reached multiplicatively by doubling some
value congruent to 1 mod 4 (the other values of k¥ congruent to 2 mod 4 are the

double of a value congruent to 3 mod 4), we can do this for every value of A =2

mod 4 where ¥ =1 mod 4.
b

Z

Areas for Continued Research

The logical next step of this work would be to develop a proof that complete
binary trees are &-equitable for all £ = 3 mod 4 using another operation-based

algorithm and possible Toeplitz solutions. Depending on the characteristics of the

resulting trees, this could imply that all complete binary trees are £-equitable for

(5]



all £ Ideally, we would then be able to generalize the results to more types of
trees, and eventually to all trees. If all trees are found to be 4-equitable, then the
Ringel-Kotzig Conjecture is directly implied. Therefore, it may be prudent to
focus on the Ringel-Ko6tzig Conjecture first, as the special case should be less
cumbersome to prove than the more general 4-equitability problem, although even
the special case has eluded proof for almost 40 years. In lieu of the most general
results, one can always expand the base of information regarding tree labeling for

other families of trees, or graphs.

(Y]
[S]
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