The AKS Primality Test

By Tammy Terzian

A Project Presented to
The Faculty of the Mathematics Program
California State University Channel Islands

2013

In Partial Fulfillment of the Requirements
for the Degree of Masters of Science

Department of Mathematics

MS PROJECT BY TAMMY TERZIAN
APPROVED FOR THE MATHEMATICS PROGRAM

(F)&-MZ//M !/7/‘3

/r “Jesse Elliott / Date
e),/
Dr Ivona Grzegorczy("Date
1/2/13
Dr Brian Sittinger E Date

APPROVED FOR THE UNIVERSITY

75 3 I=p=ip

DG ry A.Eé}g Date

Non-Exclusive Distribution License

In order for California State University Channel Islands (CSUCI) to reproduce, transiate and
distribute your submission worldwide through the CSUCI Institutional Repository, your agreement to
the following terms is necessary. The author|s retain any copyright currently on the item as well as
the ability to submit the item to publishers or other repositories.

By signing and submitting this license, you (the author(s) or copyright owner) grants to CSUCI the
nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission
(including the abstract) worldwide in print and electronic format and in any medium, including but not
limited to audio or video.

You agree that CSUCI may, without changing the content, translate the submission to any medium
or format for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of this submission for purposes of
security, backup and preservation.

You represent that the submission is your original work, and that you have the right to grant the
rights contained in this license. You also represent that your submission does not, to the best of
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the
submission contains no libelous or other unlawful matter and makes no improper invasion of the
privacy of any other person.

If the submission contains material for which you do not hold copyright, you represent that you have
obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by
this license, and that such third party owned material is clearly identified and acknowledged within
the text or content of the submission. You take full responsibility to obtain permission to use any
material that is not your own. This permission must be granted to you before you sign this form.

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH
CONTRACT OR AGREEMENT.

The CSUCI Institutional Repository will clearly identify your name(s as the author|s or owner|s of
the submission, and will not make any alteration, other than as allowed by this license, to your
submission.

{4 \ ¥
] |

Title of Item

A\ K

3 to 5 keywords or phrases to descrbe the tem

AN aTaalsN \:ﬁ L E‘\ £
Author s Namli (Print)

e s S | -

A 1o)i3

Author(s Sighature ' Date
&

This is a permitted, modified version of the Non-ex: usive Disinbution
License from MIT Libraries and the University of Kansas

© 2013
Tammy Terzian

ALL RIGHTS RESERVED

Acknowledgements

This paper would not have been possible without the support of many people. First 1
would like to thank my advisor, Dr. Jesse Elliott, for the idea of studying the AKS
Primality Test and for all the hours he spent helping me understanding and writing my
paper. Thanks to Dr. Buhl for stepping in and being my advisor for a semester. His help
in getting me to start my writing process is greatly appreciated. Thanks to Dr. Tvona
Grzegorczyk and Dr. Brian Sittinger for being on my committee and reading my paper.
Thanks to my fellow classmates and friends in the math department who have been a great
encouragement. Lastly, thanks to all my family and friends who have supported me along

the way.

ii

Abstract

In 2002 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena discovered an algorithm to
test a number for primality that is both deterministic and runs in polynomial time. The
AKS algorithm hinges on a calculated value they call r, which is defined for a given
integer # 1 as the least value for which the order of #» modulo 7 is greater than log3 n.
This 7 has a proven upper bound of log3n. In this paper, we prove that 2 + log3n is a
lower bound of the value r, and if # is a square, there is a lower bound of 1 + 2log3 n.
We also present also data suggesting that 3 log n is a smaller upper bound of . If this is
indeed an upper bound, the AKS Primality Test is shown to have a time complexity of
O(log$*e 1) in bit operations for any small & greater than 0, Data also suggests a number »

is a square if and only if its corresponding 7 is greater than 3log3 n.

iii

Table of Contents

Acknowledgements
ABStraCt .

Chapter 1. Introduction

Chapter 2. Background

22Fermat’s Pomality Test

23 Polynomial Ring Z, [X] ...

2.4 Successive SqUAring

Chapter 3. AKS Primality Test

3.1 Prool of Cormectnesso

3.2 Proof of Time Complexityoo i

3.3 Programming the AKS Algorithm ..

Chapter 4. Research and Results

Chapter 5. Future Work

Bibliography ...

iv

20

20

28

29

Chapter 1. Introduction

For millennia, mathematicians have known that there is an infinite number of prime
numbers dispersed throughout the set of integers with no completely predictable pattern.
This makes finding them a difficult task; one which has fascinated the mathematical
community for thousands of years, even to this day. In 2002, Manindra Agrawal, Neeraj
Kayal, and Nitin Saxena published the paper Prime is in P [1], which contained an
incredible breakthrough for finding prime numbers. They introduced the AKS Primality
Test, which is a deterministic primality test that runs in polynomial time (polynomial in

the bit size of #).

Prior to the AKS algorithm there existed tests that were deterministic but not time
efficient, such as a naive method of checking for factors and the Eratosthenes Sieve.
There were also probabilistic tests that run in polynomial time, such as the Fermat Test,
the Miller-Rabin Test, and the Solovay-Strassen Test. The AKS Primality Test was the
first test that was proven to be both deterministic and run in polynomial time. This test
also has the appeal that it is based on basic principles from abstract algebra, the most

basic of which is the following.

Theorem 2.2.1 (Fermat’s Little Theorem). Let p be a prime. For all inmtegers a

a? = a(mod p).

Fermat’s Little Theorem is a good tool for testing primality; unfortunately it is
probabilistic. We reformulate the theorem to the form that serves as the fundamental

basis for the AKS Primality Test.

Theorem 2.3.3 (Fermat s Litile Theorem for Polynomials). A positive integer i is prime
if and only if one has

X +a)y — X' +ainl,[X]

Jor all positive integers a such that a < n and ged(a,n) — 1.

We prove this in chapter 2.

This theorem could be used as a deterministic test for primality if all the values of a less
than » are checked. However, it turns out that it would be more efficient to use a naive
method of checking for factors up to v'n. The AKS Theorem stated below makes a
profound improvement regarding the above statement. It says that the values of @ to be
tested can be limited, and the whole congruence can be reduced modulo a polynomial of

degree » where is an appropriate number computable from #».

Theorem 3.1.1 (AKS Theorem). Assume that n and r are positive integers satisfying the
Jollowing conditions:
1. ord{#) > logz(n)z.
2. r<nandgcdlam) =1 foralla<r.
3. (X+a)y' =X"+ra(mod X' -) inZ,[X] for all integers a from 1 to
[\% log nJ .

Then n is a power of a prime.

Remark: Note that all logarithms in this paper are base 2 unless otherwise noted.

2

Since to show primality we want # to only be a power of itself, i.e. power one, the AKS

Primality Test includes a perfect power test. This eliminates the possibility of 77 being a

perfect power of another number. Thus, if the three conditions in the AKS Theorem

hold, then 72 itself 1s prime. Combining this information, we can state the AKS Primality

Test.

AKS Primality Test.

Input; integer # > 1 (a positive integer to test for primality)

1.

2.

It (= a forain Nand b > 1), output composile.

Find the smallest 7 = #(#) such that ord,() > log™n.

If 1 < ged(a,n) < n for some a < r, output composite.

If 12 < r, output prime.

Fora=1to [Wlogn] do

If (X +a)’" # X' +a(mod X'-1) in Z,,, output composite.

Else, output prime.

In the paper Prime is in P|1], the r value in step 2 is proven to exist and have an upper

bound of log’(#). This upper bound plays an important role in finding the total run time

of the algorithm and proving that the algorithm works. Figure 1 displays the values of »

from 1 to 100,000 and their respective r values.

1000 — s T |
Figure |
800
(00
| e
r(r) p—
400 =l T
e
2 L o anidii
N e e AN
l' a‘:‘lll
i
L e ———ay

0 - . T T T ¥ T 7 T T 1
] 20000 d00nn HO000 ROODD 100000

From the graph, it is noticeable that there are two distinct sections. The perfect squares
are on top and the non-squares are on the bottom. The following two theorems give

lower bounds for r(n), proved in chapter 4.
Theorem 4.5. A lower bound of r(n is 2 + long\n).
Theorem 4.6. For any perfect square n > 1, a lower bound of v(n, is 1 + 210g"7n.

Since the lower bounds are both in logarithmic form, as is the proven upper bound of:

log™n, Figure 2 shows all three bounds and the points in a logarithmic scale.

Figure 2
GO0
fim=log'n
500
- fln) = 2log’n
400 -

- fin) = log'n
r(r)
300

200

100

login)

Although these results regarding lower bounds are interesting, finding an upper bound
that is smaller than log*n has more use. The graph in Figure 2 suggests that the lower
bound for the squares might be an upper bound for the non-squares. Hence, we formulate

the following conjectures.

Conjecture 4.7. For anypositive integer n such that n is not aperfect square, r(n, <

2log’n except for n = 2 23, 335.

Now including the perfect squares, it seems reasonable to predict the following.

Conjecture 4.8. For anypositive integer n an upper bound for rn, is 3log'?n Jor all n.

We have verified both conjectures for » < 7,703,162. Recall that the time complexity of
the AKS Primality Test is highly dependent on . Hence, if the above conjecture is found

to be true, the following corollary is also true.

Corollary 4.9. The time complexity of the AKS algorithm in bit operations is O(log®*¢ n)

for a small positive €.

Chapter 2. Background

Finding prime numbers may seem like a simple task; one could use the naive method of
testing for divisors or the Eratosthenes’ Sieve. Although both methods are deterministic
algorithms, when used with large numbers, these algorithms are extremely time
consuming. Therefore, people developed more direct ways to test for primality for
example the Fermat Test, the Miller-Rabin Test, and the Solovay-Strassen Test. Until the
development of the AKS algorithm, these tests were either probabilistic or did not run in
polynomial time. The modern way to test for primality 1s by using methods based on

properties of elliptic curves [11].

2.1 Ring Z,,
Definition 2.1.1. For n = 2, let Z,, be the set {0, 1, ..., n— 1}, where addition and

multiplication is defined to be addition mod n and multiplication mod n.

Definition 2.1.2. 7he multiplicative group Zy, is the set

{a €Z,|1 < a <n,andgcd(a,n) = 1}.

Definition 2.1.3. Let @(n) = |Zy|, the function o is called the Euler @ function, or Euler

fotient.

Example. The group Zg = {1, 5} and |Zg| = ¢(6) = 2.

The Euler ¢ function has some noteworthy properties.
(1) @(n) =n-—1ifand onlyif »is prime.

2) @(n)is even for all > 2.

Definition 2.1.4. 7The order of a modn, denoted ord,(a), is the smallest positive integer k

for which
=1 (mod #2)

where a and n are relatively prime positive integers.

Note that ord,(«) is finite.

Example. ords(13);
13! =3 (mod 5)

13°=3-3=9=4(mod 5)
13°=132-13'=24-3=12=2 (mod 5)
13*=13*-13'=22-3=6=1 (mod 5)

ords(13)=4
2.2 Fermat’s Primality Test

The Fermat Test, stated below, 1s a test based on Fermat’s Little Theorem.

Theorem 2.2.1 (Fermat’s Little Theorem)[3]. Let p be a prime. For all integers a

a? = a(mod p).

Example. Letp=11. The following chart shows the values of a paired with its

corresponding a'!'(mod 11). The values a'*(mod 11) were computed using successive

squaring.
a a'l(mod 11)
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10

This example shows that since 11 1s a prime number, Fermat’s Little Theorem holds true
for all integers @ with 1 < a < n. However, notice that the converse of Fermat’s
Theorem is not a true statement. That is to say that for a less than p, if a¥ = a(mod p), p

is not necessarily prime. Observe the following example.

Example. Let p = 35. The following chart shows the values of @ paired with its

corresponding a*>(mod 35). The values a®®(mod 35) were computed using successive

squaring.

a a®*>(mod 35) a a®*>(mod 35)
1 1 18 2
2 18 19 24
3 12 20 20
4 9 21 21
5 10 22 8
6 6 23 32
7 28 24 19
8 22 25 30
9 4 26 31
10 5 27 13
11 16 28 7
12 3 29 29
13 27 30 25
14 14 31 26
15 15 32 23
16 11 33 17
17 33 34 34

* = g(mod 35), this may according to

Notice the highlighted values for @ when a
Fermat’s Little Theorem, lead one to believe that 35 is prime. Looking at @ = 5, one has
53% = 10:mod 35; , which shows that 35 is composite. Since 35 =5 7, itis in fact
composite. For larger numbers, however, it might not be possible to recognize the prime
divisors quickly. Both 6 and 5 have a formal name. We call 6 a Fermat liar for 35,
because it leads one to conclude that 35 is prime. Similarly, we call 5 a Fermat witness

for 35, because it is a witness that 35 is in fact composite [3].

Definition 2.2.2. For any composite integer n, an integer a is a 'ermat liar for n

a™ =a modn’.

Definition 2.2.3. For any composite integer n, an integer a is a F'ermat witness for n

a™ £ a (mod n).

These observations gives us the following test.

10

The Fermat Primality Test.
Input: # (a positive integer to test for primality), 4> 1 (number of iterations to check for
primality)

1. Pick an integer @ randomly between 1 and 77 -1,

2

. If a™ # a(mod n) then return composite.

. Repeat ktimes, steps 1 and 2.

4

=

. Else return probable prime.

This algorithm takes a given positive integer # and randomly picks an integer a between
1 and # — 1 to check if Fermat’s Little Theorem holds true. If the theorem does not hold
true, then # is composite. However, if the theorem does hold true, it is not guaranteed
that # is prime, because integer a could be a Fermat Liar. Thus, the algorithm outputs
probable prime. To assure that the test outputs the most accurate results, the algorithm
runs this test & times, which will increase the probability that the outcome is correct.

Notice that returning to step 1 allows « to be the number that was already used for testing.

In the previous example when # = 35, the Fermat Liars for 35 are 1, 6, 14, 15, 20, 21, 29,

and 34. The probability ofi choosing a Fermat Liar for 35 is % = %. Now assume the test

runs two times. The probability of choosing a Fermat Liar both times would be % . % =

16 . : o :
= Ifithe test repeats & times for the same scenario, the probability of returning probable

k
prime for 35 1s (%) , hence, for large 4 this value quickly approaches zero.

Note that 1 and # — | are always Fermat liars for n. The Fermat Test has a bound for the

probability of error for any given composite 7. Let /77, be the set of Iermat liars. This set

11

is a subgroup of Z;, because it has the multiplicative identity 1 and it is closed under

multiplication (since the group is finite, inverses exist).

Theorem 2.2.4. Given that there is at least one Fermat witness, the probability of

K
. ; . - . . . 1
Fermat’s Primality Test being wrong for a composite number n is less then (E) i

Proof. Assume there is at least one Fermat Witness in Z,,. Therefore,
|Fp| < |Zy]
and
|F; | divides | Zr,]|.

Since |Z,| <n—1lor|Z,| <n—2,

7| < &2

Therefore, the probability that there is a Fermat Liar given one iteration, is

Hn—2
2 -2 _ (H_G)

n-3 2(n-3)

<z
2
. . . Ly . . 1 k
So with £ iterations, the probability of a Fermat Liar is less than (E) o

Recall that Theorem 2.2 4 makes the assumption that there exists at least one Fermat
witness in the set of Zy,. However, for # composite there is not always a I'ermat witness

in Z;,. We call these values Carmichael numbers.

Definition 2.2.5. A Carmichael number is a composite integer c that satisfies
a® = a (mod ¢)
Jor any positive integer a <. c.
Therefore, a Carmichael number will always return probable prime when really it is a

composite.

12

The first five Carmichael numbers are 561, 1105, 1729, 2465, and 2821 [3].

2.3 Polynomial Ring Z,,[X]

Notation 2.3.1. We let Z,,[X] denote the ring of all polynomials with coefficients in Z,.
Example. In Zs[.X], one has

8X® + 14X + 3 =3X°+4X+ 3 in Zs[X].
Theorem 2.3.2, Let v be a positive infeger, then
X' = X" (mod X = 1) in Z,,[X].
Example. In Z,[X], one has
12X + 13X + 3X* + 16 (mod X°-1)
= 5X7 46X+ 3X% + 2 (mod X°-1)
= 6X" + 8%+ 2 (mod X°-1)

= 6X'+ X° 42 (mod X°-1).
Theorem 2.3.3 (Fermat’s Little Theorem for Polvanoniials). A positive integer n is prime

if and only if one has

X+a)=X"+ainZ,[X]
for all positive integers a such that a <n and ged(a, n) — 1.
Proof.

= Assume # is prime. We must show that (X'+ @)" = X"+ a (mod ») for all a such that

a <nand ged(r, @) = 1. By the binomial theorem one has

n
1

n

X+a)*=X"+ ()X”‘la + (Z) X" 2a? .+ ()){a,“‘1 +a™.

n—1

13

Since # is prime, one has for all integers kA such that 1 <k <pn,
(3) = 0 (mod n).
By Fermat’s Little Theorem
a™ = a (modn).
Therefore, the congruence (X + a)" = X"+ a (mod #) holds.

< Assume » is not prime. Show that (X + a)" # X" + a (mod »).
By the Binomial Theorem
X+a)"=X"+(DX"a+ ()X % ..+ ([)Xa" ! +a™
Let 4 be a prime divisor of 7 and let s be a positive integer such that k5| n but 571 } n.

Consider each individual term

n) k n(n—l)(n—z)---(n—k+1)ak
A= k(k—1)(k=2)-1

Let’s compare the numerator and the denominator. The integer » is divisible by k£° but
not k51, Since a is relatively prime to 7, the value a” is not divisible by #&. The
remaining values w— 1, n—2, ..., n—k+ 1 are also not divisible by %, since » 1s divisible
by k and there are only 4 — 1 < » numbers. Therefore, the numerator is divisible by k£°
but not K%+ The denominator is only divisible by k*. The equation can now be
rewritten as

k() n-1)n-2)-(n—-k+1)
I (k=13 (k=231

Thus, this expression is divisible by k¥~ but not by k. This means that this expression
1s not divisible by #. Therefore,

(3)a* £ 0 (mod n),
and

14

(X +a) 2 X'+ a(mod n),
Note that this proof shows that all monomials of degree & are not congruent to 0 mod #.

2.4 Successive Squaring

Successive squaring is the most effective way to compute exponents of the form o',
where & is a positive integer. We usc the process in programming the AKS algorithm

later in this paper. Tt is best explained through an example.
Example. Consider the value 3!,

First convert 11, the exponent, into it’s binary form.

11=1011,
Thismeans 11=1-2"+0-22+1-2'+1-2°=8+0+2+1,
Therefore, 3'' = 35971 = 3% 39 32 31 Yence all exponents are powers of 2.

Next evaluate each of these values by repeatedly squaring 3. Repeat the squaring process

until the digits of the binary number have been exhausted.

3'=3
3%=9
3'=32.32=9.9=8]

3% =3%.37=8181=6561

Now the required values have been calculated.

3¥3%31=6561-9-3 =177147

15

In the AKS algorithm, the rules of successive squaring are applied to polynomials in the

polynomial ring Z,, [X].

Example, Evaluate (X + 3)5 in Z,1[X]. We will apply successive squaring to calculate,
Once again convert 5 to binary.
5=101,=1-2°+0-2°+1-2' =4+ 0+1
The result is (X +3)* " ' = (¥ + 3)* (Y +3)",
Now we calculate squares, and reduce the coefficients mod 11.
(X+3) =x+3
(X+3)=X+6X+9
X+ =(X+3) (X +3V=(F+6X+ NN +6X+9)
=X+ X+ 10X +ox+4.
Hence,
(X+3Y = +3)' (X +3) =X+ 8+ 10X +oX+4)(X+3)

=X +4x'+ 2% +6X +ox+ 1.

As seen above, the result of this process quickly escalates. In order to slow the
escalation, the AKS algorithm takes the modulo of these polynomials by a specific

polynomial with degree r. To see how this works, look at the following example.

Example.
(X +2)" (mod X* = 1) in Z11[X]
From the previous example 11 = 1011, =8 +0 + 2+ 1.
At the beginning of squaring, reduce mod X' — 1 and mod 11 at each step so that it will

reduce the size of the polynomial and be more efficient in calculating the result.

le

(X+2) =x+2
(X+2Y =X +4X+4.
Notice that so far neither the coefficients nor exponents can be reduced.
X+ 20 = (X +2)7 (X +2)° = (P +AX+ 4 X +4X +4)
= X'+ 8X + 24X +32X + 16.
Since the polynomial is in Z;; [X]. the coefficients reduce modulo 11 and we get
=X+ 8P + 2 + 10X+ 5,
In addition, working modulo X* — 1, the exponents can also be reduced.
=1+8X +2X +10X+5.
Finally, combining like terms we get
(X+2)'=8X +2X*+ 10X+ 6
X+ 20 =(X+ 20V +2)" = (8X + 207 + 10X+ 6)(8X° + 2X* + 10X + 6)

= 64X° + 32X + 164X" + 136X° + 124X7 + 120X + 36,

Since the polynomial is in Z{[X], the coefficients reduce modulo 11, and we get
= 9X° + 10X° + 10X* +4X° +3X° + 90X + 3.
In addition, working modulo X" — 1 the exponents can also be reduced
=0X*+ 10X + 10 +4X° + 33X + 9X + 3,
Finally, combine like terms and reduce any coefficients modulo 11 if needed. We get
—4X° + 12X + 19X + 13
=4 + X +8X+2.
Now evaluate the original polynomial (X + 2)*".
X+ = (X +2) (X +2) (X +2)

= (4 + X+ 88X+ 2 X +H4X + 4} X +2)

17

—AX° + 25X + 62X+ 94X + 116X% + 88X + 16
=4 +3X 76X 66X 16

—6X + 10X>+3X+ 1.

The following algorithm calculates powers if integers using the method presented by the
examples.
Pseudocode. Fast Exponentiation using successive squaring for integers [2].

Input: Monoid M, element a of M, and positive integer #.

1. u=n.

2. s=a.

3 c=1.

4. While # > 1 repeat.

5. it & 1s odd then c:= c*s.
6. 8= s*s mod #.

7. w=ul2.

3. Return ¢.

The above pseudocode computes ” in M. However, the focus of this work is on powers
of polynomials. Therefore, we made the following adaptations so that the pseudocode

works for polynomials.

Pseudocode. Fast Exponentiation of Polynomials
Input: Positive integers #, r, and a

1. w=n.

18

2, s=x+a(mod n).

c=1

L]

4. While # > 1 repeat.

5. if & is odd then ¢:= (¢*s mod ¥ — 1) mod #; w=u - 1.
6. s=(s*smod x"— 1) mod #.

7. w=u/2.

8 Return ¢.

The above algorithm computes (x + a)" (mod X" — 1).

19

Chapter 3: AKS Primality Test

Pseudocode. AKS Primality Test. [1]

Input: Integer s1> 1

1. If (n= a’ forain N and b > 1), output composiie.

2. Find the smallest » such that ord,(r2) > logzn.

3. If 1 < ged(a,m) < n for some a < r, output composite.
4. If n < r, output prime.

5. Fora=1to [\/qb(r) lognJ do
if(X+a) X +a(mod X —1)inZ,[X], output composite.

6. Else, output prime.
3.1 Proof of Correctness

The AKS Primality Test is based on the following theorem.

Theorem 3.1.1 (AKS Theorem). Assume that n and v are positive integers satisfying the
Jollowing conditions:
1. ord{m) > logzn.
2. r<nandgedlam) =1 foralla <r.
3. (X +aY' =X"+a(mod X — 1) in Z,[X] for all integers a from 1 to
[m logn|.

Then nis a power of a prime.

Notice that this theorem looks similar to Theorem 2.3.3. However, Theorem 2.3.3 states

that the congruence in part 3 of the AKS Theorem will hold true for all values of » and @

20

if and only if # 1s prime. Note that for some composite numbers, there may be some
values of @ and r for which this congruence is also true, but it will not hold true for all
values of @ and r. However, in general it is not possible to check every value for r and «
in polynomial time. Therefore, Agrawal, Saxena and Kayal made a great discovery when

they limited the set of possible values of @ needed to verify primality.

Assuming Theorem 3.1.1, we prove that the AKS Primality Test is correct. The first step
of the AKS Primality Test is to check if 7 is a perfect power of a number other than itself.
By the AKS Theorem, 7 is a perfect power of a prime if the three stated conditions hold.
Step 1 rules out the case for which # is a perfect power of another number. Therefore, if
the hypothesis of the AKS Theorem applies, and 7 1s not a perfect power, then # must be

prime.

In step 2, the algorithm finds the specific » value that will satisfy condition | of the AKS
Theorem. In order for the AKS Primality Test to run in polynomial time, we need to
make sure that there is a small enough upper bound for ». We also have the following

lemma.

Lemma 3.1.2. 7here exists an r < max{3, [log>n|} such that
ord,(77) > log? n.
Proof. When # =2, the value r =3 works. So, assume 7 > 2, then
[log®n] =[log®3] > 10.
Therefore, the max{3, [log®n]} is [log® n].
By the AKS theorem if # > 3, there exists an r < [log®n] such that ord, (1) > log? n.

Consider the smallest integer » that does not divide the product

21

log? :
nllogBl l'lllflg Heni — 1y,
where B = [log® n]. Observe that the largest value & for any integer of the form m* < B,
where m > 2 is k < |log B|. Sinceitis desired that r < B, any prime divisor of # is

going to have a power of at most |log B|. Therefore, since 7 does not divide nl'°8#!,

there must exist at least one prime divisor of r that does not divide ged(r,#). Thus, the

quotient also does not divide the above product. Since r is chosen to be the

r
ged (rn)

smallest # that does not divide the product, it follows that ged(#,#) is 1. Also, since r does
not divide any of the values (nf — 1) for 1 < i < log? n, one has ord,(1) > log? n.

Finally,

[log? n] 1,)
nllog Bl | | nf—1< pllogBl+zlog"n(log®n—1) . log*n Hlog®n
i=1

And 2/99°" < the lem of the first log’n numbers.
Therefore,

r < [log®n]-

In step 3, the algorithm checks the integers less than or equal to # to see if they have any
common factor with #, 1.e. if there is a relatively small divisor of #. If a common divisor

is found, then # is composite and step 3 returns composite.

Step 4 checks if 7 is less than or equal to ». If #2is less than 7, then # must be prime,

otherwise step 3 would have found # to be composite.

Step 5 checks the final condition of the AKS Theorem. If for any value of ¢ the

condition doesn’t hold true, by Theorem 2.3.3 and the AKS Theorem # is composite. If

22

for all the specified values of a, the condition holds true then by the AKS Theorem # is

prime. This proves that the primality test is correct, assuming theorem 3.1.1.

Now, in order to prove Theorem 3.1.1, we assume conditions 1 through 3 of the theorem

hold. We must show that # 1s a power of a prime.

From condition 1, ord,(z) > 1. This means there exists a prime divisor p of # such that

ord,(p)> 1. Thisimplies n, p € Z’,..

Since for g|m, a = b (mod m) in Z,,, = a = b (mod g) in Z, then
(X+ay =X'+a(mod X' - 1)in Z,[X]

forall 1 €<a=< [qu(r) lognJ.

By Theorem 2.4.3, since p 1s prime

X+ay =X +a(mod X' —1)in Z,[X]

forall 1 €<a=< [,/qS(r) lognJ.

Both n and p are introspective numbers for the polynomial X) = X + a as defined below.

Definition 3.1.3. For a polynomial f{.X) and a positive integer m, we say that m is
introspective for fXyif

[AX]" = AX") (mod X' — 1) in Z,[X].
The following two lemmas describe properties of introspective numbers.

Lemma 3.1.4. /ntrospective numbers are closed under multiplication.

23

Proof. Let m and n be introspective for fAX). We must show
[FX)]™ = F(X"™)(mod X™ — 1) in Z,[X].
Since m 1s introspective for fL.X), we have
[FEOI™ = [F(X™)]"(mod X" — 1) in Z, [X].
Since # is also introspective for AX), the variable X is replaced with X™ to get
[FX™)]" = FXT™)(mod X™ — 1) in Zy [X].
Since X" — 1 divides X™" — 1 in Z,[X], the above outcome can be rewritten as
[FX™)]" = f(X")(mod X" — 1) in Z,[X].
Therefore,

[FEO™ = FX™)(mod X™ — 1) in Zy[X]

Lemma 3.1.5. The set of polynomials for which m is introspective, is closed under

multiplication.

Proof. Let g(X) and fX) be polynomials for which »7 is introspective. Then

[f(X)gX)]™ = [fX)]™ g™ = g(X™)F(X™)(mod X7 — 1) in Zy [X]

Let / be the set

I={n'p/

i,j =0}

The set /is a set of introspective numbers for all polynomials in the set
P={[Th=o(X + a)% |e, = 0}.

Notice that 7 and P are only sets. These sets will be used to define two groups. The

reason for defining these two new groups is to find an upper and lower bound on the size

24

of the groups. This is essential to reaching a contradiction in the proof. Let G be the
group defined by

G={imodr|iel}

This group consists of the residues of / mod #. By doing this, a group is created because
n, p € L' it is the subgroup of Z’. generated by # and p. It follows that (v is also

generated by #/p and p. Thus we may replace 7 with the set

n\! ;
— iz i i
/ {(p) (p) |z,; > 0},
The order of this group we denote by . Note that since ord,(#) > logzn and 7 > ord,(n),

2
we have 7 > log™n.

Now, make the set £ into a group by deriving their inverses. Let the polynomial A(x) be
an irreducible factor of the rth cyclotomic polynomial in Z,[X]. The polynomial A(x) has
order ord,(p) (See Lemma A1 of the appendix). Let us take the set 77 modulo /(x) in
Z,[X], this will give inverses both the coefficients and exponents. Notice that the group
Hisgenerated by X, X+ 1, X+ 2, . X+ [mlog nJ in the field F'= Z, [X]/h(x).
This group can be thought of as the group of all the residues of polynomials in 7 mod

h{x).

Now let’s consider the lower and upper bound of the size of group A.

Lemma 3.1.6. |{| > (t + [V ?5(1”)110g nJ)

Proof. Since A(X) is a factor of the rth cyclotomic polynomial (J,(X), then X'is a primitive

rth root of unity in £, First, observe that the polynomials in the group P with degree less

25

than 7 as defined before, are mapped to distinct elements in . Let A.X) # g(X) € P and let
the degree of fand g be less than . Suppose AX) = g(X) in the field . We show that AX)
£(X) by finding a contradiction.

Letm € 1, then

[AXN]" = [g(X)]” in F.
Since m is introspective for fand g, and A(x) divides X" — 1, then
SN = (X",
This implies that X™ is a root of the polynomial
QN =fN—-g¥forall me G,
Since G is a subgroup of Z7., ged(m,r) = 1 and thus each such X is a primitive rth root of
unity. Since there are 7 elements in (7, there are 7 distinct roots of (Y} in /. However,

2(X) and (LX) were picked to have a degree less than /. This 1s a contradiction of degrees.

Therefore, AX) #g(X)in F.

Since [ﬁ/ ¢(r) log nJ <~/ log < rand p > r, we know that the integers 1 through

| /¢ () logn| are distinct in F. So, the elements X, X+ 1, X +2, ... X+ |/¢(r) logn]
are all distinct in 7. Now observe the polynomials with degree less than7— 1. The
polynomial

AX) = an X +a X+ X+ al X+ agX’
such that 0 <&, < |/ (1) logn|,
f(X) - ZL\/Qb(T)]OgnJ a,;xi.
The total possible set to choose from has ([ﬁ/qb('r) log nJ + 1)+ (t - 1) elements, which is

1+ /¢ (r)logn|. Now choose 7 1 of these elements. Therefore,

26

|H| > (t+ lmlognl)”

t—1
Having found a lower bound, now we find an upper bound.
Lemma 3.1.7. [f i is not a power of p, the size of H is bounded above as follows:
|H| < nVt

Proof. Consider the following subset

={® plo<ii<|vil}

If 72 is not a power of p, then number of distinct elements in 7 is equal to (V] + 1)2 >t
Since the order of ¢ 1s ¢, at least 2 numbers in 7 must be congruent modulo r, Let these
be #71 and »2 with w1 > pr2. So, one has
X™ = X™z (mod X'-1)
in Z,[X]. Let fX)beinP. Then
[FCO]™ = F(X™) = f(X™2) = [f(X)]™2 (mod X' - 1)
in Zp[X]. Thus,
FCOI™ = [F (X)]™
inl" Thus, AX)inHisarootof O'(¥)=Y™ — Y2 in["
Since AX) is arbitrary in A, the polynomial (’(Y) has at least |H| roots in /*. The degree

of O'(Y) is

This shows that |H| < n¥t
Finally, we prove the AKS Theorem (Theorem 3.1.1).

27

Proof. |H| = (ffi

> (HHMIOEHJ) since / >\t logn

|vElogn]
2[\Tlogn|+1 :
> (el) since 7>Vt logn|
> plvtlogn|+1 since |Vt logn| > |logn] = 1
> nVt

Bylemma 324, |H| < nVEifn is not a power of p. Therefore, =p}€ for some k> 0.-

3.2 Proof of Time Complexity

Theorem 3.2.1. The AKS Algorithm has a time complexity of O(log” *“n).

Proof. Let us observe each specific step of the algorithm and estimate the function

describing the bit operations.
Step 1 checks to see if # is a perfect power. This step has been proven to take O(log”™).

Step 2 finds the smallest such that ord.(») > log’n. Testing r number of values to see if
#° # 1 (mod r) for all £ < log’n for a particular » will take at most Olog™"n)
multiplications modulo 7, So, this step will take O(r log® “n). Since there is an upper

bound for r, namely log’n, the total time complexity for this step is O(log”).

Step 3 calculates the greatest common divisor between # and @ for | <a <r. This step
will calculate the greatest common divisor r different times. Each greatest common
divisor computation has a time complexity of O(log 7). Therefore, this step has a time

complexity of O(log), or O(log” n).

28

Step 4 checks to see if # <r. The time complexity of this is O(log 7).
Step 5 checks the congruency

(X+tay £X +a(mod X' - 1)

for a from 1to|\/¢(r) logn|. Forthe equation, |\/@(r) logn| different equations will be

checked. Each equation requires O(log 7)) multiplications of degree » polynomials with

coefficients size O{log n). So, each equation can be verified in O(r log‘2 1) bit
operations. This means the total run time of step 5 is O(r/@ (1) log®) = O¢** log®)

= O(log®? “n).

Since the last step dominates all the other time complexities, it is therefore the time

complexity of the AKS algorithm as written in Primes is in P.

3.3 Programming The AKS algorithm

We have written an executable code to implement the AKS Primality Test following a
series of pseudocodes described below. The Maple code for each step can be found in

Appendix.

In step 1, the number # is checked to see if it is a perfect power of a prime.

29

Pseudocode. Perfect Power Test

Input: n (a positive integer to test for perfect power)

1. Set b:=2.

2. Set =1, and u:=n.

3. Seta = WTU :

4. Ifa=lora=u,setb=»5b+1,1=1 u:=n.
5. If 2°> n, return not a perfect power.

6. If a"= n, return perfect power.

7. If &’ > n, set u= a; otherwise, set I:=a.

8. Return to step 3.

Step 2 finds the smallest 7 such that ord{#’ > log’n. There are two parts in programming
this step. The first is finding the order function, and the second is finding the specific

value of r.
Pseudocode. Multiplicative Order

Input: » and r (such that ged(n.7)=1) output ord.(n)

1. i=+. mod 7.

2. w=1.

3. If =1 then return w, break.
4. Else i=(i*»n mod r w=w+1.

5. Return to step 3.

30

Pseudocode. The » value

Input: #» (the value for which you want to calculate)
L. r=12.
2. If ged(r7)=1 and ord(s,7 > log’# then return r: break.
3. r=r+1.

4. Return to step 2.

31

Chapter 4 Research and Results

In this chapter we will present further results related to the AKS Primality Test presented

in Chapter 3.

We proved that the 7 value has an upper bound of log*(7). This implies that # < log®n].

Lemma 4.1 follows when we solve for n.
Lemma 4.1. Step 4 may be omitted from the AKS algorithm for n > 5,690,034.

Proof. Assume the algorithm outputsprime in step 4.Since < log’n and step 4 checks
n < r, it follows that
n < llog°nl.
So, by the solving for n, one has
n < 5,690,034 -

Consider the following graphs.

Figure 3

)

|
(NI
|

—_—
0 1w 10%20% | 0%3, % 105, = 10P5. x 10%. % 1077, = 10°

it

32

Figure 3 shows the line fr1) = 1, and Ain) = log’n. We see that the point of intersection is
(5690034,5690034). This shows that 5,690,034 is theoretically the highest possible
number for which #(n) is larger than n. However, actual computer calculations showed

the following results.

Theorem 4.2. The largest positive integer n for which v(n) > nis 81.

Proof. After running the following algorithm, the output proves theorem 4.2.

Below we present the Maple code for checking all values 77 < 5,690,034 to see if () > n.

| For n from 2 to 5690034 do

2 if # < r(n) then print(n, r(#n));
3 end if}
4 end do;

After executing the above Maple code, we received all possible outputs in the following

table.

2,3 10, 17 18, 29 26,29 38,47
3.5 11,13 19,23 27,29 40, 47
4,11 12, 17 20, 23 28,41 41, 47
5,7 13,19 21,23 29,41 45,47
6,11 14, 17 22,25 30,41 49, 67
7,11 15,19 23,43 33,43 51,33
3,11 16, 47 24, 31 35,37 64, 83
9,23 17,23 25,47 36, 59 31, 83

Lemma 4.3. 7The smallest positive integer i for which n > r(n) is 31.

33

Proof. By inspection, the above output shows this is true.

Since the results above show us that the largest value for which #(#) > #is 81 and not
5,690,034, the AKS algorithm can be rewritten as follows.
Improved AKS Algorithm.

Input: Integer # > 81.

L. If (n = a” for @ in N and #>1), output composite
2. Find the smallest # such that ord,(x) > 10g2n
3. If 1 < ged(a,n) < n for some a < r, output composite

4. Fora=1to [‘/q’)(rjlognj do

If ((X + a)" # X"+ a (mod X'-1,a), output composite

5. Else, output prime

Notice that the original step 4 has been omitted from the algorithm by using Theorem 4.2.
Another way to simplity the algorithm is by combining step 3 with step 1. The resulting

algorithm is below.

Improved AKS Primality Test
Input: Integer # > 81

1. If n1s a perfect power, output composite,

3.4f 1 < ged(r,n) < n output composite.
4.1f ord,(») > log™n then breatk,

else ==+ 1 and return to step 3.
5Fora=1to [,fqb(r) lognJ

34

If X+a)"2 X +a mod X'-1.n), output composite.

6. Outputprime.

Since Theorem 4 2 states that the lowest value is 81 and not 5,690,034, it makes one
wonder if there is an upper bound on the # values that is less than logs(n'). The proof in
Chapter 3 is based solely on the original paper Primes is in P [1] Since the paper was

published the following Theorem has been proven.

Theorem 4.4. 'or all sufficiently large n, there exists a prime number
r < 8[logn]3(loglogn)® such that r divides n or (r does not divide n and) ord,(n) >

4[logn]?.

However the data collected suggests that there 1s a smaller upper bound. The following
graph shows the values from 1 to 100,000 plotted against their r values.

1000 Figure 4
RO
(01 —

rla)

400

201 o

T T T T T T T T T l
] 200 40000 LN ROODD IRRIRIRIRIN]

I

Figure 4 shows that there are two distinct parts in the area of interest. The upper part is
made up of the perfect square » values and the lower part is made up of the non-square #

values. Both parts have clear lower bounds that we are describing below.
Theorem 4.5. A lower bound of the r(s) is 2 + log*(n).

Proof. The order of 7 modulo 7 is at most » — 1.

ord,(s1) <r—1
r > ord(m+1 > 1+ log*(n)
So,
r=2+ logz(n) N
Theorem 4.6. For any perfect square n > 1, /(1) > 1 + 2log'n.

Proof. Let # = m” and r = r(s°), then
r > 2log*n = 2log* m?,
and
ord,(m”) > log’m".
Note that {m?) € {m} € Z;. and that the order of Z;. is (7). Also the following

equation shows the relationship between {m?) and {m).

[{m)| if |{m}| is odd
[{m?)] = {1

> [{m}| if |[{m)}|is even
Look at the case when (m?) = (m) = Z}.. If these are equal then the order of {m) is odd,
because [{m?}| = [¢m}|. This would imply that @(r) is also odd. However, @(r) is

never odd for r = 3. By this contradiction we see that they are not all equal.
36

Therefore, (m*) is a proper subgroup of Z,, so
m?) <2 p
m*y < - p(r
=59
1 1
log®m® < [{m?)| < S =50—1)

=7r>1+2log°n,

Since the lower bound is logarithmic and the previously proved upper bound is also

logarithmic, it makes sense to change our graph to have a logarithmic scale.

The following graph has the values of log plotted with its respective r value, along with

its upper bound of log» and lower bounds 2 + log'n and 1 + 2log #.

Figure 5

b0

S04) .
+ Jimy=log’n

- fin) = 2log’
i A ogH

- fi) = log*n
Fi)

300
2010

100

log(#)

Figures 6 and 7 show two graphs, one of the squares and one of the non-square values. It
is interesting to notice that when checking primality by factoring naively, one only
checks up to the floor of the square root of the number. This means the largest factor is

equal to the square root, if the number is a perfect square.

37

Figure 6 Plot of Perfect Squares Figure 7 Plot of Non-Squares

ST0) 300+
L]
--=:
400 _ 400 4
-
7]
() Ha) o
= |
— 200 . . i—
e
- :n-_
e K—
100 - 100 T
g
e
“ 1 T 1 ” T T 1
] 5 (K] 3 1 g1 5
log(r) login)

Analyzing our results we can make the following two conjectures
Conjecture 4.7. An upper bound for r(n’ is 3log n for all positive integer n.

Conjecture 4.8. For any infeger n such that n is not a'perfect square, r'n, < 2log'n,

exceptn = 2,23 and 335.
The above conjectures have been verified for n < 7,703,162.

If Conjecture 4.8 is indeed true, then the following corollary will also be true regarding

the time complexity of the AKS algorithm.

38

Corollary 4.9. The complexity of the AKS algorithm is O(log® * n) in it operations.

Proof. Recall the previous proof of the time complexity of the AKS algorithm. Notice
that only steps 2, 3, and 5 of the AKS algorithm are dependent on the » value. Soto

prove this corollary one only needs to look at those three steps.

Step 2 finds the smallest 7 such that ord(») > log’#. Testing r number of values to see if
n* % 1 (mod r) for all k < log*n for a particular r will take at most O(log®' %)

multiplications modulo #. So, this step will take Oz log*™“i7). Since there is an upper

bound for r, namely 2log”n, the total time complexity for this step is O(log*).

Step 3 calculates the greatest common divisor between # and ¢ for 1 <a <. This step
calculates the greatest common divisor r different times. Each greatest common divisor
computation has a time complexity of O(log #). Therefore, this step has a time

complexity of O(r log#), or O(log* »).
Step 5 checks the congruency

(X+tay ZX +a(mod X' - 1)
for a from 1 to|,/¢(r) logn|. For this equation we need to check |/@(r) logn| different

equations. Each equation requires O(log #) multiplications of degree r polynomials with

coefficients size O(log 7). Hence, each equation can be verified in time O(r log®)
steps. This means the total run time of step 5 is O/ (r) log’ “n) = O(r** log’) =

O(log"*n).

Since step 5 is still the dominant time complexities, it is therefore the time complexity of

the AKS algorithm,

39

Chapter 5: Future Work

In this paper, we proved that there are lower bounds on the r value of the AKS Primality
Test for both the perfect squares and the non-squares. Namely, a lower bound of the r
values is log’n. If 7 is a square there is a lower bound of 2log*#. We also showed by
graphical representations that there appears to be an upper bound of 2log™ on the »

values.

Future possible improvement of this work could be to program the pseudocode in a more
efficient programming language. This would give us the opportunity to generate longer
output sets and see if the conjectures still hold, possibly proving that both conjectures are
true. It would also be interesting to generalize the results so they would apply to any

algebraic group.

40

Bibliography

[1] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. 160, 2002,
781-793.

[2]J. Elliott, Lectures on Abstract Algebra, unpublished class notes, 2010.

[3] M. Dietzfelbinger, Primality Testing in Polynomial Time, Springer-Verlag, Berlin,
2004.

[4] R. Crandall and C. Pomerance, Prime Numbers: A computational Perspective,
Springer Science + Business Media, Inc, New York, 2005.

[5] Bressoud and S. Wagon, A course in computational Number Theory, Key Publishing,
New York, 2000.

[6] Q. Cheng, “Primality Proving Via One Round In ECPP and One Iteration In AKS.”
Available from the World Wide Web:
<http:.//www.cs.ou.edu’%7Eqcheng paper‘aksimp.pdf>

[7] R. Crandall and J. Papadopoulos, On the implementation of AKS-class primality tests
University of Maryland College Park, March 18, 2003.

[8] R. Brent, Primality testing and integer factorization, Australian Academy of Science,
1991, 14-26.

[9] F. Bornemann, PRIMES is in P: A Breakthroough for “Everyman” Notices of the
AMS, Volume 50, Number 5, 2003.

[10] Nicodemi, Olympia, Melissa A. Sutherland, and Gary W. Towsley. An introduction
fo abstract algebra: with notes to the future teacher. Upper Saddle River, NJ:
Pearson Prentice Hall, 2007.

[11] Koblitz, Neal. 4 course in number theory and.cryptography. New York: Springer-
Verlag, 1987.

41

http://www.cs.ou.edu/%7Eqcheng/paper/aksimp.pdf
http://www.cs.ou.edu/%7Eqcheng/paper/aksimp.pdf

Appendix

Maple Code for Successive Squaring

1 multiplication := proc (n r, a)

2 U =n,

3 s = mod(x + a n),

4 c=1;

5 while 1 < u do

6 if type(u, odd. then

7 ¢ = modf{rem(expand{c*s). x'-1 x) n);
8 u = u-1

9 end if

10 s = mod(rem{expand(s*s). x'-1. x), n);
11 u = (1,2)%u;

12 end do;

13 return ¢;

14 end proc:

Maple code for Perfect Power Test

1 perfpow = proc (n, b= 2; /=1, u = n,

2 while 2”b <=n do

3 a = tloor{[(1:2)*I1H{1:2)*u),

4 ifa=lora=uthenb = b+1;/:= 1, u = n; end if
5 if a"b = n then print(true); break; end if,

6 ifn<a"bthenu = a; elsel .= a; end if

7 end do;

8 if a”b <> n then print(false) end if,

9 end proc;

Maple Code for Finding the order of # modulo

1 ord := proc (x y, i:= mod{x y):

2 for w do if i = 1 then w; break;
3 else 7 .= mod(i*x y);

4 end if,

5 end do;

6

end proc:

42

Maple Code for finding the r value

-] O G s W N =

r .= proc (n) for » from 2 do
if ged(r, n) =1 then
if evalf(log[2](#)"2) < ord(n, r) then r; break:
end if:
end if;
end do ;
end proc;

AKS Primality Test

D 00 -1 N W R W))

f =20
if perfpow(n) then f ;= 1; print{composite) end if;
if f = 0 then for r from 2 do if n > ged(r, n) and ged(r, n) > 1 then f:= 1;
print(composite)
else if ord(n, r) > evalf(log|2](n)"2) then break; end if, end if; end do;
end if;
if £ = 0 then for a to 2*ceil(r*.5)*ceil(log[2](n)) do if multiplication(n, r, a) <>
x™(mod'(n, r))+a then f := 1; print(composite) end if end do end if; if f = 0 then
print(prime) end if;

Lemma A.1. /(x) has degree ord,(p).

Proof: Let (J,[x] be the rth cyclotomic polynomial 1n £,

Let A(x) be an irreducible factor of O,[x] and let £ be the degree of #(x). Show that k=

ord,(p).

Since A(x) 1s irreducible it follows that #,|x]|/A(x) is a field with order pk. Notice that a

multiplicative subgroup of #,[x]/A(x) 1s cyclic with a generator g(x). Now,

gx)? = g(x?)

g0 = g(x)

43

g0"" = g(x)

g(x)Pl=1
Thus the order of g(x) is p* — 1 and since the order of any element divides the order of the
group one has (p* — 1)|(p? — 1). Therefore, k must divide d. Since A(x) divides (X" —
1) and

X =1 €F[X]/h(x).

Thus, the order of X is #, and since # is prime and x is not congruent to 1, # divides (pk -
1) or in other words p* = 1 mod . Thus, d|k so k£ must equal . Therefore, each

irreducible polynomial much be ord(p) .

44

