On Gracefully Labeling Paths

A Thesis Presented to
The Faculty of the Mathematics Program

California State University Channel Islands

In (Partial) Fulfillment
of the Requirements for the Degree

Masters of Science

by
Cory C. Yi

October 31, 2011

© 2007

Cory C. Yi

ALL RIGHTS RESERVED

Signature page for the Masters in Mathematics Thesis of Cory Chong Yi

APPROVED FOR THE MATHEMATICS PROGRAM

=

_@f b / el W/ L/

Dr.Cynthia J. Wyeld, Thesi_s. Advisor Date
/‘}’:{’l \) .'; (/ 4
P 5 / — e
7 7 W L
nittee Date

Dleﬁesf(Comn
_ 2

APPROVED FOR THE UNIVERSITY

/:‘ ¢ /7 /- 7=/

Dr Gary A, Berg, A;)(P Extended University Date

Abstract

An unproven claim is that all trees may be gracefully labeled. However there are some
special classes of trees that are proven to have graceful labelings. A path is the simplest
form of a tree, and it has been proven that all paths can be gracefully labeled. The focus
of this study is on the characteristics of gracefully labeled paths and a method for
producing graceful labelings of B, with given properties. We report on progress towards
a proof that labelings of paths of any size may assign the label 1 to any node and bhe
completed as graceful labelings. Representations such as the Edge Tree Diggram and the
Matrix-Entry Choosing methods are developed. We also prove that certain assignments
of labels to the first two vertices of a path guarantee that a labeling may not be
completed to form a graceful labeling. Finally we develop a computer program to
generate gracefully labeled paths to assist in examining the results and identifying

conjectures worthy of further study.

I. Introduction

A very well-known Graceful Tree Conjecture, also known as Ringel-Kotzig or Rosa’s Conjecture, which
states that all trees have a graceful labeling. Although there were many independent studies done in
attempt to prove the Graceful Tree Conjecture, it still remains as an open problem. However, some
progress has been made including proving some specialized classes of trees have graceful labelings, and
with the aid of computer programs, all trees with vertices up to 29 vertices have been proven to have
graceful labelings. The classes of trees that are known to have graceful labelings are described in
section IB. The simplest form of these trees, paths (sometimes called chains), is the focus of this study.
We develop an algorithm to generate graceful labelings of P, and identify common properties of
gracefully labeled paths. A one such property leads to a problem known as “labeling completion”.
Given an assignment of labels to same vertices of a path, one asks whether labels may be assigned to
the remaining vertices in a way that produces a graceful labeling. We investigate one such labeling
completion problem, which states if a labeling f (P, satisfies f(v,) = 2and f(v,. = n - kfork = 3
then f may not be completed to form a graceful labeling. In later sections, we also discuss some tools
produced along the way to help investigate the graceful labeling problems. One such tool is a computer
program called Labelit that can gracefully label P, with properties specified by the user. This is
discussed in the last sections of the paper.

Examination of the collections of gracefully labeled paths produced by the Labelit application leads to
further conjectures regarding properties of gracefully labeled paths. We discuss such observations and
conjectures. So, the goal of this study is adding to what we already know about gracefully labeling trees
and building blocks that may be useful towards proving the graceful tree conjecture.

A. Graceful Labeling
A graceful labeling is an assighment of the integers {1 + n] to vertices of a graph such that, once each
edges is labeled with the absolute difference of its incident vertices, with each integerin {1:--n - 1jis

used once and only once (see FIG. 1).

FIG. 1 A graceful labeling of a graceful graph K,

A tree is said to be gracefully labeled if all n vertices of the tree are labeled with integers [1...n] such that
the edge labels induced by taking absolute difference between the two end vertices are exactly the set

[1...n-1] (see FIG. 2).
(4) @.
7\ 1
G 3)

FIG.2 Example of a gracefully labeled tree

B. Classes of Trees Known to have Graceful Labeling
Some specialized classes of trees proven to have graceful labeling are paths, caterpillars, m-stars, olive
trees, banana trees, tp-trees, and product trees. These classes of trees are described below.

1. Paths
A path, also called a trail or a chain, is a sequence of distinct vertices x; X; ..., X, such that (x; x,),
(le x3), . (xn_l, xn] are the edges of the graph. A path is the simplest form of a tree (see FIG. 3).
4 3 2 1
O—E—C0—0—06

FIG.3 A graceful labeling of P;

A path can be gracefully labeled using the standard labeling method described below. Itis a simple
method in generating gracefully labeled paths of length n. We call this the standard labeling of the path
on n vertices; the proof of why the standard labeling is also a graceful labeling is available in section C.

The standard labeling of P, is g:V(B,) 2 {1,2,...,n} where

i+1
5 iisodd,
g(vi) = i
n—§+1, iis even.

Alternatively, we may write g(v;j41) = jand g(vy;) = n-j + 1.

2, Caterpillars
A caterpillar is a tree in which every graph vertex is on a central stalk or only one graph edge away from

the stalk (in other words, removal of its endpoints leaves a path graph; Gallian 2007). A tree is a
caterpillar if and only if all nodes of degree at least three are surrounded by at most two nodes of

degree two or greater [3] (see FIG. 4).

(1)

FIG. 4 A caterpillar can be recognized by its long center stalk

A graceful labeling of caterpillars is possible using the Caterpillar Labeling Algorithm described below.
The algorithm uses the traversing nodes of a tree that is similar to the “depth first” traversing approach.
The only difference is that a node of the stalk is considered before its legs are considered while

traversing.

a) Caterpillar Labeling Algorithm
1. Traversing from left to right and starting from the left most node of the first leg, do the

following
Visit and label nodes in increasing order
o Current node gets a label if it does not have a node incident with a labeled node

[

< Stop if there are no more nodes to be labeled to the right
2. Starting from the rightmost unlabeled node, traverse from right to left and do the following

< Label nodes in increasing order
o Current node gets a label if does not already have a label

o Stop if all nodes have been labeled

The following example of a graceful labeling of a caterpillar is completed using the Caterpillar Labeling
Algorithm. Nodes with labels 1-7 are labeled by the first step and the nodes 8-13 are labeled by the

second step of the algorithm (see FIG. 5).

[’13..'“} 11 ;\ ":‘J' 8 r'su } 4 {u~} 2 {:J 8 :I
~r~ S o S~
| 7\ 1IN T T
12 0o J7 8 s 3 1
A A L _.i_‘ > _i\ e
OBONOEONONORORNO

FIG.5 Caterpillar Labeling Algorithm generated a graceful labeling of caterpillar withn = 13

3. M-Stars
An m-star has a single root node with any number of paths of length m attached to it (see FIG. 6). Cahit
and Cahit proved that all m-stars are graceful (Cahit & Cahit 1975).

FIG. 6 A 2-star, proved to have graceful labeling by Cahit and Cahit’s algorithm
4. Additional Classes of Trees

a) Olive trees
An olive tree has a root node with k branches attached: the it" branch has length i (FIG. 7). Patel and
Raynud proved that all olive trees are graceful (Pastel & Raynaud 1978).

g

ONG
|
®

FIG.7 The k = 3 olive tree

TN

ONRO

N
6
4

b) Banana trees

A banana tree is constructed by bringing multiple m-stars together at a single vertex (Chen et al. 1997)
(see FIG. 8). Banana trees have not been proved graceful, although Bhat-Nayak and Deshmukh have
proven the gracefulness of certain classes of banana tree (Bhat-Nayak & Deshmukh 1996).

® T I
®
FIG. 8 A banana tree constructed from a 2-star, 3-star and 1-star

c) Tp-Trees

Hegde and Shetty defined a class of tree called “Tp-trees” created by taking a gracefully labeled path
and shifting some of the edges (see FIG. 9). They proved that these can always be gracefully labeled
using the original path labels (Hedge & Shetty 2002).

00000 6000

4 4
3 2 R— 3 4
D O—O——®

FIG. 9 rearranging a gracefully labeled path to generate a gracefully labeled Tp-tree

d) Product Trees

Some proofs show that certain graceful trees can be combined to give a larger graceful tree. Koh et al.
show how ‘rooted product’ trees are always graceful (Koh et al. 1980). An example from their paper is
given in Figure |-8. Each of the trees labeled G shares one vertex with the tree labeled H (see FIG. 10).

FIG. 10 Example of a graceful product tree

C. Standard Notations and Conventions
We establish some standard notation and conventions that are useful for presenting and proving
graceful labeling problems.

We denote the path on n vertices as P, ; the vertex setis V{P,) = {v;,v,,..,v,] and the edge set
is E(P,, = {(vuvi40) | 12,..,n =1}

1. Graceful Labeling
Graceful Labeling: A graceful labeling on graph G is a function f V(G = {1,2,...|E(G) + 1|} satisfying

e f(v,, # f(v; fori # j(vertexlabels are distinct), and

* The set of induced edge labels, where edge e = v, 1] receives label f(v;] - f(v;)], are
exactly theset {1,2,..., E(G)|}.

2. Standard Labeling Proof

As described in section B, the standard labeling is a simple technique used to gracefully label P,. We
start by duplicating the definition here and followed with a simple proof that the standard labeling is a
graceful labeling.

Standard Labeling: The standard labeling of P, is g:V(P,. < {1,2,...,n] where

i+1
— i isodd,
g(vi.\" = i
n— 5 +1, i is even,

Proof that the Standard Labeling is a Graceful Labeling:

Let X = [g(v;) iodd:andY = [g(v;) i zven}, then the elements of the sets X and Y are non-

decreasing numbers 1 < g{v;) < E], and non-increasing numbers n = g(v;) = [HTH] respectively.

Sincei%in—§+1f0ri =1..n wehave XNY=0andXUY ={1,...,n}. Inother

words, fg(v;, 1<i<n] =4{1,2,..,n}

Next considertwo sets L = {|g(v;) —g(viy)|: 1 =i<nandiisodd}and M = {|g(v;) —

gviy)|: 2 <i<nandiiseven} Then the largest element of L and M is n-1 for g(v;, = 1 and
gy, =norg(y;)=mnand g(v;1q, = 1 case. The smallest is 1 for cases where g(v;, —g(viy1) =
1. The sets L and M are necessarily distinct sets with unique elements since g(v;) is unique for

alli = 1..7n. In addition, since L =§and |M| = n—g—l, wesee L + M| =§+ n—%— 1=n-—1.
And hence L "M = I with the smallest and largest elements being 1 and n — 1 respectively, it is
necessarythat L UM = {1,..,n — 1}. This proves that the standard labeling is a graceful labeling.

3. Trees with diameter not exceeding 5

The distance between two vertices is the number of edges in a shortest path connecting them.
Diameter is then maximum distance taken over all pairs of vertices. Hrnciar and Havier extended the
proof for caterpillars to show that all trees with diameter = 5 are graceful (Hrncia & Havier 2001).

II. Representations and Results

A. Representations

Some graceful labeling problems are better understood through the graphical representations. We
discuss representations used for studying graceful labeling the Edge Tree Diagram and the Symmetry
Matrix. Employing such representations is particularly useful for manifesting a visual proof of edge-pair

selections such that no graceful labeling of P. exists. Example of proofs using Edge Tree Diagram and
Symmetry Matrix representations are described in later sections.

1. The Edge Tree Diagram

Since graceful labeling requires that each edge must be uniquely labeled, an Edge Tree Diagram can be
constructed by generating all possible distinct vertex-pairs [i.e. differing respect to at least one vertex-
pair] using the numbers 1, ..,n. We next group all pairs inducing the same edge label, on each row (see
FIG. 11).

f(1,n)}
{(1,n—1),(2,n)}
{(Ln—2),2n—1),03,n)}

{(1L,n—3),2,n—2),3,n—-1),4n)}

{(1,2),(2,3),(3.4), (n—1,n)}
FIG. 11 Diagram of Edge Tree of n-1 rows with each row yielding same edge labels

The result is an Edge Tree Diagram of n - 1 rows with each row representing vertex label pairs yielding
same edge labels. The diagonals of the Edge Tree Diagram have the same length with a common vertex
label (see FIG. 12).

(1, 9)
(1,8)(2,9)

1,7(28@39)
(1,6)(2,7) (3, 8) (4, 9)

(1,5)(2,6)(3,7)4,8)(5,9)
{1,4)(2,5) (3,6) (4,7) (5, 8) (6, 9)
{(1,3)(2,4)(3,5) (4,6) (5, 7) (6, 8) (7,9)
(1,202,339 {4.5) (5. 6) (6,7 (7,8 (8, 9)

FIG.12 Row and diagonal of an Edge Tree Diagram shown in bold

A graceful labeling of P. with n-1 edges can be constructed by making pair selections from the Edge Tree
Diagram according to the following set of rules:

1. Exactly one pair must be selected from each row.
2. No more than two pairs can reside on the same adjacent diagonal.
3. Aselection leading to a cycle is not allowed

A Graceful labeling of P, is a sequence {x],x; o xn_} such that {(xll xz), ile xg), :x”_], xn)} is a
collection of n — 1 pairs from the edge tree diagram and the x- are distinct. When making selections,
the individual vertex label must occur twice in the collection of pairs with the exception of two that

8

occur once each. Rule 1 ensures that each possible edge value occurs exactly once in the collection
while rule 2 enforces having no more than two appearances of the same vertex label in the collection of
pairs. Selection of n — 1 pairs that lead to a labeling of the entire path is enforced by rule 3. Note that
the adjacent diagonals mentioned in rule 2 designate all pairs having a common vertex label.

For example, we use the Edge Tree Diagram to construct a graceful labeling of P: by collecting pairs
(1,9), (9,2), (2,8), (8,3), (3,7), (7,4), (4,6), and (6,5) which are selected from each row while observing
three rules stated above (see FIG. 13). This gives the labeling {1, 9, 2, 8, 3, 7, 4, 6, 5] shown in FIG. 14.

{1, 9)
(1,8)(2,9)

(1.7) (2, 8)(3,9)
(1,6)(2,7)(3,8)(4,9)
(1,5)(2,6)(3,7) (4, 8) (5,9)
(1,4)(2,5)(3,6) (4, 7) (5, B) (6, 9)
(1,3)(2,4)(3,5) (4,6) (5.7) (6, 8) (7, 9)
(1,2)(2,3) (3, 4) (4,5) (5,6) (6, 7) (7, 8) (8, 3)

FIG. 13 Selection of pairs from each row yielding a graceful labeling of P,

fal___ 2N ___ fa\ a7\ _ra__ e\
O—0)—(—C)—0C—(C)——(—0O

FIG. 14 A graceful labeling of P,

2, Symmetry Matrix

A Symmetry Matrix is similar to the Edge Tree Diagram together with its reflection about its base. Itis
an n X n matrix with each row and column selection representing the vertex-pair inducing an edge label.
The rows and columns of the symmetry matrix represent different combinations in creating vertex-pair
and the diagonals of the matrix are the vertex-pair combinations inducing the same edge label. This is
analogous to the diagonals and rows of the Edge Tree Diagram. On the main diagonal of the symmetry
matrix, we put zeroes to indicate 0 inducing blocks (see FIG. 15). The additional information provided in
the symmetry matrix is the reflection about its main diagonal, which indicates that vertex-pairs (1,n)
and (n, 1) induces the same edge label. We represent the main diagonal as 1, and the number of the
diagonal increases as it moves away from the main diagonal. So diagonal n represents blocks (1,n)

and (n, 1). We mark the block with ‘X’ to show selected vertex-pair (row, col).

ROW\COL 1 2 3 4 5 6

1 0

b

BlWN
>
o

5 X 0
6 X X 0

FIG. 15 Symmetry Matrix representing standard labeling withn = 6

B. Results

We now show key ideas in employing the graphical representations to address a labeling completion
problem. Three independent proofs are provided for the same problem: The first is a straightforward
method, the second and third employ the Edge Tree Diagram and the Symmetric Matrix respectively. A
labeling completion problem is stated below as Theorem 1, which states that with an initial vertex label
of 2 is followed by a vertex label that is insufficiently large results in a labeling that cannot be completed
to form a graceful labeling.

1. Theorem 1
Theorem 1: Let f be alabelingof P, n = 4. If f(v,. = 2and f(v,, = n - kfork = 3, then f is not
graceful.

We provide the first proof using a straightforward method, which gathers all different ways to generate
edge labels and make selections for graceful labeling.

Proof 1.1 (Straightforward method): We construct all possible distinct vertex-pairs:

{(in-f’n)! Lin—l')i?l—l)’ :in—2u';n—2}: (in—s'jn—s)l iy (inZ)}

so that

(i jn) € {(1,1m)}
(":n—l-jn—l) € {(1,?1 - 1): (2: n)}
(in—ZJjn—Z) € {(1,?’:‘. o 2), (2, n—= 1)! (3, ?1)}

(in—BJj'n.—B) € {(1,?1 - 3)! (21' it — 2)! (3, n = 1)! (4:, n)}

(iz,J2) € {(1,2),(2,3),(3,4),+,(n — 1,n)}

The first pair (i,, /.. has only the choice {1,n}, the second pair has two
choices {1,n - 1" and 2,n), .., the last pair has ‘'n - 1" choices (1,2}, 2,3}, 13,4}, , and 'n— 1,n).
All these choices can be made independently.

Suppose f(v,. = 2 and f(v,, <n - 3 and the set of selection pairs

{Cir, in), Gt fna1) Gz fn_2) Gz, fn_2), «., (iz, j2)] represents a graceful labeling of a path of
length n. Then the vertex-pairs 2,n}, :2,n - 1},and [2,n - 2. are not in the selection since f(v,, <
. — 3. In addition, since a vertex label cannot be used more than twice in the selection of pairs, vertex

10

labels 1 and n cannot be used more than twice in the selection of pairs. Hence the first three pairs
selected from the rows 1 through 3 must be the pairs with (i,,j.) = 1,n), i, 1,j,—1, = 1,1 —
1),and (i, 5, fn_>. = (3,n). Thisleaves (i,,_a,j,_3) = (3,1 — 1] as the only choice available for the
fourth row. Since there are no other selections available for the first four rows, and the selection
creates a cycle, then a set of pairs [(i,].), Gn_1,Jn_1) dn-2Ja—2) inm fu_z) -, iz, j2)] is not a set
of pairs satisfying graceful labeling.

The next proof of Theorem 1 employs an Edge Tree Diagram and systematically removes rows and
diagonals as edge pairs are selected from the edge tree diagram.

Proof 1.2 (using Edge Label Diagram): Since f{v,. = 2, we systematically remove the set of pairs
(2,n},2,n-1),2,n - 2}, ..,and 2,3’ from the set of remaining pairs available for selection.
Otherwise having additional pairs with vertex label 2 cannot be completed to a gracefully labeling. Also
note that since f(v,. <mn - 3, f(v,, must be selected from the Edge Label Diagram with a row = 5.
Hence, the only selections available from the first four rows after removing the diagonal pairs having
vertex label 2 are highlighted in bold (see FIG. 16). However since the available selections induces a

cycle, there cannot exist a graceful labeling.
{(1,n)}
{(1,n - 1) [EHD)
{ D) (3,1)}

{ P (3,1 — 1), }
{ i 2,n— 3} }
{ (2,3) }

FIG. 16 An Edge Tree showing selections creating a cycle.

Proof by Symmetric Matrix representation is addressed next. It also involves systematically removing
rows and columns as each selection is made, thus signifying no further choices are available in the row

and column.

Proof 1.3 (by Symmetric Matrix): We start by removing row 2 and column 2; since r (v, = 2

and f(v;. £ n - 3. Next we mark (with an X) the blocks ‘n, 1> and [1,n}, since there is only one
selection (see FIG. 17). Moving onto the diagonal n — 1, there is only one selection available so we mark
blocks [1,n - 1" and [n = 1,1’ and remove the row and column 1 respectively from further
consideration (see FIG. 18). Continuing in a similar fashion, we find that the selections create a cycle.
This completes the proof that a graceful labeling does not exist.

11

ROWACOL 1 3 4 n-1 n

n-4 0

n-3

n-2

n-1

n X

FIG. 17 Column 2 is removed since the first vertex is labeled 2 'f{v,. = 2 and the second vertex is
labeled f(v,, = k for somek <n -3

ROWACOL

FIG. 18 Only one choice available for the diagonal n-1

FIG. 18 No selection available for diagonal n - 4 leading to no graceful labeling

2. Corollary 1
Corollary 1: Let f be a labeling of B,,n = 4. If f(v4, =n —1and f(v,;) = kfor k > 3, then f is not
graceful.

12

The proof of the above Corollary 1 is not provided here since the logic is analogous to that in the proof
of Theorem 1.

We have shown that both Theorem 1 and Corollary 1 manifests an example of restrictions on the second
vertex label given the first. However are there any restrictions on beginning with any vertex label on
any vertex?

Question: Let f be a labeling of P,, and suppose f(v;, = jfori,j z {1,---,n}. Arethere valuesofi,j,
and n for which f may not be graceful?

Answer: Yes (example withn = 5,0 = j = 3). Note that it appears the answer seems to be “no” for
sufficiently large n. The proof of this may be included in the further studies of the interested.

III. Conjectures and Supporting Evidence

The proof of the main conjecture described in section B was attempted but partially proved and still
remains as an open problem. Nonetheless some evidence shows that the conjecture may be true and
some supporting data is provided. We start with some standard notions and phrases that are helpful for
supporting the proofs.

A. Main Conjecture

In this section, we show a progress towards a proof that labelings of paths of any size may assign the
label 1 to any node and be completed as graceful labelings. The Labelit program is used to generate all
graceful labeling of P. withn = 18 and the results appears to support in favor of the Main Conjecture.
Some computer generated labelings of P, is shown on FIG. 19. Additional computer generated results
are also available in the Appendix.

1-10-2-9-3-8-4-7-5-6 8-4-9-2-10-1-7-6-3-5
5-1-10-2-9-3-8-6-7-4 3-8-5-9-2-10-1-7-6-4
4-10-1-9-2-5-6-8-3-7 6-8-5-4-9-2-10-1-7-3
7-2-10-1-8-6-3-9-5-4 4-7-6-8-3-9-2-10-1-5
4-7-2-10-1-8-6-5-9-3 6-5-7-4-8-3-9-2-10-1

FIG. 19 Examples of graceful labeling of P, having label “1” on every vertex

1. Main Conjecture
Main Conjecture: For each i between 1 and n, thereis a graceful labeling f V(P,) = {1, ..,n}
with f(v;:: = 1.

13

The proof of the main conjecture is useful for constructing and building up gracefully labeled trees by
“gluing” smaller gracefully labeled trees together. The proofs of the main conjecture require two parts
which we describe next.

2, Strategy for the Proof

The general idea behind the proof of the main conjecture takes on two parts. The first part proves that
any edge label from the standard labeling can be induced from the vertex labels to its right. The proof
of the second part necessitates proof for the existence of a graceful labeling which begins with any
vertex labeli = 1,...,7n (see FIG. 20). The second part of the proof is still an open problem and we only
provide some information gained from the study. Hence the main conjecture is still an open problem.

w5tart with the standard labeling

1-10-2-9-3-8-4-7—5-6 (vertex labels)

»Index 4 s selected to place label 1

*Reverse the order of the first 4 vertex labels,

+Nate the duplication of edge label 2 and that edge
label & is missing. '

ully label the remaining vertices starting with

7-5-6-3-8-4

FIG. 20 General idea behind proving the initial conjecture

3. Theorem 2 (the first part):

Theorem 2: For every standard labeling of P,, there exists some k > j such that 1 < j < E]
and |g(vj41} - 9(v))| = g(w) — 1.

The proof of the theorem 2 takes on two cases; we use whether the index j has even or odd values to
determine how to bipartition g.

Proof 2.1 {case for j odd): We can bipartition g into two disjoint sets S and T at j, so that S =

{g(vp) | 1<p Sj} anaT = [g(vq) jtl=gqg = n}. The induced edge labels of set S are
exactlytheset E!S. = [n-1,n-2,..,n-j + 1}. Anedgelabel e = n —j adjoins Sand T. T is the
set of vertex labels alternating between n —§+ 1 and qTH The largest label of T is the first element
of T: n - % + 1. Weneedalabel g(v;. =n—-j + 1. Sincej < |§], thevaluen — j + 1 occurs when

; f+1
counting down from n — % + 1.

14

Proof 2.2 (case for j even): We can bipartition g into two disjoint sets Sand T at j, sothat S =
{g(v : <r £§ } ana T = {g(v‘?) | j+1<qg < n}. The induced edge labels of set S are
exactly theset E(S. = fn—1,n-2,..,n - j}. Anedgelabel e = n - j adjoins Sand T. Tis the set

of vertex labels alternating between % andn — % 4 1. The largest label of T is the second element
ofT: n — i We need a label g{v,. =n—j+ 1. Since j & E] n - j+ 1 occurs when counting

down from n — é

4. Conjecture 2 (the second part)
Conjecture 2: For eachiin {1,2,...,n}, there exists a graceful labeling f of P, for which f(v,, = i.

Conjecture 2 indicates that graceful labeling can assign any number i = 1, ..., n as its first vertex label
and still be completed to for a graceful labeling of E,. Although the proof is not available, using Labelit
to generate graceful labelings of P, provides some evidence in favor of conjecture 2. That is, graceful
labeling of P. exists withany i = 1,...,n as its first vertex label, for n £ 18. Some computer generated
results are shown, note that labeling the first vertex with 1 or n produces the fewest graceful labelings
with a single solution; and the number of ways to gracefully label P, increases as its first vertex label

approaches EJ (see FIG. 21).

f{vy) Count of f(B,) f(B)
1 1 1-8-2-7-3-6-4-5
) 5 2-6-3-8-1-7-5-4
2-6-5-3-8-1-7-4

3 5 | 34-627-1-8
4 9 [41-827-35
5 9 | 5264-3-8-1-

(.J'IU'IU'IU'IU'IU'IU'IU‘Ihhhh-{hhhhhwwwwwml\)m
c'acncn-h-l:u-hmmwwmmﬁnwww—uoowwm-hoooow
I\J—LJ:‘-I\JOOO-F‘-OO—IU‘I—IL\)“}JU‘ICOHJQ)I\J—L-PLOO—LWNLH
-JOO-JOOQJ—'-QJ—'-OOO‘)OOC‘)I—'-I\)—kMUWO‘JC‘)O‘JI‘\JOO*-JU‘IUJ
WWwW=2d NN T | B

15

5-8-1-7-2-6-4-3
6 5 6-1-8-2-5-7-3-4

8 1 81-7-2-6-

Consider again the rules for gracefully labeling P. with n — 1 edges from the Edge Tree Diagram
described in the previous sections:

1. Exactly one pair must be selected from each row.
2. No more than two pairs can reside on the same adjacent diagonal.
3. Aselection leading to a cycle is not allowed

The first rule ensures the unique edge labels are used while the second keeps individual vertex labels
from occurring more than twice in the selections of pairs. If we ignore the last two rules, there

are (n - 1)! ways to make selections from each row and we have over counted to include graphs with
cycles and graphs that are not paths (e.g. having more than two individual vertex labels, such as a star
graph, S,,_; can be constructed by selecting from the first vertex-pairs from each row). If we assume
that there is no graceful labeling for f(v,, =x forsome x = 1..n, then it implies that all such
selections must be one of pairs having three or more appearance of individual vertex labels, selections
leading to cycles, or combination of both. Although the proof for this is not provided here, we can
perhaps use this as a contradiction. Thatis, (n = 1)! number of ways in selecting pairs from the edge
tree diagram is larger than all possible selections that can be made with stated properties. The
difference of the two is then counts all the graceful labelings of P,.

In FIG. 22, we have listed some examples of graceful labeling of P,y with f(17;) = x for some x
in {1, ...,10}. There are additional examples, generated using the Labelit program, of graceful labeling
of P, with f(v;. = x forsomexin [1,...,10} in the Appendix.

1-10-2-9-3-8-4-7-5-6 6-4-3-8-5-9-2-10-1-7
2-9-1-10-4-6-5-8-3-7 7-2-10-1-8-6-3-9-5-4
3-5-10-1-9-2-8-4-7-6 8-3-5-6-2-9-1-10-4-7
4-8-5-7-6-1-10-2-9-3 9-2-10-1-7-5-6-3-8-4
5-6-2-10-1-8-3-9-7-4 10-1-9-2-8-3-7-4-6-5

16

FIG. 22 Examples of gracefully labeled path having first vertex labeled f(v,, = x forsomex = 1..10.

B. Gvozdiak’'s Conjecture

The following conjecture comes from the references made by Rastislav Kralovic in his PhD thesis
[Graceful Tee Labeling, Rastislav Kralovi¢, PhD, p18]. Kralovi¢ quotes Gvozdiak’s conjecture found on his
PhD thesis regarding a graceful labeling of P,. Gvozdiak is uses notation to indicate that if a graceful
labeling f V{(P,. = {0, ...,n] assigns f(v,, = aand f(v,. = b, then such labeling is denoted

as {a,b n).

Gvozdiak’s Conjecture: An (a, b; n) —graceful labeling exists if and only if the integers a, b, n satisfy
these conditions:

nn+1)

¢ b -ahasthesameparityasl + 2+« +n= 7

e 0< b—a <2<ag+b<,
2 2
Gvozdiak’s paper indicates that both conditions are necessary, but it is still not proven whether they are
also sufficient. Computed experiments show that this conjecture holds for all paths with n = 22.

C. Gvozdiak's Conjecture Modified
We make a slight modification to Gvozdiak’s conjecture fitting our model of indexing from 1 instead of 0
(i.e., f(vy. = f(v,) and using only the integer results, yield the following:

nin—1)

« p-ahasthesameparityasl + 2 +4+n-1= =

. 0<|b—a‘|s§sa+bg[3n/21

For example, a graceful labeling of P. with vertices labeled sequentiallyas 7,1, 6, 2, 5, 3, 4 reveals

b—a =4-7 = -3and e, 42—2 = 21 having the same parity. And applying the modified bullet
pointreveals 0 < 3 < 3 < 11 < 11 which holds for |7, 4 7).

1. What is known

The first bullet point describes the necessary condition that is required to uniquely induce n-1 edge
labels. In other words, the two end-vertex labels of P. must support the n-1 number of edge labels
needed to be a graceful labeling. We provide a simple example using case n = 3 and concerning the
parity. The three graceful labeling of P; are {3,1, 2}, {2,3,1}, and {1, 3, 2}. The parity of “b — a” from
the three graceful labeling happens to be all odds; 2 =3 = =1,1 -2 = =1,and 2 — 1 = 1 respectively.
For it to be an even, two end vertex labels must be of either “odd and odd” or “even and even”
combination. However, the only available labeling with two end points with the same parity is the
labeling {1, 2,3} Itis an “odd and odd” combination (i.e., 3 — 1 = 2) and is not a graceful labeling. An
important fact here is that a labeling {1, 2, 3} can only induce two odd parity edge labels (e.g.,, 1 -2 = 1
and 2 - 3 = 1), but we need both even and odd parity edge labels (e.g., 1 and 2). Why is it equal to the
permutation of the vertex-pairs available from the numbers 1..7n is not fully understood.

17

The second bullet point, the condition J < b — 2 = E indicates that the two end-vertex labels of a

graceful labeling must be unique and their distance cannot exceed half of n. An attempt was made to
prove by contradiction method, supposing that there exists a graceful labeling with a two end-vertex
labels meeting the requirement b-a > /2. That s, there is a graceful labeling f V(P,. = [1,...,n}

with f(v,. = band f(v,, = asuchthat b -a > % A successful proof would result in contradiction.

However, the proof is not available since it isn’t fully understood.

Use of the Labelit program provides some supporting results for n up to 14 (see FIG. 23). Refer to the
appendix for additional supporting results from the Labelit program.

Graceful Labeling 0<|b—al< s < g+ b < [3n/2] | PAR(b-a) = PAR(M)
[Edge Labels] 2 #
6-12-3-13-2-14-1-9-11-48 7-105 | (0<1<=7<=11<=21) PARITY(1) = PARITY(91)
[6-9-10-11-12-13-8-2-7-4-1-3-5]

712313 2141911410658 | (0<1<=7<=15<=21) PARITY(1) = PARITY{91)
[5-9-10-11-12-13-8-2-7-6-4-1-3]

5123132 141911671048 | (0<3<=7<=13<=21) PARITY(3) = PARITY{91)
[7-9-10-11-12-13-8-2-5-1-3-6-4]

8113-13-2-14-1-10-4-6 7-12-59 | (0<l<=7<=17<=21) PARITY(1) = PARITY(91)
[3-8-10-11-12-13-9-6-2-1-5-7-4]

6-11-3-13-2-14-1-10-4-7-5-12-89 | (0<3<=7<=15<=21) PARITY(3) = PARITY(91)
[5-8-10-11-12-13-9-6-3-2-7-4-1]

911-3-13-2-14-1-10-4-85-12-76 | (0<3<=7<=15<=21) PARITY(3) = PARITY(91)
[2-8-10-11-12-13-9-6-4-3-7-5-1]

6-11-3-13-2-14-1-10-4-8-7-5-12-9 | (0<3<=7<=15<=21) PARITY(3) = PARITY(91)
[5-8-10-11-12-13-9-6-4-1-2-7-3]

FiG. Z3 Labeiit program generated gracetui iabeling ot P4 and Gvozdiak’'s conjecture

IV. Graceful Labeling Application: Labelit

A recursive backtracking algorithm is used for generating gracefully labelings of paths of size n. Itis a
better method than brute force since identical partial paths are treated as a single partial solution while
independently evaluating all possible solutions.

The Labelit program starts by initializing the starting label and the index location (user provided). There
are two recursive subroutines; GracefullyLabelleft () and GracefullylLabelRight () performing the
backtracking algorithm. Once the selected vertex is labeled with a starting label, GracefullyLabelRight ()
is recursively called until the last vertex of a path is reached. It then makes a subsequent call to
GracefullyLabell eft () to complete the process for finding all gracefully labeled paths of size n.

The high level description of the algorithm is provided below. There are some opportunities for
improvements in execution speed by pruning paths that do not provide solutions.

18

GracefullyLabelRight Recursive Function
This function finds partial solutions moving from the starting vertex location to the right most vertex.

Solution = ELabels = VLabels « D // Solution, edge labels, and vertex label lists

BOOL GracefullyLabelRight (index k)
1. Ifindex k = nthen // Done--Reached the last right most vertex
a. return TRUE
2. else // Independently, find solutions using recursive backtracking method
a. Foreach label from 1ton do
i. SetVLabels|[k + 1 « label
ii. 1fIS_GRACEFUL(VLabels[k + 1]) = TRUE then
1. ELabels|ABS(VLabels|k —VLabels|k +1]) = USED
2. If GracefullyLabelRight(k + 1) then
a. GracefullyLabellLeft(startindex)
3. ElLabels|ABS(VLabels|k - VLabels[k + 1]) < NOTUSED
b. end forloop
3. endif
4. return FALSE

BOOL GracefullyLabelLeft (index k)
This function finds solutions moving from the starting vertex location to the left first vertex.

1. findex k = 1 then {// First vertex reached--done
a. WriteSolution(VLabels)
b. Increment SolutionCount
c. return TRUE
2. else // Independently, find solutions using recursive backtracking method
a. Foreach label from 1tondo
i. SetVLlabels|k -1 « label
ii. IfIS_GRACEFUL(VLabels[k — 1]’ = TRUE then
1. ELabels|ABS(VLabels|k - VLabels|k - 1]) — USED
2. GracefullyLabellLeft(k - 1)
3. ELabels|ABS(VLabels|k - VLabels[k - 1]) = NOTUSED
b. end forloop
3. endif
4. return FALSE

Improvements

Improvements were made to the original algorithm by pruning to reduce the size of decision tree by
removing sections of the tree that result in no solution. In addition slight modification to the original
algorithm is made to allow the initial vertex label to be on any node of the path. See the Source Code

for the Labelit Program in the Appendix for details.

19

V. References

Richard A. Brualdi, Introductory Combinatorics (4™ edition): Introduction to Graph Theory, NJ: Prentice
Hall, 2004

Koh, K. M., Rogers, D. G. & Tan, T. 1980, “Products of Graceful Trees”, Discrete Mathematics, no, 31, pp.
279-292.

Gallian, j. “Dynamic Survey of Graph Labeling.” Elec. J. Combin. 14, No. DS6, Jan. 3, 2007.

Harary, Frank; Schwenk, Allen J. {1973), “The number of caterpillars”, Discrete Mathematics 6 (4): 359-
365.

Bondy, J. A; Murty, U. S. R. (1976). Graph Theory with Applications. North Holland. pp 12-21.

Golomb, S. W. 1972, ‘How to number a graph’, in Graph Theory and Computing, ed. R. C. Read,
Academic Press, NY, pp. 23-37.

Chen, W. G; Ly, H. I.; and Yeh, Y. N. “Operations of Interlaced Trees and Graceful Trees.” Southeast Asian
Bul. Math. 21, 337-348, 1997.

Cahit, I. & Cahit, R. 1975, “On the graceful numbering of spanning trees”, Information Processing Letters,
vol. 3, no. 4, pp. 115-118

Ringel, G. 1964, ‘Problem 25’ in Theory of Graphs and its Applications, Proceedings Sympositum
Smolenice, Prague.

Rosa, A. 1967, ‘On certain valuations of the vertices of graph’, in Theory of Graphs (International
Symposium, Rome, July 1966), Gordon and Breach, New York, pp. 349-355.

Gvozdjak, P. On the oberwolfach problem for cycles with multiple lengths, Ph.D. thesis, Simon Fraser
University, 2004

Michael Horton, 2003, “Graceful Trees: Statistics and Algorithms”

20

VI. Appendix

Labelit Program Graphical User Interface

Following are the two graphical user interfaces provided for the Labelit program. The first is used for
collecting input parameters from the user that is required for generating gracefully labeling of P, (see
FIG. 24). If the check box, “Draw Edge Tree” is selected, the second graphical user interface is shown
(see FIG. 25). Providing a full path of the output file on the “File Path to Read From” field will draw each
gracefully labeled path with its vertex-pairs selected highlighted (see FIG. 26).

= : 2 . p— ",:_6 A=) i
(P Gnceful_[gﬁng — i = 4

Graceful Path

| s S
Choose Verex Label: 3 | Cancel | (] Single Solution

Choose Path Index 1 Draw Edge Tree

Save Fe To:

Total Count 93 -
3-7-6-8-5-104-11-2-12-19 |
3-7-6-8-5-104-12-1-11-29
3-7-6-6-5-12-1-11-2-10-4-9
3-7-8-6-9-1-12-2-11-4-10-5
3-7-8-6:9-2-11-1-12-4-10-5
3-7-8-6-9-4-10-2-11-1-12-5
3-8-4-10-2-11-1-12-5-6-9-7
3-84-10-2-11-1-12-5-7-6-9
3-3-5-6-10-4-11-2-12-1-9-7
3-8-5-6-10-4-12-1-11-2-9-7
3-3-57-6-104-11-2-12-19
3-8-5-7-6-10-4-12-1-11-2-9
3-8-6-59-1-12-2-11-4-10-7
3-8-6-5-9-2-11-1-124-10-7
3-8-6-7-4-10-2-11-1-12-59
3-3-6-7-104-11-2-12-1-9-5
3-8-6-7-10-4-12-1-11-2-95 r

m

—— F— = =0

FIG. 24 Graceful Labeling Application Labelit showing all possible gracefully labeled path of size 12 with
its first vertex labeled 3.

21

mhmwp&m&mmﬁpm« || Data Collection Mode
Enterthe sze for 2 blank adge tree
2 | Gl | S Sokeor
(¥ Drzw Edge Tree
Fiis Path to Read From:
(1.13)
(1.12) (2, 13)

9}(5- 10) (6. ")(7 12’{&‘3)

.9) (6, 10) (7. 11) (8. 12) (9. 13)
(6. 9) (7 10)(8, 11){9.12)(10. 13)
3){2.4)03.5)(4.6)5.7) (6.8) (7.9) 8. 10) (5. 11) (10, 12) (11.13)
(1.2/2 3)3.9)4.5) (5.5 (6.7 (2.8)(8.9) (5. 10 (10. 1) (11,12 12.13)

FIG. 25 Graceful Labeling Application Labelit drawing edge-tree diagram using size 13.

Enler the sngle gracehud path to draw on edge tree or
Erter the sze for 3 blank edge tree

e Path 10 Read From. tmp b

(1,13)
(1.12)(2, 13)
(1.11)(2, 12) (3. 13)
(1.10) (2.11) (3, 12) (4. 13)
(L9210, 12) (6106 13
@,10) (4. 11) (5.12) (6. 13

FIG. 26 Graceful Labeling Application Labelit drawing edge-tree diagram with path highlighted.

22

Some Results Supporting Main Conjecture

N=17

1-7-2-6-3-5-4 7-1-6-2-5-3-4 2-7-1-5-4-6-3

6-2-7-1-4-356 5-3-4-7-1-6-2 3-5-6-2-7-1-4

4-5-3-6-2-7-1

N=28

1-8-2-7-3-6-4-5 8-1-7-2-6-3-5-4 2-8-1-6-3-7-5-4

7-2-8-1-5-4-6-3 3-7-2-8-1-4-6-5 3-7-4-2-8-1-6-5

6-5-3-7-2-8-1-4 5-4-6-3-7-2-8-1

N =12
1-12-2-11-3-10-4-9-5-8-6-7
2-12-1-10-3-11-5-7-6-9-4-8
3-11-2-12-1-8-4-10-5-6-9-7
4-10-3-11-2-12-1-6-7-9-5-8
6-9-4-10-3-11-2-12-1-5-7-8

7-8-6-9-4-10-3-11-2-12-1-5

Graceful Labeling of P4 with f(v;, = x for some x

1-12-2-11-3-10-4-9-5-8-6-7
3-7-6-8-5-10-4-11-2-12-1-9
5-1-12-2-11-3-10-4-9-6-8-7
7-1-12-2-11-3-10-5-4-8-6-9
9-1-12-2-11-4-10-5-8-6-7-3

11-1-12-3-8-4-10-2-9-6-5-7

12-1-11-2-10-3-9-4-8-5-7-6
11-2-12-1-9-3-10-5-6-8-4-7
10-3-11-2-12-1-7-4-9-5-6-8
9-4-10-3-11-2-12-1-5-8-6-7
6-7-9-4-10-3-11-2-12-1-5-8

7-6-8-5-9-4-10-3-11-2-12-1

2-10-3-12-1-11-5-7-6-9-4-8
4-6-7-10-1-12-2-9-5-11-3-8
6-1-12-2-11-3-10-4-7-5-9-8
8-1-12-2-11-3-5-9-4-10-7-6
10-1-12-2-7-4-11-3-9-5-6-8

12-1-11-2-10-3-9-4-8-5-7-6

23

Source Code for Labelit Program
The Labelit application is written in using Microsoft Visual Studio CH 2010.

/'lﬂl' He ke e He ok e e g e e ofe e o e obe o ok e ok Aok
* Module: GracefulGui.cs
* Description: Graceful labeling application
Ak Bk dokdckkk R bt Rkckkkck bR b okkckck bk kekkkek 3 B ok bk ek Bkl B ok bk kckk b R b ok
* Author: Cory Yi
* Institution: CSUCT
* Date: 25-Sep-2010
* History Created for math thesis in graceful labeling

*t**********t*******w*##****ﬁ**w*****t*************t*********#t**/
using System;
using System,IO;
using System,Collections.Generic;
using System,ComponentModel;
using System.Data;
using System.Drawing;
using System.Ling;
using System,Text;
using System,Windows.Forms;
using System,Threading;
using System.Drawing.Printing;
using GracefullabelingApp;
using GracefullableGui;
using EdgeTree;

namespace GracefullableGui

{
public delegate void UpdateTextDelegate(string text);

public partial class GracefulGui : Form
{
private Font printFont;
private StreamReader streamToPrint;
private PrintDocument docToPrint : new PrintDocument();

private string graceful path="";
private string filePath="";

public GracefulGui()

{
InitializeComponent();
print_btn.Enabled = false;
}
private void updateText(string text)
{
resultTextBox.AppendText(text);
}
private void size_box_MouseClick{object sender, EventArgs e)
{
sizeBox.SelectAll();
}

private void size box_TextChanged(object sender, EventArgs e)

24

if [sizeBox.Text.Length : @)
{

}

size_n = int.Parse(sizeBox.Text);

}

private void index_box_MouseClick{object sender, EventArgs e)

{
h

private void index_box_ TextChanged{ehject sender, EventArgs e)

{

indexBox,SelectAll(});

if {indexBox,Text.Length : @)
{

¥

index = int.Parse{indexBox.Text};

}

private void fname_box_TextChanged(object sender, EventArgs e)

{
if [pathBox.Text.Length : @)

{
}

filePath : pathBox.Text;

}

private void labelBox MouseClick(object sender, EventArgs e)

{
3

labelBox.SelectAll();

private void labelBox_TextChanged(object sender, EventArgs e)

{
if [drawTreeBox.Checked.Equals{true))

{
graceful path = labelBox.Text;
}
else
{
if [labelBox.Text.Length : @ %& labelBox.TextLength : 3)
{
vertex : int.Parse{labelBox.Text};
}
else
{
MessageBox,Show("Enter size length : 50");
labelBox.Clear(};
}
}

}

private void start_btn_Click{object sender, EventArgs e}

{
int length, idx;
string EdgeeTreeString="";
string path : @"C:\UsersiCory\Documents\Thesisytemp\";

25

/* Clear previous results if any */
resultTextBox.Clear();

/********#****$*****#**$**#**********$********

* Edge Tree Drawing option
#$******$$**#*****$$$**#**$*****$$$**#**$/

if !drawTreeBox.Checked.Equals(true))

{
/? disable other options */
if ‘(labelBox.TextLength » @ || pathBox.TextlLength : @)
{

graceful path : labelBox.Text;

/* Backdoor continuous file read option */

if [String.Compare(graceful path, "file™ == @)
{

try

{

if ‘pathBox.TextlLength : 3)
{

¥

path = pathBox.Text;

var files = from file in
Directory.EnumerateFiles(@path)
select file;

/* Process each files in this directory */
foreach [var file in files)
{
using (FileStream fs : File.OpenRead{file))
{

foreach {string line in File.ReadlLines(file))

{
if {line.Contains(':"))
{
graceful path = line.Substring(@,
line.IndexOf("':"'));
}
else
{
graceful path = line;
}
EdgeeTreeString =

DrawEdgeTree,DranTree(graceful_path);
resultTextBox.SelectionAlignment =

HorizontalAlignment.Center;
resultTextBox.AppendText{EdgeeTreeString};
ColorEdgeTree(graceful_path, EdgeeTreeString);

var result = MessageBox.Show{graceful_path,
"Continuous Draw Mode",
MessageBoxButtons.YesNo,
MessageBoxIcon.Question};

/+ If the no button was pressed ...

if [result == DialogResult.No)

26

return;

}
resultTextBox,Clear(};

break;
}
fs.Close();
}
}
}
catch ‘UnauthorizedAccessException UAEX)
{
Console.WritelLine(UAEx.Message);
}
catch [PathToolLongException PathEx)
{
Console.Writeline{PathEx.Message};
}
else if [(pathBox.TextLength : @' %8 ’labelBox.TextlLength == 0))
{
foreach [string line in File.ReadlLines{pathBox.Text}})
{
graceful path : line;
EdgeeTreeString := DrawEdgeTree.DrawTree(graceful_path);
resultTextBox.SelectionAlignment = HorizontalAlignment.Center;
resultTextBox.AppendText(EdgeeTreeString});
ColorEdgeTree(graceful path, EdgeeTreeString};
var result = MessageBox.Show{String.Concat{"Current f{v}:\n",
graceful path, "\nContinue?"},
"Continuous Draw Mode",
MessageBoxButtons.YesNo,
MessageBoxIcon,Question);
// If the no button was pressed ...
if result == DialogResult.No)
{
return;
}
resultTextBox.Clear(};
}
¥
else
{
/* Normal operation */
EdgeeTreeString = DrawEdgeTree.DrawTree(graceful path);
resultTextBox.SelectionAlignment = HorizontalAlignment.Center;
resultTextBox.AppendText({EdgeeTreeString);
ColorEdgeTree(graceful_path, EdgeeTreeString);
}

/=|:*1****:k:k:k:kﬂ:*#**:}::}::k:k:k*t*#ﬂ:****#**t**t*:kﬂ:***:k*

* Data Collection mode of operation

27

A R R OR R sk HOROR R RRR F RoR R R Rk KRk
else if 'dataModeBox.Checked.Equals{true})
{
for [length = 4; length : 20; length++)
{
for [idx = 1; idx <= length; idx++)

{

string file_name;

/1 Set current n and index t/
size n = length;
index = idx;

/1 Create current file name ¥/

file_name : pathBox.Text;

file_name : String.Concat(file_name, size_n.ToString(),
idx.ToString(}, '.txt"};

2

Thread gracefulThread = new Thread{Gracefullylabel};
gracefulThread.Start();

}

1 /4 end for

/**$$*$****************$*******$*****$*******$

i Normal Operation option
#t-‘f:*****#t***-‘k*#*******t**#**#*****-‘k***l‘,’

else

{

resultTextBox.SelectionAlignment = HorizontalAlignment.Left;

if [size n : index)

{
resultTextBox.AppendText("Enter index <= n")};
return;
}
else if [size n : 14)
{
const string message =
"Chain Size : 14 may take awhile. Do you want to continue?";
const string caption : “Form Graceful Labeling™;
var result = MessageBox.Show{message, caption,
MessageBoxButtons.YesNo,
MessageBoxIcon.Question);
// If the no button was pressed ...
if !result == DialogResult,No)
{
return;
}
X
else if [size_n ¢ 1)
{
MessageBox.Show{"Enter chain length n : 1"};
return;
}
else if [vertex : size_n)
{

28

MessageBox.Show("Enter vertex label ¢= n"};
return;

¥

[+ Start the graceful labeling
Thread gracefulThread = new Thread{Gracefullylabel};
gracefulThread.Start();

] /) end if
h
private void ColorEdgeTree{string path, string tree)
{ string node = "7, digitStr : "7

bool dashSeen : false, firstNode : false, lastNode = false;
int firstNum=0, secondNum=@, digitNum;

path : String.Concat{path, '\n");

/% Get the first vertex */
foreach [char curChar in path)

{
if [{('-' == curChar! ‘curChar == "\n'}))
{
if [curChar == "\n")
{

lastNode = true;

}

digitNum = int.Parse(digitStr);
digitStr = "";

if !dashSeen)

{
/% 2-5-4-6-1-7-3 ¥/
secondNum : digitNum;

if [secondNum ¢ firstNum)

{
int temp;
temp : secondNum;
secondNum = firstNum;
firstNum = temp;

X

/* Build node string and search */
node = String.Concat("(", firstNum.ToString(}, ', ™,
secondNum.ToString(}, “}");

/? Find and color the node from the tree ¥/

resultTextBox.Find{node, @);

resultTextBox.SelectionFont = new Font{"Verdana", 8,
FontStyle.Bold};

if [firstNode lastNode)
{

29

resultTextBox.SelectionColor = Color.Magenta;
firstNode = false;

}

else

{
}

resultTextBox.SelectionColor = Color.Blue;

/* Reinit node string *¥/

node = ;
firstNum = digitNum;

}
else
firstNum = digitNum;
firstNode = true;
¥
dashSeen := true;
}
else
/* Build digit until dash is seen */
digitStr = String.Concat{digitStr, curChar.ToString(});
}

] 7% end foreach */

3
private void cancel btn_Click(object sender, EventArgs e}
{
DialogResult resp = MessageBox.Show{"Are you sure you want to cancel?",
"Graceful Label"™, MessageBoxButtons,YesNo);
if [resp == System.Windows.Forms.DialogResult.Yes)
{
Gracefullabeling.CancelGracefulPath();
T
1

/’******:k***#******1‘-1‘-1‘-*>kDk********:k***#'—t********:k***#**********

1 Invoked by start button press
e oo stk b b ok ok ok e ok ook koo ok ook s ok F Rk e ok ok ook *****;

private void GracefullylLabel()
{

int total_count;
string tempFile=@".vtempfile.txt";

/1 Perform the graceful label algorithm and write the result to temp file */
StreamWriter sw = File.CreateText{tempFile});

GracefullLabeling.SetGracefulParam(sw, solBox.Checked.Equals(true)};
total_count : Gracefullabeling.FindLabeledPath(size_n, vertex, index);

if [dataModeBox.Checked.Equals{true))

{
sw.Write(total_count.ToString(}};

sw.WritelLine();

30

sw,Close(); /* Done writing the result file - close it ¥/

/" Read from the temp file created above and Write results to the window */
if [dataModeBox.Checked.Equals{false))

{
string line = "";
using !StreamReader sr = new StreamReader(tempFile})
{
SetText("Total Count: ");
SetText{total count.ToString(}};
SetText{"\n"};
while {(line = sr.ReadlLine() = null)
{
SetText(line);
SetText("\n");
¥
/* Close and remove the temp file */
sr.Close();
if [filePath.Length : @)
{
try
{
File.Copy(tempFile, filePath,true);
}
catch [IOException UAEX)
{
MessageBox.Show("Problem encountered with the specified file
path™);
¥
}
File.Delete(tempFile);
}
}
}
private void SetText(string text)
{
/+ InvokeRequired required compares the thread ID of the
/s calling thread to the thread ID of the creating thread.
// If these threads are different, it returns true.
if [resultTextBox.InvokeRequired)
{
UpdateTextDelegate d = new UpdateTextDelegate(SetText};
Invoke(d, new object[] { text });
}
else
{
resultTextBox.AppendText (text);
}
}

private void clear btn_Click{object sender, EventArgs e)

{
resultTextBox.Clear();

31

}

private void print_btn_Click{object sender, EventArgs e)

{
/" Allow page ranges to print %/
printDialogl.AllowSomePages = true;

/% Show the help button ¥/
printDialogl.ShowHelp : true;

printDialogl.Document : docToPrint;
DialogResult result : printDialogl.ShowDialog(};

/¢ If the result is OK then print the document.
if (result == DialogResult.OK}

{
streamToPrint = new StreamReader{filePath.ToString(});
try
{
docToPrint,.Print();
}
finally
{
streamToPrint.Close(};
}
}

¥

// The PrintPage event is raised for each page to be printed.
private void document PrintPagef{object sender, PrintPageEventArgs e)
{

float linesPerPage = 9;

float yPos = 0;

int count = ©;

float leftMargin = e.MarginBounds.left;

float topMargin = e.MarginBounds.Top;

string line : null;

/+ Calculate the number of lines per page.
linesPerPage : e.MarginBounds.Height /
printFont.GetHeight{e.Graphics);

/+ Print each line of the file.
while [count ¢ linesPerPage R&
((line = streamToPrint.ReadLine()) != null))

{
yPos = topMargin + [count *
printFont.GetHeight(e.Graphics)});
e.Graphics.DrawString(line, printFont, Brushes.Black,
leftMargin, yPos, new StringFormat({});
count++;
}

/¢ If more lines exist, print another page.
if {line = null)
e.HasMorePages = true;

32

else
e.HasMorePages = false;

}

private void GracefulGui lLoad{object sender, EventArgs e)

{
}

private void solBox_CheckedChanged(cbject sender, EventArgs e)

{
3

private void drawTreeBox_CheckedChanged{object sender_ EventArgs e)
{
if [drawTreeBox.Checked.Equals{true))
{
labell.Text = ‘Enter the single graceful path to draw on edge tree or
\nEnter the size for a blank edge tree:";
label3.Text = 'File Path to Read From:";
sizeBox.Hide();
indexBox.Hide(};
label.Hide(};
label2.Hide(};
labelBox.Width = 270;
labelBox.Location : new Point(21,74);
labelBox.Focus(};

-
else

{
labell.Text = "Chain Size:";
label3.Text = 'File Path to Save To:";
sizeBox,Show(};
indexBox.Show();
label,Show(};
label2.Show(};
labelBox.Width = 229;
labelBox.Location : new Point{139, 74};
sizeBox.Focus(};
b
labelBox.Clear(};
3
by
X
/**i‘-:t**********:t*****-‘I=**1‘-*******1:******1‘-**************:t***********
* Module: GracefullylLabel.cs
* Description: Graceful labeling application
e the o e e Aok e e e e e e the o e o o e e e ok e o
* Author: Cory Yi
* Institution: CSUCT
* Date: 25-Sep-2010
* History Created for Graceful Labeling thesis
L e o ke o Aok ek e e ofe e e o e o o ke e o ofe e ok ke

using System;

33

using System.IO;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace GracefullabelingApp

{

public class Gracefullabeling
{
public static StreamWriter fhandle;
public static List<int: vlabels = new List<¢int>(); //

public static List<int: elabels = new List<inty(); //
public static List<int: mLabels = new List<int>{); //

public static irt start_index;
public static int start_vertex;
public static int size_n;

public static int start_depth;
public static int total count;
public static bool do_single;
public static bool done, leafNode;
public static Edgelabellist elist;

Used to hold the current
graceful labeling solution
Used to mark the edge
length currently used

Used to mark the edge
lengths used

public static void SetGracefulParam{StreamWriter sw, bool single sol)

fhandle = sw;
do_single := single sol;
done : false;

}

A A R A SR R SR R o o R R o R

* Traverses the left and right tree and finds the traceful

* path with given path size and the position index for label 1
AR R AR A SRR R OR A R Rk Ok R Rk O oR R ok R

public static int FindLabeledPath{int n, int v. int i)
1

/? Validate input parameters ¥/
if i n)

{
}

/1 Initialize the local lists ¥/
for [int j=0. j ¢+ n + 1, j++)
{

return 9;

vLabels.Add(@);
elLabels.Add(@);

}

/% Initialize the vertex and its position */
size n = n;

start_vertex : v;

start_index : 1ij;

34

}

start_depth : n « 1;
total count : 9;

/? Construct edge label list ¥/
elList : new Edgelabellist{size n};

R R e

1 Get the direction which to populate the solution.
m*#****mmmmm*#**mmmmm*t*#m*mm****t**t*mm*mmm***tmmm*#{

if (i.Equals(n))

/* index : n, so check e.g. "...x - 9 . 1" /
vLabels[n® : start_vertex;
GracefullylLabelleft(n);

}

else
/? index = 1, so check e.g. "1 « 9 « x,.. " */
vLabels[start_index = start_vertex;
GracefullylabelRight(start_index};

}

vLabels.Clear();
eLabels.Clear();

return total_count;

J A Sk Rk o s o ko ok ok o ks sk ok R ORI ok ok ok ok sk k

GracefullylLabelleft

S R A R R R R R AR R O R R R R R R R

1 Recursively builds graceful path moving to right &% left

***/

public static bool GracefullylLabelleft(int k)

{

/* Moving from right to left [negative direction, */
if ’k.Equals(1})

{
/1 We have found a solution, save to file ¥/
WriteToFile{fhandle vlLabels};
total_count++;
if !do_single)
{
done : true;
X
return true;
}
else
{

/* Recursively search for all gracefully labeled path. */
for {viabels[k - 17 =1 wvlabels[k - 1 <= size_n; vlLabels[k
{
if !ValidateGracefulleft(k - 1))
{
/+ Mark it as graceful and move on
eLabels[Math.Abs(vLabels[k - vLabels[k : 1]) = -1;
Gracefullylabelleft(k-1);
eLabels[Math.Abs(vLabels[k] - vLabels[k - 1]} =: @;

35

1]++)

}

1 /* end for ¥/
/? At this point, we have tried all the labels, now back track */
] /4 end if ¥/

return false;

}

/$** R R EE LSS AR EEEEE S E R AR R EEER SR EEE L EEEEEEREREEEEEEES LS
1 GracefullylabelRight
e Rk o Aokt sk ok R ok ok ke SOk shoolok ook Eokeiak sk bk sk ok ok sk o Aok ok ohohoR ok o Aok ok sk ok ok

1 Recursively builds graceful path moving to right % left

e e o AR R K oA O o o K K R R R ROk

public static bool GracefullylLabelRight(int k)

{
/1 Moving from left to right [positive direction)
if [k.Equals(size n})
{
/+ Indicate we are done moving positive direction
return true;
}
else
{
/+ Recursively search for all gracefully labeled path.
for [vLabels[k + 1 : 1; (vLabels[k + 1] <= size_n] %8 done;
vLlabels[k + 1]++)
{
if ‘validateGracefulRight(k + 1})
{
/4 Mark it as graceful and move on
eLabels[Math.Abs({vLabels[k™ - vLabels[k + 17) = -1;
/+ If we are done with the right side, do the left side
if [(GracefullyLabelRight(k + 1))
%
GracefullylLabelleft{start_index);
}
elLabels[Math.Abs(vLabels[k’ vLabels[k + 1]) = 2;
}
1 /4 end for
] 77 end if
return false;
}

/****:k**

* ValidateGracefulRight

ok ok of o ok st o o o sk e o 3 K ok sk A e ok ok sk e e A e sk e e ok ok

1 vValidates if newly added to the right is graceful
AR R AR R R R R Rk kR R Sk R R Rk Rk

public static bool ValidateGracefulRight{int k)
{

/? Indicate if working with leaf vertex */

36

if [k.Equals(size_n}))

leafNode : true;

}

else

leafNode : false;
}

int edge = Math.Abs{vLabels[k - 1 - vlLabels[k])};

/% To be graceful, each edge label must be used only once */
if [elabels[edge’ = @)

{

}

return false;

/17 To be graceful, each Vertex label must be used only once */
for [int i =1 1 ¢ k i++)

{
if !vLabels[i == vLabels[k])
:
return false;
}
¥

#if false
/1 Scan through the edge list for pruning ¥/

for [int vertex := k vertex : size n+l: vertexs+)

..
1

¢

/* Get edges for current vertex ¥/
int edgeCount : elist.getEdgeCount(vertex};

/* Check if edge is in the list ¥/
if [elist.edgeInlList({vertex, edge)})
1
switch [edgeCount)
{
case 1:
/' This case should only occur for leaf nodes */
if [lleafNode)
£
L
return false;

¥
break;
case 2:
if !vlLabels[k != vertex)

{
}

break;
default:
break;
] /1 end switch ¥/
1 end if */
] /% end for ¥/

return false;

/7 Remove the used edge label from the list */
elList.removeEdge{edge};

37

#endif

return true;

}

f*****************************#*************#*******************

1 ValidateGracefulleft
S o ko sk ok R R el sl ok sk ksl ol Sk sk ok Rk o ok o R R ok ok ks ok K kR K

* Validates if newly added to the left is graceful
#t*:k>|:**t****:k:k:kﬂ:*#**:}:**:k:k#t**ﬂ:*ﬂ:****#1::k#t**ﬂ:*ﬂ:****#t:k:kﬂ:*#*****:k/‘
public static bool ValidateGracefulleft(int k)
{
/s Note that we will need to scan from the top since here
// we are assuming that the right side is done
if [eLabels[Math.Abs(vLabels[k + 1 - vLabels[k]) = @)
{

}

return false;

for [int 1 = k + 1 1 ¢= size n 1i++)
{

if !vLabels[i == vlLabels[k])

:

}
] /4 end for

return false;

return true;

}

/$********$***************$********$*$**$********$*$********$***

1 WriteToFile
Gk Aok kb bk mdchkkdd Ed Fhchh kg kb Fhhhck s Ak EEchhchhb ko Fhckk kb 4

1 Writes the result out to the output file

A o AR O R K oA O o o AR HOH R R Ok

public static void WriteToFile(StreamwWriter fhnd, List<int> result)

for {int i = 1 1 ¢ result.Count() i++)

{
fhnd.Write(result[i].ToString(}};
if i : result.Count()}-1)
fhnd .Write('-"');
3
s
thnd .Writeline();
b
/************#**********#*************#*************************
3 CancelGracefulPath

e o ook o e e o o o S e B 0K S sk R o s o sk R S o ek R ok

1 Cancels previous gracefully labeling request
*******$**********$*******$**********#**$**********$*****$*****/

public static void CancelGracefulPath(})
{

done : true;

38

] /? end class Gracefullabeling */

/‘ Fopddckohodop F doolob b b R e ol ok ek R ok dodok F dokk Rk ok sk ok dok F sk Rk dek bk koo kR b o
1 Class Edgelabellist

1 This Generates the edges labels for each vertices and keeps track
1 of the list and removes it from the list as it is being used in
1 the construction of the graceful labeling path
FOR AR R R R R R R R R R R R KR R R R R S ROR O Rk ok
public class Edgelabellist
{
static List<int>[edgelabels;
static int mid_point;

/* Edgelabellist Constructor */
public Edgelabellist{int n}

{
edgelLabels = new List<int>[n + 1];
mid_point = (int)Math.Ceiling(n / 2.0);
/" Build edge labels for each vertex labels &/
for [int j=1 [J : n ¢+ 1) J++)
{
edgelabels[]j] = new List<int>();
if j ¢= mid_point)
{
for {int 1 = 1 1 ¢ Math.Abs(n « j)+1; i++)
{
edgelLabels[j].Add(i);
¥
3
else
{
for (int i =1 1 ¢« Math.Abs{j-1. + 1; i++)
{
edgelabels[j].Add(Math.Abs{i});
}
X
¥
}
public bool edgeInList(int vertex, int edge)
{
if [edgelLabels[vertex].Contains{edge))
{
return true;
¥
return false;
}

public int getEdgeCount(int vertex)
{

39

return edgelabels[vertex].Count;

}

public void removeEdge(int edge)

t for [int v = 1 v : edgelabels.Count{(}; v+)
¢ edgelabels[v].Remove(edge);
] /* end for &/

}

40

