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In o rd e r  fo r  C a lifo rn ia  S ta t e  U n iv e rs ity  C h a n n e l  I s la n d s  (C S U C I) to  r e p r o d u c e ,  t r a n s la te  a n d  
d is tr ib u te  y o u r  s u b m is s io n  w o rld w id e  th ro u g h  th e  C S U C I In s titu tio n a l R e p o s ito ry , y o u r  a g r e e m e n t  to  
th e  fo llow ing  te r m s  is  n e c e s s a r y .  T h e  a u th o r ( s )  re ta in  a n y  c o p y r ig h t c u rre n tly  o n  th e  item  a s  w ell a s  
th e  ab ility  to  su b m it th e  item  to  p u b li s h e r s  o r  o th e r  r e p o s ito r ie s .

B y s ig n in g  a n d  su b m ittin g  th is  l ic e n s e , y o u  { the a u th o r ( s )  o r  c o p y r ig h t o w n e r)  g r a n ts  to  C S U C I th e  
n o n e x c lu s iv e  rig h t to  r e p r o d u c e ,  t r a n s la te  ( a s  d e f in e d  b e lo w ), a n d /o r  d is tr ib u te  y o u r  s u b m is s io n  
(in c lu d in g  th e  a b s t r a c t )  w o rld w id e  in p rin t a n d  e le c tro n ic  fo rm a t a n d  in a n y  m e d iu m , in c lu d in g  b u t n o t 
lim ited  to  a u d io  o r  v id e o .

Y o u  a g r e e  th a t  C S U C I m a y , w ith o u t c h a n g in g  th e  c o n te n t ,  t r a n s la te  t h e  s u b m is s io n  to  a n y  m e d iu m  
o r  fo rm a t fo r  th e  p u r p o s e  o f  p re s e rv a tio n .

Y o u  a ls o  a g r e e  th a t  C S U C I m a y  k e e p  m o r e  th a n  o n e  c o p y  o f  th is  s u b m is s io n  fo r  p u r p o s e s  o f 
s e c u r ity , b a c k u p  a n d  p re s e rv a tio n .

Y o u  r e p r e s e n t  th a t  th e  s u b m is s io n  is y o u r  o rig in a l w o rk , a n d  th a t  y o u  h a v e  th e  rig h t to  g ra n t  th e  
r ig h ts  c o n ta in e d  in  th is  l ic e n s e . Y ou  a ls o  r e p r e s e n t  th a t  y o u r  s u b m is s io n  d o e s  n o t, to  th e  b e s t  o f  
y o u r  k n o w le d g e , in frin g e  u p o n  a n y o n e 's  c o p y r ig h t. Y o u  a ls o  r e p r e s e n t  a n d  w a r r a n t  th a t  th e  
s u b m is s io n  c o n ta in s  n o  lib e lo u s  o r  o th e r  u n law fu l m a t te r  a n d  m a k e s  n o  im p ro p e r  in v a s io n  o f  th e  
p riv a c y  o f  a n y  o th e r  p e r s o n .

If th e  s u b m is s io n  c o n ta in s  m a te r ia l fo r  w h ic h  y o u  d o  n o t h o ld  c o p y rig h t, y o u  r e p r e s e n t  th a t  y o u  h a v e  
o b ta in e d  th e  u n re s tr ic te d  p e rm is s io n  o f  th e  c o p y r ig h t o w n e r  to  g r a n t  C S U C I th e  r ig h ts  r e q u ire d  b y  
th is  l ic e n s e , a n d  th a t  s u c h  th ird  p a r ty  o w n e d  m a te r ia l is  c le a r ly  id e n tif ie d  a n d  a c k n o w le d g e d  w ithin 
th e  te x t o r  c o n te n t  o f  th e  s u b m is s io n . Y o u  t a k e  full re s p o n s ib ili ty  to  o b ta in  p e rm is s io n  to  u s e  a n y  
m a te r ia l th a t  is n o t y o u r  o w n . T h is  p e rm is s io n  m u s t  b e  g r a n te d  to  y o u  b e fo re  y o u  s ig n  th is  fo rm .

IF T H E  S U B M IS S IO N  IS B A S E D  U P O N  W O R K  T H A T  H A S  B E E N  S P O N S O R E D  O R  S U P P O R T E D  
B Y  AN A G E N C Y  O R  O R G A N IZ A T IO N  O T H E R  T H A N  C S U C I, Y O U  R E P R E S E N T  T H A T  Y O U  
H A V E FU LFILL E D  A N Y  R IG H T  O F  R E V IE W  O R  O T H E R  O B L IG A T IO N S  R E Q U IR E D  B Y  S U C H  
C O N T R A C T  O R  A G R E E M E N T .

T h e  C S U C I In s titu tio n a l R e p o s ito ry  will c le a r ly  id en tify  y o u r  n a m e ( s )  a s  th e  a u t h o r s )  o r  o w n e r(s )  o f  
th e  s u b m is s io n , a n d  will n o t m a k e  a n y  a lte ra t io n , o th e r  th a n  a s  a llo w e d  b y  th is  l ic e n s e , to  y o u r  
s u b m is s io n .
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Ab s t r a c t

Derivations of wave equations, various presentations of their solutions and 

MATLAB models are presented. Thereafter, basic ocean wave forecasting will 

be discussed along with it’s applications.
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Chapter 1
In t r o d u c t io n

Inspiration for this thesis comes from the authors recreational love of the ocean 

and strong desire to understand mathematical principles that govern ocean 

waves.

Society’s current ability to model the ocean has limitations. Although math

ematical physicists have made much progress in these fields theoretically, things 

become different when we start implementing theoretical solutions to the 

deep blue sea.

There are a seemingly infinite amount of parameters, some we can deter

mine, and some that we cannot. Even the ones that we can control, like wind 

speed are based off of approximations, thus weakens existing models. In ad-
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CHAPTER 1. INTRODUCTION

dition to infinite amounts of parameters the computers we use have limita

tions themselves. Although computers can store very large numbers, precise 

analytical solutions require a true infinite and continuous domain. Unfortu

nately, computers are not there yet.

To rigorously study the types of ocean waves that the author is interested 

in, it would require a Phd dissertation due to the complexity and collabora

tion amongst all types of professionals. Therefore, the aim of this thesis is to 

get our toes wet and get a feel for the fundamental ideas behind wave mo

tion. What better way to start procuring this field than with the wave equa

tion. The wave equation is a fundamental partial differential equation that 

describes surface water waves, sound, light and seismic waves. Knowledge of 

these waves is used in such fields as acoustics, electromagnetic, and fluid dy

namics. The wave equation has spatial and time variables and will be used 

in the one and two dimensional forms. Explicit definitions will be stated in 

section 2.3.

Wave equations should be of interest to all beings of planet earth as many 

forces are governed by the wave equation. Such forces include tsunamis, ocean 

storms, and even the microwaves that warm up TV dinners! Weather research 

is focused towards understanding storms that could potentially wipe us off

5



CHAPTER 1. INTRODUCTION

the face of the planet or for recreational use such as surfing. Wave equations 

along with their solutions and models should clearly be an important area of 

study.

This thesis is organized as follows. Chapter 2 will be dedicated to impor

tant definitions and theorems that lay the groundwork for the analytical and 

numerical solutions presented in chapter 3 and chapter 4 respectively. Chap

ter 2 and 3 may be of interest to partial differential equation students who are 

learning about basic PDE's. Chapter 2 and 3 will serve as a great fundamental 

step for understanding notation and derivations for other PDE's. Upon in

troducing analytic descriptions of solutions to the wave equation in Chapter 

3 we quickly see that there are limitations to real-life applications. For these 

reasons, Chapter 4 is dedicated to deriving a numerical scheme that approx

imates solutions to the wave equation. Those who wish to find a thorough 

explanation of how to discretize a differential equation chapter 4 will serve 

as a great guide. Chapter 5 will contain snippets from the 1-D and 2-D code 

presented in chapter 4. We hope that ocean lovers find chapter 6 especially 

exciting as the wave function is introduced to model deep water ocean swells, 

shallow water wave equations are derived and the Navier-Stokes equations 

are presented. Finally, in chapter 7 conclusions are made, future research

6



CHAPTER 1. INTRODUCTION

ideas are presented along with applications. My main contributions to this 

thesis include adoptive numerical implementation of 1 and 2 dimensional 

wave numerical solvers to model wave interaction with Dirichlet and reflect

ing boundary conditions. This thesis is written thoroughly involving deep dis

cussion on current real world applications in chapter 6 and 7. Most of which 

are focused around ocean waves.

Upon finishing this thesis the reader should feel comfortable with what 

the wave equation is, where it comes from, and its different forms. The reader 

should have an understanding of the methods of deriving the very long an

alytical solutions and become accustomed with a typical numerical scheme 

to implement partial differential equations into computer programs such as 

MATLAB. Last and most importantly, the reader should look at life with eyes 

wide open, even more than before. The reader should excitingly notice the 

wave equation in everyday life and even better yet come up with ideas for 

which the wave equation has not yet been applied.

The following notation will be used throughout this thesis. For the sake of 

simplicity, the author has chosen to use subscripts to denote partial differen

tiation,

7



CHAPTER 1. INTRODUCTION

where the dependence on (x, t) will be omitted when it is clear from the con

text.
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Chapter

2
P r e l im in a r ie s  and  De f in it io n s

In this section of the thesis we will recall essential definitions used through

out this manuscript. The reader is especially encouraged to understand Theo

rems 2.1.2 and 2.1.3. Taylor series are the backbone of the numerical methods 

of the thesis while Fourier series are the backbone of the analytical section of 

the thesis.

Although explicit definitions are given below it is exciting to remind the 

reader that numerical section uses polynomials to approximate its solutions 

while the analytic section uses sinusoidal functions to approximate its solu

tions!

9



CHAPTER 2. PRELIMINARIES AND DEFINITIONS

2.1 Definitions

In section 2.1 we state definitions that serve as the backbone to our theoreti

cal knowledge of wave equations. They are fundamental definitions that are 

extremely important to any field of analysis.

Definition 2.1.1 The Taylor series fo r  a  given function f  (x) centered at a  is de

fined as

whenever it converges in the appropriate metric.

Theorem 2.1.2 (Taylor’s Theorem) Suppose f  £ Cn[a, b], t h a t f  (n+1) exists on 

[a, b ], and x0 £ [a, b]. For every x £ [a, b], there exists a  number £(x0) between 

x0 and x with

f  (x) = Pn (x) + Rn (x),

where

and

10



2.1. DEFINITIONS

Definition 2.1.3 Fourier series

The Fourier series fo r  a  given function f  is defined as

1 TO
f  (x) = -  Ao (An cos(nx) + Bn sin(nx)) (t)

2 n=1

with coefficients

I n r dy
An = f  (y)cos(ny)— , fo r  n £ N,

J-n  n

Bn = [  f  (y)sin(ny) — , fo r  n £ N,
J-n  n

Thus the N-th partial sum o f  the series is

1 N
Sn (x) = -  Ao +2^ (An cos(nx) + Bn sin(nx)).

2 n=l

Remark 2.1.4 The series (t) is defined whenever SN (x) — ► (t) as N  ^  to in the 

appropriate metric.

Remark 2.1.5 We will begin to introduce a  fram ework fo r  analyzing differen

tial operators with a  special focus on the wa,ve equa.tion posed on a  bounded  

interval o f  length l.

utt = c2Au, x £ [0, l)

u(x,0) = $(x) . (2.1.1)

ut (x ,0) = V(x)

11



CHAPTER 2. PRELIMINARIES AND DEFINITIONS

In equation (2.1.1), we used A to denote uxx. In the 2-D setting A is used to de

note uxx + uyy. In general, in Rk with x\, x2, ..., xk variables A = L k= 1 uxii. Fur

ther in the thesis, we will also study solutions to equation (2.1.1) in unbounded 

domains.

In order to understand solution to equation (2.1) we study "spectral proper

ties" o f  the operator A.

Definition 2.1.6 EigenValues and eigenfunctions o f  A

Thenumbers An = (^  )2 a.re called eigenvalues a.nd the functions Xn (x) = sin( ) 

are called eigenfunctions related to A.

Remark 2.1.7 In cha.pter 3 we find eigenvalues a.nd eigenfunctions fo r  A in the 

2-D setting.

Theorem 2.1.8 The Mean Va.lue Theorem.

L e t f  be a  function that satisfies the following hypotheses:

1. f  is continuous on the closed interval [a, b].

2. f  is differentiable on the open interva.l (a, b).

Then there is a  number c in (a, b) such that

= m - m
b -  a

12



2.1. DEFINITIONS

or, equivalently,

f  (b) -  f  (a) = f  '(c)(b -  a).

Since we consider series forms g solutions to the wave equation, we can intro

duce an appropriate metric space equipped with an inner-product.

Definition 2.1.9 An inner product space is a  vector space X with an inner prod

uct defined on X  An inner product on X is a  mapping o fX  x X into the scalar 

field  K  ofX; tha.t is, with every pair o f  vectors x and y there is a.ssociated a  scala.r 

which is written {x, y), and is ca.lled the inner product o fx  a.nd y, such tha,tfor 

all vectors x,y,z and scala.rs a  we have

(1) {x + y, z ) = {x, x) + {y, z)

(2) {a x , y ) = a {x , y )

(3) {x, y ) = { y, x)

(4) {x, x )>  0

(5) {x, x) = 0 x = 0.

13



CHAPTER 2. PRELIMINARIES AND DEFINITIONS

Definition 2.1.10 The L2(R) space is the space o f  square-integrable functions 

fo r  which the integral o f  the square o f  the absolute value is finite. Therefore, i f

TO
J  | f  (x)\2dx  < to,

—TO

then f  is in the L2 space. This definition can also be adapted to f  £ L2[a, b ].

In section 2.2 two different methods of determining how to classify a PDE 

as elliptic, hyperbolic, and parabolic. The reader is encouraged to pay special 

attention to the hyperbolic definitions as the wave equation is hyperbolic.

2.2 Classifying PDEs

Definition 2.2.1 Elliptic, Hyperbolic, and Pa.rabolic in terms o f  coefficients: 

Consider the following PDE, a  linear equation o f  order two in two variables 

with six real constants.

an  uxx + a 12 uxy + a 22 uyy + a 1 ux + a2 uy + a 0 u = 0 

©will denote terms o f  order 1 or 0 below in (i),(ii) a.nd (iii).

(i) Elliptic: Ifa^2 < a 11 a22 then it is reducible to uxx + uyy + © = 0

(ii) Hyperbolic: Ifa^2 > a 11 a22 then it is reducible to uxx — uyy + © = 0

14



2.2. CLASSIFYING PDES

(iii) Parabolic: Ifa^2 = a 11 a22 then it is reducible to uxx + © = 0, unless a 11 = 

a22 = a\2 = 0

From these definitions it is easy to see that the wave equation is Hyperbolic. 

Observe that the wave equation coefficients are the following a0 = a 1 = a2 = 

ai2 = 0, a22 = 1, and an  = - ( c 2). We see that the coefficients agree nicely with 

(ii). That is 02 > - ( c 2).

Define coefficients of a PDE, form the matrix, recall that the product of the 

eigenvalues of a matrix is equal to the determinant of a matrix. Notice that we 

are working in the n = 2 case.

Definition 2.2.2 Elliptic, Hyperbolic, a.nd Parabolic PDE’s in terms ofdia.go- 

nals o f  matrix:

Take a  matrix A, the coefficients o f  the PDE. Then, let D be the ma.trix o f  real 

numbers d1,..., d n consisting o f  the eigenvalues o f  A. Apply a  change o f  scale so 

that all the theD nis equal to +1, -1 , or 0.

d1

D

dn

(i)The PDE is ca.lled elliptic i f  all the eigenvalues d1,..., d n are positive or all are

15



CHAPTER 2. PRELIMINARIES AND DEFINITIONS

negative. That is, \d1 + ••• + d n| = n.

(ii) The PDE is called hyperbolic i f  none o f  the d\,..., dn vanish and one o f  them

has the opposite sign from  the (n-1) others. Thatis, 3i : \di+ - + d n-2d* \ = n.

(iii) The PDE is called Parabolic i f  exactly one o f  the eigenvalues is zero and all 

the others ha.ve the same sign. Tha.t is, \d1 + ••• + dn \ = n -  1.

2.3 The Wave equation

In this section we will continue to introduce the wave equation and accompa

nying definitions. In order to understand the Matlab code presented in Chap

ter 4 it is crucial to well understand all definitions in this section.

Definition 2.3.1 Ba.sic wave equation

utt = c2uxx fo r  - r o <  x <ro

Definition 2.3.2 Two Dimensional wave equa.tion

utt = c2(uxx + uyy) fo r - r o <  x ,y  <ro

Definition 2.3.3 DirichletBoundary Space Conditions

For the 1-D wave equation utt = c2uxx 0 < x < L, t > 0 and initial conditions

u(x,0) = f  (x), ut(x,0) = g (x), 0 < x < L. Since u(0, t) = u(L, t) = 0

16



2.3. THE WAVE EQUATION

Definition 2.3.4 Dirichlet boundary conditions (fixed boundary condition)

For all (x, y) on S, the fixed boundary o f  a  region R we have that u(x, y) | (x,y)es = 

g (x, y )

Definition 2.3.5 Neumann Boundary Conditions

In thehomogeneousca.se, ux (0, t) = 0 Say something about normal to thebound- 

ary o f  the domain being prescribed as da.ta.

The following definition will be used in chapter 4 for numerical implemen

tation. Grid lines and mesh points will be used interchangeably through the 

thesis.

Definition 2.3.6 Grid lines

In a  two dimensional system we ca.n construct a  grid by choosing integers m 

and n. Lety  e  [c, d ] with y0 = c < yi < y2 < ... < ym = d. Simila,rly, letx  e [a, b] 

with x0 = a  < x i < x2 < ... < xn = b

Then we will obtain the width h as h = and the width k a,s Letting

i = 0, i , .., n and j  = 0, i , ..., m we can obta.in gridlines x = x i = a  + ih  and y = 

yj = c + jk .

17



CHAPTER 2. PRELIMINARIES AND DEFINITIONS 

Definition 2.3.7 Mesh Points

Mesh points are the intersections o f  grid lines. The points (xi, y i) may also be 

called nodes.

To define mesh points fo r  the one dimensional wave equation consider

d2u 2 d2u r
2 (x, t) -  c2 2 (x, t) = 0.

dt2 dx 2

With 0 < x < l, t > 0 and u(0, t) = u(l, t) = 0 fo r  t > 0, u(x,0) = f  (x), and  

du (x,0) = g (x),for  0 < x < l.

Take integers m, k , i , j  then the grid points will be x i = ih  and tj = j k  with 

h = J-m

Thus the wave equation at any one o f  these mesh points becomes

d2u 2 d2u r
(xi, tj ) -  c x̂ i, tj ) = 0-

Definition 2.3.8 Courant-Friedrichs-Lewy condition (CFL)

The CFL will be defined as A = ak. With a, k , h £ R.

Along with definition 2.3.6 it should also be noted tha,t we can rewrite the CFL 

as

. (d -  c)n At
A = a  = a  .

(b -  a)m  Ax

18



2.3. THE WAVE EQUATION

Definition 2.3.9 Forward and backward difference form ulas 

Consider the difference quotient, i.e the classical definition o f  derivative as

,. f  (xo + h) -  f  (xo) ^  ,lim ---------- ------------= f  (xo)
h^o h

I fh  > 0 the form ula is known as the forward-difference formula.

I f h  < 0 then the form ula is known as the backward-difference formula., for  

appropria.te f  '(x0).

The centered-difference form ula will be distinguished as f  '(x0) « f  (x+h)—  (x-h

Remark 2.3.10 Newton’s second law

Y Forces = mass x acceleration

Definition 2.3.11 Below is the form al derivation o f  a  numerical scheme to ap 

proximate a  second order derivative. This will be used to derive 1-D and 2-D 

wave equa.tions a.nd is done by using Taylor series and difference formulas.

We begin by consideration by derivation fo r  f ' and f " using Taylor series. 

Eva.lua.te f  (x0 + h) and f  (x0 -  h) a tx 0, we obta.in.

f 11 (x ) f n+i(Z)
f (x0 + h) = f (x0) + f '(x0)(x0 + h - x0) + J 0 h2 + ••• + - -----— h n+1 (2.3.1)

2! (n +1)!

f"(x  ) f n+i(C)
f (x0-  h ) = f (x0) + f '(x0)(x0-  h - x0) + J 0 (-h )2 + ••• + ----- —  (-h )n+1

2! (n +1)!

(2.3.2)

19



CHAPTER 2. PRELIMINARIES AND DEFINITIONS

Adding and subtracting the function at these values shows us two nice things. 

A first and second derivative.

1. Subtracting(2.3.1) from  (2.3.2) w eo b ta in f  (x0+h) - f  (x0- h ) = f'(x 0)2h±  

O (h3)

Thus we can see t h a t f  '(x0) = f  (x0+h'>—  (x°-h) ± O(h2) (the reader may also 

notice that this is a  centered difference formula..

2. Adding (2.3.1) and (2.3.2) we obta,in f  (x0+ h )+ f (x0-h )  = 2 f  (x0)+ f ”(x0)h2+ 

••• + O (h4)

Thus we can see tha.t

f  "(xo) =
f  (x0 + h ) + f  (x0 -  h) -  2 f  (x0) 

h 2
+ O(h2) (2.3.3)

Definition 2.3.12 Discretization

Using equation (2.3.3) we can conveniently rearrange a  second order PDE 

to find the next "step". In equation (2.3.3) we can consider "h" as the step size. 

Note tha,t we can consider h a,s a  forward step and - h  as a ba.ckward step. We 

are most interested in the forward step in the x , y and z a.xis. For the junc

tion u(x, t, y ) We will use subscripts i , j , k to denote the step o f  the function. 

For example, u x , tj, yk) will denote the current step o f  the function u. While
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u (%i, tj+1, yk) will denote the next step o f  function u in regards to the variable t 

that we will use fo r  time.

Consider the second derivative o f  function u with respect to x, 

u (x t )  _ u(xi+1 , tj) + u(xi- 1, tj) -  2u (xi, tj)
uxx (xi >tj) -  ^x2 •

We can rearrange this equation to solve fo r  the next space step u(xi+1( tj),

2
u(xi+1, tj) -  uxx(xi, tj)Ax2 -  u(xt- 1 , tj) + 2u(xi, tj)•

Similarly, consider the second derivative o f  the function u with respect to t,

u(xi, tj+1 ,) + u(xi, tj- 1) -  2u(xi, tj) 
utt (xi, tj ) = At2 •

As we did fo r  the space step, we can also rearrange this equation to solve fo r  the 

next time step,

u(xi, tj+1) -  utt (xi, tj )At -  u (xi, tj- 1) + 2u(xi, tj )•

Definitions, equations, and theorems listed in this chapter will be used through

out the rest of the thesis  ̂ The reader is encouraged to understand these pre

liminaries well and reference them throughout the thesis  ̂These preliminaries 

will be used to derive a numerical scheme for a 2-D wave equation that will be 

implemented into Matrix Laboratories (MatLabh

2.3. THE WAVE EQUATION

21



chapter 

3
An a ly t ic a l  s o l u t io n s

In this chapter we will derive the wave equation and it’s analytical solutions to 

the one and two dimensional wave equations. These derivations will further 

our understanding of wave equations in 1-D and 2-D which give us insight 

for our numerical solutions. These are the desired results that the numerical 

solution should approximate.

3.1 Derivation of the 1-D wave equation

In this section we will derive the 1-D wave equation, surprisingly only inter

mediate math and basic Physics are needed.

Let’s remember that the the 1-D wave equation is commonly applied to
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3.1. DERIVATION OF THE 1 -D WAVE EQUATION

describe phenomenons such as the waves in a musical guitar string. There

fore, let’s consider a perfectly flexible elastic string stretched tightly between 

supports at the same horizontal level. We shall call the left endpoint x0 and the 

right endpoint L. Let’s also make a couple of assumptions that once the string 

is "plucked" that it will vibrate freely in a vertical plane provided dampening 

affects, such as air resistance, are neglected. We will also neglect the vertical 

forces from weight of the string. Let’s consider an infinitesimally small piece 

of the string of length Ax and consider the forces that act on the points x and 

x + Ax. Let 9 be the angle that is created from the tangent tension vector at 

the point (x, t) and a horizontal line at the point (x, t). Let 9 + A9 be the angle 

created from the tension vector at point (x + Ax, t) and the horizontal line a 

the point (x+ Ax, t). Also, let u(x, t) be the vertical displacement of the point x 

at time t. These measurements can be seen in figure 3.1. This is an important 

idea to understand that each point of the string moves along a vertical line 

and not horizontally. We will let the tension in the string, which always acts 

in the tangential direction, be denoted by T (x, t). Finally, p will represent the 

mass per unit length of the string.

Using Newton’s law we can derive our first equation by setting the tension 

at each end our Ax piece of string equal to the product of the mass and the
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CHAPTER 3. ANALYTICAL SOLUTIONS

Figure 3.1: Piece of infinitesimal piece of string upon the pluck. Figure from Colin 
Mitchell.

acceleration of its mass center.

Therefore the horizontal components, which we will label as H (t) will sat

isfy

H(t) = T(x + Ax, t) cos(d + Ad) -  T(x, t) cos(d) = 0. (3.1.1)

Again, this is because each point moves solely in the vertical direction.

Now, lets consider the vertical components of tension and apply Newton’s 

laws, we obtain

T (x + Ax, t)sin(d + Ad) -  T (x, t)sin(d) = pAxutt(x, t). (3.1.2)
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3.1. DERIVATION OF THE 1 -D WAVE EQUATION

Where x denotes the center of gravity of the string we considered. Considering 

the vertical components of tension which we will now denote by V. We can 

write equation (3.1.2) as

V(x + Ax, t) -  V (x, t)
—  = putt(x, t).

The reader may notice that this was a convenient way for us to write this be

cause if we take the limit we will obtain a first derivative, or in other words a 

velocity. Thus, taking the limit we obtain

Vx(x, t) = putt(x, t). (3.1.3)

We can conveniently write it in another form, that is

sin(g)
V(x, t) = H (t) = H(t)ux(x, t)

cos(g)

where H  represents the horizontal component of tension and represents

the slope, or derivative.

Now let’s plug back into equation (3.1.3) and we obtain

(Hux )x = p u tt, P.TT)

and since H  is independent of x we obtain

Huxx = putt. (3.1.5)
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The reader should notice that the wave equation is starting to look like its 

common form. Our final steps involve dividing by p and calling H = c2. Thus 

we arrive at

2
Utt = C uxx. (3.1.6)

A final remark about c2 is that H  has tension units while p has mass/length 

which means c is a unit of velocity.

3.2 1-D Analytic solutions

3.2.1 d’Alembert solution

Take the 1-D wave equation utt -  c2 uxx = 0 This factors nicely to

2 d d ) j d  d
Utt -  C Uxx = -  C + c u = 0.dt dx dt dx j

With a general solution of

u(x, t) = f  (x + ct) + g (x -  ct). (3.2.1)

such that f , g  are two arbitrary, twice differentiable, single valued functions. 

The function f  is of a left traveling wave and g  is the function of a right trav

eling wave. Figure 3.2 below is a simulation of a 1-D wave in which the reader 

can easily see f  and g .

CHAPTER 3. ANALYTICAL SOLUTIONS
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3.2. 1-D ANALYTIC SOLUTIONS

Figure 3.2: A model of the 1-D wave equation showing two waves f  and g .

We are able to solve for f  and g . In order to do so we will take our definition 

of 2.3.1, the 1-d wave equation and impose the initial conditions u(x,0) = 0(x) 

and ut(x,0) = y(x).

By letting t = 0 in u(x, t) = f  (x + ct) + g (x -  ct) we get 0(x) = f  (x) + g (x). 

Taking the derivative of u(x, t) = f  (x + ct) + g (x -  ct) we get

y (x ) = c f  '(x) -  cg'(x)

Now let 0' = f ' + g ' and 1 y  = f ' -  g '.

By adding and subtracting we obtain

1 , y  . 1  , y  
f  = 2 (0 + - )  and g = 2 (0 -  ~2 c 2 c
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and . Lets now introduce a variable s so we can integrate and obtain

„ 1 1 i sf  (s) = -  0(s) + — 0  + A
2 2c o

and

1 1 j s
g (s) = - 0 (s) -  — o 0  + B .

Note that A, B are constants and because 0(x) = f  (x)+g(x) then A+B = 0 Now 

by replacing our dummy variable for f  as s = x + ct  and for g  as s = x -  c t , we 

can substitute back into equation (3.2.1) and upon simplifying we obtain

1 1 j x+ct
u(x, t) = [0(x + ct) + 0 (x -  ct)] + 0(s)ds.

2 2c x-ct 

This solution is also know as the d'Alembert solution.

Example 3.2.1 Now that we have found an analytical solution to the 1-D wave 

equation we will do a  quick example and verify that is satisfies the wave equa

tion.

Consider

utt -  c2uxx = 0 fo r - r o <  x <ro

and

u (x ,0) = 0(x) = 0, ut (x ,0) = 0(x) = sin(x)
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3.2. 1-D ANALYTIC SOLUTIONS

Thus substituting into the d'Alembert equation we obtain

1 nx+ct
u(x, t) = — sin(s)ds

2 c Jx-ct
1

= — ( - cos(x + ct) + cos(x -  c t)) .

(3.2.2)

(3.2.3)

After simplifying we obtain

1
u(x, t) = -  sin(x)sin(ct) 

c

Let’s check our answer, observe uxx = - sin(ce)sin(x) and utt = - c sin(ct)sin(x) 

Thus,

2 -  sin(ct) sin(x)
uxx(x, t) = c --------------------= - c sin(ct)sin(x). (3.2.4)

c

Thus u(x, t) satisfies the wave equation.

Also, u(x,0) = 0 = 0(x) and ut(x,0) = cos(ct)sin(x) = ^(x) = sin(x) as de

sired.

Thus we conclude our example and say that u(x, t) = 1 sin(x) sin(ct) satisfies 

the wave equation and its initial values.
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3.2.2 Laplace transform

A basic understanding of the Laplace transform is assumed. An alternative to 

the d'Alembert solution is using the Laplace transform defined as

TO
L  { f  (t)} = e -stf  (t)dt = F  (s). (3.2.5)

0

Where

L {u '(t)} = sU(s) -  u(0) and L {u "(t)} = s2 U(s) -  su(0) -  u'(0). (3.2.6)

Which follow immediately from integration by parts and assuming that the 

function is of exponential type. Pay special attention to the fact that a capital 

letter means it has already been through the transformation. We can apply 

this transform to the 1-D wave equation, but first, let’s consider some initial 

conditions. Let

„ , du
u(0, t) = f  (t) lim u(x, t) = u(x,0) = = 0.

x dt

Upon considering the 1-D wave equation utt = c2uxx,we can apply the Laplace 

transform and obtain L { u tt} = c2L {u xx}. Which, by equations (3.2.6) can be 

seen as

2 du 2
s2L {u } -  su(x,0) -  = c2L{uxx}

dt

CHAPTER 3. ANALYTICAL SOLUTIONS
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We notice that our initial conditions help simplify the above equation and we 

obtain

s2L  {u} = c2 L  {uxx}.

Let’s now compute the Laplace transform of L {u xx}. Notice that

r & d2u d2 I  & _ d2
L{uxx} = / e sfd x d t  = —  e stu(x,t)dt = —  U(x, t)

J 0 d x d x J 0 d x

Now setting the Left hand side equal to the right hand side we obtain

s 2U = c 2 d2U 
c d2 x

This is an extremely beautiful step as we notice that this is an ordinary differ

ential equation with a general solution of

sx - s x
U(x, s) = A(s)ec + B (s)e c .

Now let’s take the limit and apply our boundary conditions.

n &
lim U(x,s) = lim / e -s tu (x, t)dtx x ̂ &J  o

n &
= lim u(x, t)dt

Jo x^&

= 0

Thus A(s) = 0, B (s) = F (s) and we arrive at

- x s
U(x,s) = F(s)e c .

3.2. 1-D ANALYTIC SOLUTIONS
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Now apply the inverse Laplace transform and second shifting theorem we ar

rive to

u(x, t) = H ( t  -  X)sin(t -  X) (3.2.7)
c c

Where H  represents the Heavistep function defined as

0 if n < 0
H  (n) = <

1 if n > 0.

3.3 Derivation of the 2-D wave equation

Applying the same ideas from our derivation of the 1-D wave equation we will 

now begin the derivation of the 2-D wave equation. We will consider a two 

dimensional membrane and impose a boundary condition on it. The reader 

is encourage to think of the membrane as the top of a drum. In this derivation 

our assumptions will be the following.

1. Density and tension is uniform and constant.

2. Membrane is perfectly flexible and fixed along boundary.

3. Out of plane deflections are small.

Our plane is in the x , y directions. As we did in section 3.1 lets begin con

sidering an infinitesimally small section of this membrane. Instead of a length

CHAPTER 3. ANALYTICAL SOLUTIONS
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3.3. DERIVATION OF THE 2-D WAVE EQUATION

of string we will consider an area of a membrane, with lengths Ax and Ay. 

Thus the area will be dA  = (x,x  + Ax) x (y,y  + Ay). Let’s call z = u(x,y), dis

placement from rest, and lets now begin considering all the forces acting upon 

the membrane.

[11].

As we noticed in the 1-D derivation each point of the membrane will not 

move horizontally, each point will move only in the vertically directions. We 

will take a closer look at figure 3.3 by observing it in the x -  z plane.
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Figure 3.4: Figure 3.3 seen in the x  -  z plane.Figure obtained from [11]

Thus, by small angle approximations the sum of the forces in the x -direction 

can be written as

£ F  = TAy cos(^) -  TAy cos(a) = 0.
X

For the vertical forces we will consider the sum of forces acting on the left and 

right sides of the membrane, then the front and back sides of the membrane. 

Lets begin with the left and right sides,

£  F  = TAysin(^) -  TAy sin(a). (3.3.1)
y -L&R
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3.3. DERIVATION OF THE 2-D WAVE EQUATION 

By small angle approximations which state sin(0) « d « tan(0) we obtain

£  = TAy [tan(^) -  tan(a)]. (3.3.2)
y-L&R

Observe that

tan(^) = ux X=X1+AAX’y+Ay] = ux (x + Ax, yi) (3.3.3)

and

tan(a) = ux y=y2£[y’y+Ay] = ux(x, y2). (3.3.4)

Notice that equations (3.3.3)and (3.3.4) state that the derivative or velocity is 

dependent on some value of y. Just as we did in the i-D case lets plug back 

into equation (3.3.2),

TAy[u(x + Ax,yi) -  u(x,y2)]. (3.3.5)

Using the same method lets consider the forces on the front and back of the 

membrane acting in the y  direction,

£  F = TAx[uy(xi,y  + Ay) -  uy(x2,y)]. (3.3.6)
y-F&B

Lets now apply Newton’s law to the vertical forces,

TAy[u(x + Ax,yi) -  u(x,y2)] + TAx[uy(xi ,y  + Ay) -  uy(x2,y)] = pAxAyutt.

(3.3.7)
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Lets divide each side by Ax A y p to obtain

T ux (x + Ax, yi) -  u(x, y2) uy (xi, y + Ay) -  Uy y)
+ -  utt (O.J.»)

p Ax Ay

We hope the reader becomes especially giddy as they notice the elegance of 

equation (3.3.8). As the limit of Ax and Ay  go to zero we obtain

T
P  (uxx + uyy) — utt• (3.3.9)

Finally let c2 — T and we arrive at the 2-D wave equation we are familiar with

c i uxx + uyy) — utt. (3.3.10)

3.4 2-D Analytic solution

Consider the 2-D wave equation

2
utt -  c (uxx + uyy) — 0.

With utt — c2Au, u(x,y,0) — ut(x,y,0) — u(0,y, t) — u(l,y, t) — 0 on the bound

ary of [0, a] x [0, b]. With a domain of (x, y) £ [0, a ] x [0, b ] and t > 0.

Let u(x, y, t) — X (x)Y (y)T (t). Then we can replace utt -  c2(uxx + uyy) — 0 

with

X Y T " — c 2(X "YT + XY "T)

CHAPTER 3. ANALYTICAL SOLUTIONS
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T n x ff y
Divide 3.4 both sides by c2u(x, y, t) = +

c 2T X Y
T» x " Y"

Set equation equal to A = + = A
H H c2 T X Y

X" Y"
Let B = and C = X" -  Bx = 0 and Y" -  CY = 0

X  Y

Thus C = A -  B

From the boundary conditions X (0) = X (a) = Y (0) = Y (b) = 0.

Applying these conditions we find infinitely many nontrivial solutions in

dexed by m and n . Thus, solving for X (x) and Y (y) we obtain

m n
Xm (x) = srn(Um (x)), lm  = , m = 1,2,3,...

a
nn

Yn (y) = sm(v„y), vn = , n = 1,2,3,...
b

B = - l4n, C = - v n.

Now that we have solved for X (x), Y (y), B and C, lets do the same for T(t). 

Rearrange and simplify (3.4) to obtain

T" -  c2 AT = 0.

Remember that C = A -  B or A = B + C = - ( l 2m + v2n). With this

Tmn(t) = Bmncos Amn t + B *mn sin  Amn t

and
2 2, 2 m n

Amn = c (lm + v„)2 = cn( 2  + 2 ).a2 b2

3.4. 2-D ANALYTIC SOLUTION
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All together we obtain,

umn (A, y, t) = Xm (x) Yn(y) Tmn (t)

= sin(^m (A)) sin(Vny) [Bmn cosdmn t) + B*mn sin(Amn t)) .

Thus the general solution becomes

TO TO
u (x, y, t) = E E sin(^m(x)) sin( Vn (y)) {Bmn cosdmnt) + Bmn sin(Am« t)) .

n=1 m = 1
(3.4.1)

In order to find B and B *we apply initial conditions to f  and g .

TO TO mn nn
f (x,y) = u(x,y,0) = > > BmnSin----x s in — y

n = 1 m = 1 a  b

, , , TO TO . mn . nng (x,y) = Ut(x,y,0) = ^  ^  ^mnBmns in ---- x s in — y
n=1 m=1 a  b

By orthogonality, the functions

mn nn
Zmn (x, y) = sin(---- x)sm(— y) m , n £ N,

a b

are pairwise orthogonal relative to the inner product

f (x, y )g (x, y )d y d x .
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By this theorem the Fourier coefficient becomes

B _ (f , Zmn)
Bmn = Z ~ZZmn, Zmn

_ fo f f  f  (x,y) s i n ( x ) s i n ( b y)dydx

= f a  f b  sin2( mn x )sin2( b  y )dydx

4 j a i b mn nn 1 1
= f  (x, y)sin( x)sin( y)dydx

ab  0 0 a b

and

4 j a j b , , . ,m n , . ,nn  , , ,Bm n = g (x, y)sin( x)sin( y )d y d x .
abAmn 0 0  a b

In conclusion, the analytical solution to the 2-D wave equation is given by 

(3.4.1) with Bmn,Bmn,Bm, vn, Amn as defined above.

Example 3.4.1 Consider a  rectangular membrane 3 x 3 with c = 9. We will 

deform the membrane to fit f  (x, y) = x y (3 -  y)(3 -  y), g (x, y) = 0. Keep edges 

fixed, then release at t = .

Notice that since g  (x, y) = 0, there is no initial velocity. Also, wegetBm n = 0 .

We obtain Bmn by the following,

4 3 3  mn nn
Bmn = xy  (3 -  x )(3 -  y) sin( x)sin( y)dydx

3 * 3 0 0 3 3
4 [ j 3 j 3 mn 1 j 3 nn

= x (3 -  x) sin( x)dx y (3 -  y)sin( y)dy
9 0 0 3 0 3

_ 4 [ 54(1 + (-1 )m+1 54(1 + (-1 )n+1 j
9 n3 m3 n3 n3

_ 1296 (1 + (-1 )m+1)(1 + (-1 )n+1)
n6 m3n3
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Next we will compute Amn,

1
m2 n212 i-----------

Xmn = 9n —  + —  = 3nv m2 + n2.
I 9 9

All together we obtain 

u (x, y, t)

1296 “  “  (1 + (-1 )m+1)(1 + (-1 )n+1) mn nn /—2------- \
= — Y  Y  ---------------- ^ ------------- sin(----- x) sin(— y) cos(3^/m2 + n21) .

n6 n=1 m=1 m3n3 3 3 >

Thus we have come up with a  solution fo r  any t > 0.

3.5 Derivation of the 2-D Wave equation in polar 

coordinates

In this section of the thesis we will convert the Laplacian of the wave equation 

to polar coordinates. Although this is not necessary to model the 2-D wave 

equation numerically it could provide insight to future problems to be solved 

perhaps in a Phd. As the reader could imagine polar coordinates would be 

beneficial if the region was in the shape of a disk.

Consider the Laplacian as

A(u) = uxx + uyy = 0 (3.5.1)
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We know that we can put x and y  coordinates in terms of 9 as the following.

x = r cos(9) y = r sin(9) (3.5.2)

Now, let's compute some important partial derivatives

dx dx
—  = cos(9) —  = - r  sin(9) (3.5.3)
dr d9
d y  „ dy
—  = sin(9) —  = r cos(9) (3.5.4)
dr d9

Our goal is to obtain du  and dE.

Let’s start with ju . By the chain rule,

du du dx du dy
—  = ------- + -------- (3.5.5)
dr dx dr dy dr

du „ du
= —  cos 9 + —  sin 9 (3.5.6)

dx dy

du du
= cos 9 —  + sin 9 — . (3.5.7)

dx dy

N2
Continuing on to d f ,

d2u „ d du n d du
—— = cos 9 — —  + sin 9 — —  (3.5.8)
dr2 dr dx dr dy

i d dud x  l d dudx
= cos 9 —  —  —  + sin 9 —  —  —  (3.5.9)

\dx dx dr)  \dx dx dr)
n d2 u „ d2 u 2 d2u

= cos2 9 — 2 + 2cos 9 sin 9 + sin2 9 — 2 . (3.5.10)
ox2 dxdy dy2
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pH
We are about halfway done, now we should focus on We will use the same

d2
approach that we took to solve for d-f.

du du dx du dy
3d dx 3d + dy dd (3.5.1.1J

du „ du
= ( - r  sin Q) + (r cos 9 (3.5.12)

dx dy

du du
= - r  sin 9 + r cos 9 . (3.5.13)

dx dy

d2
Continuing on to

d1 2 du n d du du n d du
= - r  cos9 -  r sin9 -  r sin9 + r cos9

dQ2 dx d9 dx dy d9 dy

„du  . ( d du dx d du dy . „du
= - r  cos9 -  r sin9 + -  r sin9

dx dx dx d9 dy dx d9 dy

i d du dx d du d y '
+ r cos9 +

dx dx d9 dy dx d9

du l d2u n d2
= - r  cos9 -  r sin9 ( - r  sin9) + r cos9

dx dx2 dxdy

du l d2u n d2u
-  r sin9 + r cos9 ( - r sin9) + r cos9

dy dx d y dy2

ndu . ndu 2 1 2nd2u d2u 2nd2u
= - r  cos9 + sin9 + r sin29 - 2 cos9 sin9 + cos29 .

dx dy dx2 dxdy dy2

Let’s now divide both sides by r2 and apply equation 3.5.7 to obtain

1 d2u 1 du 2 d2u „ „ d2u n d2u
2 2  = -  + sin29 2 - 2cos9 sin9 + cos29 2 . (3.5.14)

r2 d92 r dr dx2 dx dy d y2

CHAPTER 3. ANALYTICAL SOLUTIONS
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Now lets add (3.5.10), (3.5.14) and apply one of the most beautiful trigono

metric identities, cos29 + sin2 Q = 1. By doing so we will obtain,

d2u 1 d2u - 1 du d2u d2u
dr2 r2 dQ2 r dr dx2 dy2 '

Rearranging and using different notation we obtain the Laplcian

1 1
uxx + uyy = urr + - ur + ~ 2 uQQ = 0. (3.5.15)

Now let’s apply (3.5.15) to the wave equation to obtain

2 1 1utt = c urr + - ur + - 2 uQQ . (3.5.16)r r2

Thus equation (3.5.16) is the wave equation written in polar coordinates. We 

will now find solutions in the following section by separation of variables.

3.6 2-D Polar coordinate solution

First, let’s assume homogeneous boundary conditions, that is u (a ,9, t) = 0. 

Where, a  is the edge of the disk. Then,

u (r, 9,0) = f  (r, 9) and ut (r, 9,0) = g  (r, 9).

Separating with respect to time we obtain

u(r,9, t,) = R(r)0(9)T(t) = 0 (r ,9)T (t).

3.6. 2-D POLAR COORDINATE SOLUTION
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To work with equation in a simpler form let’s write equation (3.5.16) as the 

following

2 1 1utt = c (rur)r + 2 uee .r r2

Upon apply our seperation of variables we obtain

,, 2 1 1
0 T " = c2 (r$ r )r + ^ $ee T.r r2

Continuing,

T ^ = 1 r <Pr )r + 72 00 
c 2T 0  '

Upon dividing we obtain our first separated equation for T,

T" + Ac2T = 0. (3.6.1)

Notice that if we multiply equation (3.6.1) by r 20  we will obtain the Helmholtz 

equation which is written as,

r2 0rr + r 0r + $ee + h r  20  = r 2R " 0  + rR -  0  + R 0 " + Ar 2R 0  = 0. (3.6.2)

We will now begin the separation process for 0  by dividing equation (3.6.2) by 

R0 , upon rearraniging we obtain

r 2R + rR' + Ar 2R - 0
R =

Therefore we can solve for 0  as

0" + ^ 0  = 0. (3.6.3)
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There are a couple of things that we know about 0.

0  = a ncosn9 + b nsin9 and r  = 02, 1 2,2 2,...,n2,..

We will utilize r  = n2 to help solve for R . Doing so we obtain

r 2R" + rR' + (kr2 -  n2)R = 0. (3.6.4)

Since we set the edge of our circle to be zero, let’s restate that R (a) = 0 and R (0) 

is bounded. Let’s also get ride of k  by setting © = \J~kr. By doing so we obtain

dR dR d© , dR  , d2R ,, d2R
= = k  and -  = k  2 .dr d dr d d r 2 x 2

Upon substitution we obtain

2 d R dR  2 2 2 d R dR  2 2
r2 2  + r + (kr2 -  n2)R ^S)2 2 + + (©2 -  n2)R = 0, (3.6.5)d r 2 dr d 2 d

as desired. We observe that equation (3.6) is known as Bessel’s equation of 

order n. Derivations of the solutions to the Bessel’s equation will not be shown 

here as our focus is to derive the solution for polar coordinates. Derivation of 

the solutions to Bessel’s equation would need a section of its own, however 

we will mention that the solutions are derived from recurrence relations and 

state it has the solution c Jn (x) = c Jn (vkr).
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We are getting close to our solution, let’s recall boundary conditions for 

J n (vAA) = 0 to obtain

Amn = for n > 0 and m > 1.
a

Which has eigenfunctions of

Rm,n(r) = Jn — A .a

Now that we have A and our eigenfunctions we can finish solving equation 

(3.6.1) and obtain

Tm,n(t) = A cos |\J Am,nc tj + B sin |\J Am,nc •

Thus our solution becomes 

u(r, e, t) = f  (r, 9) + g (r, 9)

= E E  Jn cos Am,nCtj (am,n cos n9 + bm,n sinn9)
n=0 m = 1

+ E E  Jn (^Am,n^ sin ^ A m,nctj [cm,n cos n9 + dm,n sin u9) .
n=0 m=1

Where the coefficients a m,n, b m,n, cm,n, dm,n are determined from Fourier se

ries. The process of finding the coefficients is not difficult, however it can be 

quite exhausting which is why we will leave it to the reader to compute them 

if desired.

CHAPTER 3. ANALYTICAL SOLUTIONS
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3.6. 2-D POLAR COORDINATE SOLUTION

Now that we have derived a couple different types of analytical solutions 

to the 1 and 2 dimensional wave equations we will continue to chapter four 

where we will work on a numerical method that will approximate solutions 

to the analytical wave equation solutions. Our numerical methods will focus 

on 1 and 2 dimensional waves in the Cartesian plane and a finite difference 

method will be used to approximate solutions.
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De r iv in g  Nu m e r ic a l  Sc h e m e s

In this section we will introduce a new way to obtain solutions to the wave 

equation using a derivation of Taylor’s theorem 2.1.1.

As stated before, we will be using the finite difference method to discretize 

our numerical solutions. Although other methods could be of interest we will 

proceed with this method. Another important thing the reader should con

sider is that since we are working with computers we are restricted to a finite 

discrete interval. Because of this, we are forced to come up with a scheme 

that approximates the actual solution. In a perfect world, and likely very dis

tant future these numerical schemes will be unnecessary and we will be able 

to produce numerically the analytical solutions.
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Finally, the reader may notice that the "big oh” has been dropped in these 

approximations.

4.1 1-D Numerical derivation

As a gentle reminder the 1-D wave equation is of the form utt = c2uxx.

Lets begin by introducing u(x, t), a function that has a spatial variable x 

and a time variable t , and suppose u is continuous with respect to both x and 

t. Now consider u(x*, tj), still the same function but this time xn and tm are 

discrete values which are determined by the grid lines. i.e. x0 = a < x1 < x2 <

... < x*_ i,xt < x*+i... < xn = b . The index x* is used to represent the function 

at the current spatial step, while x*_1 and xt+1 will be used to represent the 

previous and following spatial step. The same method is also applied to the 

time variable t.

Applying the manuever of 2.3.11 to u(x*, tj), it can easily be seen that u(x*, tj) 

has the following second partial derivatives.

For a fixed j ,

u(x*+1 , tj) + u(x*_1 , tj) _ 2u(x*, tj)
uxx (xi, tj) = ^ 2 •

4.1. 1-D NUMERICAL DERIVATION
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For a fixed i ,

u(Xi, tj+1) + u(Xi, tj- 1) -  2u(Xi, tj)
utt(xi>tj) -  -̂ 2̂ .

Thus subsisting into utt -  c2uxx we can rewrite the 1-D wave equation as

u(xi, tj+1) + u(xi, tj- 1) -  2u(xi, tj) _ 2 u(xi+1, tj) + u(xi- 1, tj) -  2u(xi, tj)'
At2 c Ax2 '

Applying 2.3.12 to the wave equation we can solve for the next time step by 

subtracting u[x',t] ^u{x’,t]} from each side of the equation above,

u(xi, tj+1) + u(xi, tj- 1) -  2u(xi, tj) u(xi, tj- 1) -  2u(xi, tj)
At2 At2

_ 2 u(xi+1, tj) + u(xi- 1, tj) -  2u(xi, tj)' 
c Ax2

u(xi, tj- 1) -  2u(xi, tj)
At2 '

Solving for the next time step,

2 u(xi+1, tj) + u(xi- 1, tj) -  2u(xi, tj) 2
u(xi, tj+1) -  c 2 AtAx2

u(xi, tj- 1 -  2u(xi, tj) 2 
-  2 At2.At2

Finally, canceling out At2 we obtain

2 u(xi+1 , tj) + u(xi- 1, tj) -  2u(xi, tj) 2
u (xi, tj+1) -  c 2 A t -  u (xi, tj- 1) + 2u(xi, tj).

Ax

(4.1.1)

CHAPTER 4. DERIVING NUMERICAL SCHEMES
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4.2. 1-D NUMERICAL SCHEME

This is the exact equation that we will use in our code. Notice that above in 

equation (4.1.1) we have solved for the next time step and found that it it is 

equal to the function evaluated at its previous, present, and next space steps 

along with the constant c and grid width Ax and At. This process could have 

also been done to solve for the next space step, in fact the reader is encouraged 

to do so as an excercise.

4.2 1-D Numerical Scheme

Recall that uX , tj) approximates the analytic solution u(x, t) at the mesh/- 

grid point (x*, tj). The code presented below has been adopted from Haroon 

Stephens YouTube video https://www.youtube.com/watch?v=O6fqBxuM-g8. 

Notation in the code becomes w ( i , j ) .  Below is the Matlab code for the 1- 

D wave equation, a similar approach will be used to help derive the 2-D wave 

equation. Equation (4.1.1) can be seen under the documentation in the pream

ble involved in the source section of the code as well as the simplifying as

sumption of At = Ax. A more detailed explanation of how the code works is 

saved for section 4.4.

r i
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CHAPTER 4. DERIVING NUMERICAL SCHEMES

%%Solving a PDE 

clear ;

%Equation wtt=cA2wxx+f

%%Domain

%Space

Lx =10;

dx =.01;

nx= fix (Lx/dx) ; 

x=linspace (0 , Lx, nx); 

%Time 

T=20;

%%Field Variable

%Variables

wn=zeros(nx,1);

wnm1=wn; % w at time n-1

wnp1=wn; % w at time n+1

%Parameters

CFL =1; %CFL=c . dt/dx

c = 1;

dt=CFL*dx/c;

%% Initial Conditions 

wn (49:51) =[0.1 0.2 0.1]; 

wnp1(:)=wn(:);

%%Time stepping Loop 

t = 0;

while (t < T)
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4.3. 2-D NUMERICAL DERIVATION

%Reflecting Boundary Conditions 

wn ([1 end])=0;

%solution 

t=t+dt;

wnm1=wn; wn=wnp1; %Save current and previous arrays 

%Source

%wn(5 0)=dtA2*20*sin (2 0*pi (t/T) ; 

for i =2:nx-1

wnpl(i ) = 2*wn(i)-wnm1(i ) ...

+CFLA2 * (wn(i + 1) -  2*wn(i ) + wn(i-1));

end

%Visualize at selected steps 

clf;

plot(x,wn);

title ( sprintf ( ' t=%.2f ' ,t )) ; 

axis ([0 Lx -0.5 0.5]) ; 

shg; pause (0.01) ;

end

4.3 2-D Numerical derivation

As a gentle reminder the 2-D wave equation is of the form utt = c2(uxx + uyy). 

We can derive numerical solutions to the 2-D wave equations similarly to
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the 1-D wave equations. It is important to mention that for the 2-D wave 

equation we have introduced a new spatial variable y . The indices of y  will 

also behave similarly to the indices of x and t described in section 4.1.

For a fixed i and k ,

u(xi, tj+1 ,yk) + u(xi, tj- 1, yk) -  2u(x, , tj,yk) 
utt (xi, tj, yk) = ^  •

For a fixed j and k ,

u(xi+1 , tj,yk) + u(xi- 1 , tj, yk) -  2u(x,-, tj,yk)
uxx (xi, tj , yk) = ^x2 •

For a fixed i and j ,

u(x, , tj,yk+1) + u(x, , tj, yk-1) -  2u(x , , tj,yk)
uyy (xi, tj , yk) = •

Thus substituting into the 2-D wave equation we obtain

u(x, , tj+1 ,yk) + u(x, , tj- 1 ,yk) -  2 u(x , , tj, yk)
At2

_ 2 u(x ,+1, tj, yk) + u(x ,- 1, tj,yk) -  2u(x , , tj,yk)
C Ax2
u(xi, tj,yk+1) + u(x, , tj,yk- 1) -  2 u(x , , tj,yk)

+ Ay2 •

CHAPTER 4. DERIVING NUMERICAL SCHEMES
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Just like we did for the 1-D wave equation we can also solve for the next 

time step in the 2-D wave equation. We will begin the Algebraic process of 

solving for the next time step u(x,, tj+1( yt ). By subtracting

u(xi, tj- 1,y t ) -  2 u(xi, tj,y t )
At2

from each side, we obtain

u(xi, tj+1 ,yt) + u(xi, tj- 1, y t) -  2u(x,, tj, y t) u(xt, tj- 1,yt) -  2u(x,, tj, yt) 
At2 At2

_ 2 u(x,+1 , tj,yt) + u(x,- 1 , tj,y t) -  2u(x,, tj, y t)
C , Ax2

u(x,, tj,y t+1) + u(x,, tj,y t - 1) -  2 u(x,, tj,yt)
+ Ay2 J

u(x,, tj- 1, y t) -  2 u(x,, tj, y t)
At2 '

We will finish solving by canceling the two terms on the left hand side of the 

equation, using the simplifying assumption Ax = Ay, and multiplying each 

side by At2.

2 u(x,+1, tj, yt) + u(x,- 1 , tj,yt) -  2u(x,, tj, yt) 
u(x, , tj+1, y t) = c --------------------------a^2---------------------------

u(x,, tj,yt+1) + u(x,, tj,y t- 1) -  2 u(x,, tj,y t) J 2
Ay2

u(x,, tj- 1) -  2 u(x,, tj) 2
At2

Finally, by adding like terms,rearranging and canceling products we obtain

4.3. 2-D NUMERICAL DERIVATION
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2 u(xi+1 , tj, yk) + (xi, tj, yk+i) -  4u (xt, tj, yt) \ 2
u (xt, tj+1, y t ) = c 2 At

Ax
2 u(xt- 1, tj, y t ) + u(xt, tj, y t-i) \ 2

+ c2 2 At2 -  u(xt, tj-i) + 2u(xt, tj).
Ax

Notice that this is the next step for time. This process could have been 

done to solve for the next time step for either x or y . We will use this theoret

ical derivation of the next time step in section 4.4 to implement the 2-D wave 

equation in Matlab.

4.4 2-D Numerical Scheme

Using the 1-D Matlab code and our acquired knowledge we are now ready to 

come up with the code for the 2-D wave equation. The reader is encouraged 

to reference the code listed below while it is explained in this section.

To begin, let’s start with our domain to help establish grid and mesh points. 

Let a, b, c, d be endpoints of our region. That is, a < x < b and c < y < d . 

We will assign Lx as |b -  a| and Ly as |d -  c |. Now that we have a region, lets 

start to "slice it up” in order to make a grid. Let dx and dy represent our val

ues of h and k  respectively, as defined in definition 2.3.6. Since dx  = we 

are able to solve for n and we achieve n = d a . In our code we will assign n as

CHAPTER 4. DERIVING NUMERICAL SCHEMES
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nx=fix(Lx/dx) . We will also do the same for m by assigning ny=fix(Ly/dy). 

Also, let m = n. Thus, Lx=Ly and dx=dy. Finally, for the grid lines we will cre

ate a vector of points ranging from 0 to nx spaced by Lx. Thus we will as

sign x= lin sp ace(0 ,L x ,n x). Similarly we will do the same for y  and achieve 

y = lin sp ace(0 ,L y ,n y ).

In the time section of the code we will chose T as final time to be whatever 

length we desire.

In the field variable section of the code we will assign function values to a 

matrix which are crucial in the while loop of the code. The command 

wn=zeros(nx, ny) creates a matrix of zeros of width nx and length ny. These 

are the outputs of w=w (i,j) at the current time step. Also note that in this 

section the previous time step will be assigned as wnm1=wn, and the next time 

step will be assigned as wnp1=wn. This will have great importance to us in the 

while loop of the code.

In the parameters section of the code we define our Courant-Friedrichs- 

Lewy number as CFL=c*dt/dx. Notice here that even though earlier we made 

a simplifying assumption of dx=dy we did not do the same for dt. This is done 

so that the time step must be less than a certain time for stability. Next we will 

chose a value for c, remember c is our constant. Finally, we will define our
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time step at CFL*dx/c.

The code continues, declaring t=0 as our initial time for the while loop. 

The first thing to notice in the while loop is that there are two options for 

boundary conditions in the code. The user can chose either reflecting or ab

sorbing boundary conditions. For reflecting boundary conditions, since our 

figure has finite boundaries we will implement Dirichlet boundary conditions. 

This definition will help us specify the values that a solution needs to take on 

along the boundary of the domain, which is precisely what is done in the code 

i.e. wn(:, [1 end])=0 and wn([1 en d ],:)= 0 . To give the reader a better 

understanding of what the computer is doing to the matrix wn refer to the fig

ure below.

1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 0 1 1 1 0

1 1 1 1 1 , 0 1 1 1 0

1 1 1 1 1 0 1 1 1 0

1 1 1 1 1 0 0 0 0 0

Imagine wn is the matrix on the left. It shows the values associated with the 

mesh points. That is, the columns represent xi and the rows represent yj thus 

wn( j , i )  is the mesh point at ( j , i ) .  The matrix on the right is what happens
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when the Dirichlet boundary conditions are imposed. As one can see it simply 

sets all of the values on the boundaries equal to zero.

In the next section of the code the step for t in the time loop is given as 

t=t+dt and after boundary conditions are applied previous and current val

ues in the time step matrix are recorded as wnm1 =wn and wn=wnp1 .

Next, a source will be introduced. We are able to chose the location of the 

source thus this will assign values to the original wn matrix. That is, the initial 

condition or an external source. One interesting aspect is that we are able to 

assign the source as a constant, or we can assign it to a function. For exam

ple, if we assign wn(50,50)=10 this will make the mesh point (50,50)=10. 

However, if we assign w n(50,50)=sin(dt), this will make the point (50,50) 

a function of sin(dt)  and the sin wave will be used for the duration of T to 

propagate waves.

Perhaps the most beautiful part of the whole thesis is now implemented 

in the for loop. Notice that the for loop was designed to assign values to the 

next time step matrix. By this point of the thesis the reader should have no 

problem recognizing equation (4.3) in the for loop. The only difference is that 

instead of c in equation (4.3) the CFL is listed instead. This is alright because 

in the code the CFL=.5 and c=1. This returns a correct value for the CFL. That
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is, CFL = c • The reader is further encouraged to spend extra time admiring 

the beauty of this section of the code.

The rest of the code is computer mumbo jumbo to produce the results as 

figures. If the reader is interested in this section of the code they are referred 

to a matlab handbook.

Below is the code for the 2-D equation in Matlab.

%% Solving a PDE 

clear ;

% Equation

%% wtt = cA2 wxx + cA2 wyy +f 

%% Prepare the new file . 

vidObj = VideoWriter( 'wave.avi' ) ; 

open(vidObj);

%% Domain 

% Space 

Lx =1;

Ly =1; 

dx = 0.01; 

dy=dx;

nx= fix (Lx/dx) ; 

ny= fix (Ly/dy) ; 

x=linspace (0 , Lx, nx); 

y=linspace (0 , Ly, ny);
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% Time 

T=100;

%% Field variable 

% Variables 

wn=zeros(nx,ny); 

wnm1=wn; % w at time n-1 

wnp1=wn; % w at time n+1 

% Parameters 

CFL = 0.5; % CFL = c.dt/dx 

c = 1;

dt=CFL*dx/c;

%% Initial Conditions 

%% Time Stepping Loop 

t = 0;

while (t < T)

% Refelecting Boundary Conditions 

%wn(: , [ 1 end]) =0;

%wn([1 end] ,:) =0;

% Absorbing boundary conditions

wnpl (1 ,:) =wn (2,:) + ((CFL-1)/(CFL + 1)) *(wnp1 (2,:)-wn (1,:));

wnpl (end,:) =wn (end-1,:) + ((CFL-1) / (CFL + 1)) *(wnpl (end-1 ,:)-wn(end,:) ) ;

wnpl (: , 1) =wn (:,2) + ((CFL-1)/(CFL + 1)) *(wnp1 (:,2)-wn (:,1));

wnpl (: , end) =wn (: , end-1) + ((CFL-1) / (CFL + 1)) *(wnp1 (: , end-1)-wn (: , end)) ;

% Solution

t=t+dt;

wnm1=wn; wn=wnp1; % Save current and previous arrays 

% Source

61



wn (50,50) = 10; %dtA2*20* sin (3 0* pi* t/20) this was the original wave source 

for i =2:nx-1, for j =2:ny-1

wnpl(i ,j ) = 2*wn(i ,j ) -  wnml(i ,j ) ...

+CFLA2*(wn (i + 1, j ) +wn (i , j + 1) -4*wn (i , j ) +wn(i — 1, j ) +wn (i , j -1)) ;

end, end

% Check convergence 

% Visualize at selected steps 

clf;

subplot (2,1,1) ;

imagesc(x, y, wn'); colorbar; caxis([ — 0.2 0.02]) 

title ( sprintf ( ' t = %.2f', t )); 

subplot (2,1,2);

mesh(x, y, wn'); colorbar; caxis([ — 0.02 0.02]) 

axis ([0 Lx 0 Ly —0.05 0.05]) ; 

shg; pause (0.01) ;

end

In the following section various figures with choices of different parameters 

will be presented, all of which were ran using the code above.
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In this section images from the code will be presented and discussed.

5.1 Images

In this section frames from the code will be presented and analyzed. All snip

pets of the 2-D wave equation in this section have CFL=.5, c=1, Lx=Ly=10 

and dx=.1 . Snippets chosen will be of different times, sources and reflecting 

vs. absorbing boundary conditions and will be labeled accordingly. Addition

ally, photographs of a vibrating guitar string and water drop are added so the 

reader can easily see the real life applications of this code.
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Figure 5 .1 :1-D wave equation.

Figure 5.1 shows the 1-D code evaluated at wn(49:51) = [0.1 0 .2  0.1] 

with CFL=1, c=1 and dx=.01. A propagation near the center caused waves to 

travel in each direction.
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Figure 5.2: Guitar string resembling 1-D wave equation.

Figure 5.2 shows three guitar strings oscillating. Just like the 1-D snippet in 

figure 5.1 these waves were caused by a propagation that sent waves traveling 

left and right.
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Figure 5.3: Constant propagation with absorbing boundary conditions at t = 3.05.

Figure 5.3 has the source defined as wn(50,50)=10. This snippet was cho

sen to show what the wave looks like after propagation and before it comes 

into contact with any kinds of boundaries.
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Figure 5.4: Constant propagation with absorbing boundary conditions at t = 6.05.

Figure 5.4 is a continuation of figure 5.3 at time 6.05. This snippet was cho

sen to show how absorbing boundary conditions affect the wave. We should 

point out that animation goes out of the plot view with respect to the z -axis. 

However, this does not concern us because we are most interested observing 

the absorbing boundary conditions.
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Figure 5.5: Propagation of a sin wave with absorbing boundary conditions.

Figure 5.5 is different from the previous figures because it has continual 

propagation of a sin wave as opposed to a single occurrence of a source. Ab

sorbing boundary conditions are applied and this snippet was grabbed right 

before it comes into contact with the boundary.
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Figure 5.6: Propagation of a sin wave with absorbing boundary conditions.

Figure 5.6 is a continuation of 5.5 at time t=10. This snippet was chosen to 

show how sin propagation acts when it hits an absorbing boundary.
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Figure 5.7: Constant propagation with Reflecting conditions t=6.05.

Figure 5.7 has the same conditions as figures 5.3 and 5.4 but this time re

flecting boundary conditions were applied.
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Figure 5.8: Constant propogation with reflecting conditions t=10

Figure 5.8 is a continuation of 5.7 at time t=10. This figure was chosen 

to show how chaotic wave reflections can become. Figures like this should 

make us thankful for computers that can do thousands of accurate arithmetic 

computations to create models we would of not been able to create 100 years 

ago.
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Figure 5.9: Propagation of a sin wave with reflecting boundary conditions.

Figure 5.9 has the same conditions as figures 5.5 and 5.6 but this time, 

reflecting boundary conditions were applied.
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Figure 5.10: Propagation of a sin wave with reflecting boundary conditions at t=12.

Figure 5.10 is a continuation of figure 5.8 at time t=12. In this figure we 

can see waves reflecting off the boundary and traveling towards the source of 

propagation.
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Figure 5.11: Water droplet resembling the 2-D wave equation

Figure 5.11 shows a water drop propagating a wave that resembles a 2-D 

wave equation.

Upon viewing the images from the code it is hoped that the reader has a 

better understanding of the goal of our numerical methods. It should now be 

extremely clear why it was so important to chose grid lines, establish space 

steps, discuss boundaries as either reflecting or absorbing, and implement a 

numerical scheme to represent the partial differential equation. The MAT- 

LAB figures presented were chosen to help show us the differences between 

choices of parameters. While the pictures of guitar string and water drop were
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given to compare the model to.

The ideas derived and shown in this section are desired to be a foundation 

for modeling 3-D ocean waves. Although ocean waves will not be modeled in 

this thesis they will be discussed in the following section.
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6
Ap p l ic a t io n s

Throughout the thesis we have stayed quite theoretical in naming u(x, t). In 

this section of the thesis we will name a general wave function and some of its 

applications.

6.1 Harmonic waves

This section of the thesis will be used for becoming familiar with harmonic 

waves and their relationships to prepare us for a light introduction to ocean 

waves. The wave function we will study for this section are harmonic waves 

defined as

n(x, t) = A cos [kx -  Mt + 0). (6.1.1)

76



6.1. HARMONIC WAVES 

With denotations as the following

Amplitude: a  Initial pahse: 0  Frequency: f  =
2n

1 2n
Period: T = Angular frequency: m Wave number: k =

f  a

2n
Height: H = 2a  Wavelength: A = Speed of propogation: v

k

Figure 6.1: Wave profile of a harmonic wave.

The harmonic wave function represents how a 1-D wave propagates through 

a space and time. Although equation (6.1.1) may seem rather elementary it 

has many interesting features and a seemingly endless amount of applica

tions. Before we continue much further let's recall a basic identity,

Euler’s Identity e l9 = cos d + i sin 9.

Although we are not too interested in complex waves it is important to at least 

mention that our harmonic wave can be written as, n(x, t) = RE(A ei(kx-Mt)).
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6.2 Ocean waves

In this section we will talk about the life cycle of an ocean wave. Particularly 

how wind turns into swell and how that swell reacts to bathymetry (the bot

tom). Although ocean waves do have three spatial variables we will consider 

only x and q(x , t). We will use equation (6.1.1) to talk about waves that travel 

in open ocean swells. Once the wavelength becomes considerably longer than 

the ocean depth shallow water wave equations must be used instead.

There are plenty of sources that could cause waves in the ocean. That be 

it wind, Tsunami, a large ship or even an explosion. However, we will limit the 

discussion to wind waves. All waves of these types start from wind. The sur

face of the ocean can be seen as an addition of harmonic waves represented 

below.
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Figure 6.2: The top of the figure to the bottom shows waves added together to represent 
the surface condition of the ocean at the bottom.

The characteristic of the swell i.e. the wave height, frequency and direction 

are determined from the intensity, duration and distance of the fetch of wind. 

The energy from the wind is transferred into the ocean and is well preserved. 

These wind waves that are traveling in the same direction will now begin their 

journey through the ocean which we will refer to as a wave train. Waves will
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begin to spread out and add upon each other. This can be easily seen in the 

figure below.

Figure 6.3: At the far left we see the storm that caused the wind, to the right we see how 
the waves spreed out.

Now that we have a basic idea of how waves are generated let’s get into the 

mathematics of when they approach the shoreline. Waves will travel with a 

velocity c and be subject to gravity g  = -9 .8m l  s. Noting that c = w/k , thus we 

can represent lambda as

A = cT.
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We can use this definition of A to solve for c as

_ A _ w g
C T k k '

An extremely important idea that we have not touched upon is that at a depth 

approximately half the wavelength small particles can be found traveling in 

circles which can be seen in figure 6.4. This is an important idea and will come 

into effect when we talk about the depth of the ocean. We will define deep wa

ter waves as H > a, shallow water waves as H < 25 and transitional waves as 

A < H < 25. When waves approach the shore and come into contact with shal

low water their period remains the same but their velocity decreases. Thus we 

will utilize the hyperbolic tangent to determine c for deep and shallow water. 

Where
— p — X

tanh x = -------  - .
ex + e x

From linearity theory of wave motion we will utilize

2 g
c = tanh kh. 

k

Notice that tanh kh  in deep water will force the hyperbolic tangent close to 

unity and we obtain

c 2 = S = gA . 
k 2n'
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Similarly for shallow water we will obtain

Another nice relation that should be mentioned is the angular frequency, which 

can be solved for as

m2 = g k  tanh kh.

Note that this equation was not stated specifically for deep or shallow water.

Figure 6.4: The circles represent orbital motion that particles experience at different 
depths.

We have now layed the ground work for the basics of how ocean swells 

travel. One may notice that from the above equations deeper water waves
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move faster. Thus, if a wave (which will be referred to as a ray) is traveling 

nearly parallel to a shallow depth it will begin to slow down while the portion 

of the wave that is still in deep water moves fast. Thus, the direction of the 

wave changes and refraction occurs. Refraction is displayed below in figure

6.5.

Figure 6.5: Diagram representing refractions.

In fact this is governed by Snell’s law which states.

sin d
= constant.

Cphase
(6.2 . 1)
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The angle d is a measure between the ray and the normal to the depth contour. 

Another great thing to note about rays is that the energy flux between two 

rays is constant. Thus, if the rays refract and end up "pinching" by means of 

coming closer, the wave height will increase due to the energy condensed to 

a smaller area. Black’s beach in San Diego is a great example of this. Observe 

the following two figures.

Figure 6.6: Refraction can be seen in the far left of the picture where the waves form a 
checkerboard pattern.
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Figure 6.7: This figure shows the depths of the canyons and the forecasted wave heights. 
The red dot labeled blacks is the model for the figure above. This model was not ran by 
the author, it was obtained from [12].

Once the wave has reached shallow water and has been effected by refrac

tion it will break when either one of three things happen;

• The crest of the wave forms an angle less than 120 degrees.

• The wave height is greater than one-seventh of the wavelength, H > 

1/7A.

• The wave height is greater than three-fourths of the water depth, H > 

3/4D.
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The height of the wave can be determined by

Hb = — . 
b 1.28

Where hb stands for the depth at which the wave breaks while HB stands for 

the height of the breaker. To model and come up with equations once the 

wave breaks things get extremely complicated. In fact the Navier-Stokes exis

tence and smoothness is a Millennium Prize Problem. Which, although would 

be a great thing to solve might be a tad too ambitious for a Master's thesis. 

Instead, in the following section we will touch upon the shallow water equa

tions.

6.3 Shallow water equations

When representing ocean swell in deep water we found that

n(x, t) = A cos [kx -  wt + 0)

was an appropriate model. However, once the waves arrive to shallow water 

we need more accurate equations that account for the bathymetry. Shallow 

water equations are used routinely by tsunami forecasters. Although 2-D and 

3-D equations exist we will stick to the 1-D derivation for simplicity. Upon
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deriving the derivations we will have a better understanding of the ideas that 

govern fluids in shallow water. The shallow water equations in 1-D are often 

called the Saint-Venant equations. In this section of the thesis a derivation of 

the Saint-Venant equations will be presented. This derivation will utilize the 

physical principles of conservation of mass and conservation of linear mo

mentum and simplifying assumptions will be stated when necessary.

For a mass balance over a control volume M  the conservation of momen

tum states that the time rate of change of a total mass in th region of integra

tion is equal to the net mass flux across the boundary of the region,

d  = pdV  = -  (p v) • ndA. (6.3.1)
dt M dM

Where,

u

p = fluid density, v = v , and n is the normal unit vector for dM.

w

By applying the divergence theorem which states

(V-F)dV  = F  • dA.
S dV

Equation (6.3.1) becomes

4  pdV  = -  V • (p v )dV. (6.3.2)
dt M M
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We will make a simplifying assuming that p is smooth so we can apply the 

Leibniz integral rule which states

d ( i  b \ i b d
d x  J (x' t )dt) = J.  d x f (x' t)dt•

We then obtain

—  + V̂  (pv) dV = 0. (6.3.3)
m dt

Thus we arrive at

dp
d t  + V- (p v) = 0 (6.3.4)

because M  is arbitrary. Thus equation (6.3.4) is the first of the two equations 

in the Saint Venant Equations.

For the next equation we will utilize the conservation of linear momentum 

which states that the time rate of change of total momentum in a region is 

equal to the sum of the body and external forces on the region minus the net 

momentum flux across the boundary of the region.

d  p vdV = -  (p v)v • ndA + p b d V + TndA . (6.3.5)
dt M dM M dM

Where, b: body force density per unit mass and T: Cauchy stress sensor. As we 

did in the derivation of our first equation let’s apply the divergence theorem 

to equation (6.3.5) to obtain

4  p v d V = -  V̂  (pvv)dV + p b d V + V̂  TdV.
dt M M M M
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We can subtract the terms on the right hand side and again apply Leibniz in

tegral rule to obtain

r [ d
h -(P v ) + v - (pvv) - p b - ? •  T dV = 0.J m [dt

Again, since our region is arbitrary we can simplify it to obtain our second 

shallow water equation. That is,

d— (p v) + V̂  (p vv) -  p b - V - T = 0. (6.3.6)
dt

Thus written together the Saint-Venant equations are

~dp _ ,
—  + V • (p v) = 0 for continuity and 

d
dt  (p v) + V- (p vv) -  pb  -  V • T = 0. for momentum.

Although we will skip the derivation, since we have come all this way we 

might as well state the Navier-Stokes Equations which work in 3-D. As stated 

many times throughout this thesis, the goal of the thesis is to dip our toes in 

as many areas of waves to further prepare the author in research which will 

certainly include the Navier-Stokes Equations.

The Navier-Stokes Equations are the following

du dv dw 
dx dy dz

d(pu) d(pu2) d(puv) d(puw ) d(rxx -  p ) d(r xy) d(rxz)
dt dx dy dz dx dy dz

6.3. SHALLOW WATER EQUATIONS
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d(pv) d{pnv) d(p v2) d(pvw) d(Txy) d(Tyy -  p) d{TyZ) 
dt dx dy dz dx dy dz

d(p w) d(puw) d(p vw) d(p w2) _ d(Txz) d(Tyz) d(T zz -  p)
dt dx dy dz pg  dx dy dz '
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7
Co n c l u s io n s  and  f u t u r e  w o r k

This thesis concludes with an overview of what has been accomplished and 

the future goals that have not yet been pursued. In the conclusions section we 

will highlight key ideas that will hopefully serve the reader and author as fun

damental ideas in more challenging problems during research. In the future 

work section we will talk about ideas and projects that were not attempted in 

this thesis.

7.1 Conclusions

Due to how many areas of science are involved in the subject matter, this the

sis could have gone on seemingly forever. However, we drew a line once we
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arrived to the shallow water equations. We stopped here because once waves 

reach shallow water they will eventually end up plunging. Plunging waves are 

on a whole other level of research and will be studied for Phd work.

The ideas that will be taken from this thesis and used in research will be 

standard differential equation transformations, methods of approximation, 

methods of discretization, code implementations, and how to connect all of 

these ideas to a moving body of water. We learned that there is not just one 

version of the wave equation. At first, we derived an equation that was based 

off of time and spatial variables in the x and y  plane. We then found out in sec

tion 3.5.7 that spatial variables are not just limited to x , y  and z . We learned 

that for analytical solutions we can utilize sin and cos functions, or in other 

words Fourier series to model our equation. For methods of discretization we 

learned that approximating with polynomials, or in other words Taylor’s theo

rem is a powerful and common approach. We will take away the ideas of finite 

difference and Matlab practice to help us translate equations and implement 

them into the computers. Finally, chapter 6 served as a great introduction to 

elementary ocean waves.

Aside from perhaps selfish reasons of riding waves, knowledge acquired in 

this thesis could be very useful to any range of professionals. Perhaps a cli-
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mate scientist could use these ideas to predict the effects of glacier calving. 

Glacier calving is when large pieces break off from ice bergs that create dis

placement which could cause large waves. In fact, the believed to be largest 

wave ever was caused by a similar effect when an earthquake caused a land

slide in Lituya Bay Alaska. The displacement was believed to have created a 

wave that was approximately 1700 feet high! Aside from environmental sci

entists knowledge of wave equations could even be used in the medical field. 

Ultrasound and x-rays could be improved with a better understanding of wave 

equations. Or maybe even wave equations could be utilized to help create ar

tificial hearing for the deaf.

7.2 Future work

This is an exciting field to study due to how little has been accomplished rela

tive to how much is left to discover. Like all areas of Mathematics, there is still 

an endless amount of questions still unanswered in wave modeling. One very 

important area of this thesis that was left almost completely unaddressed was 

the big O, the remainder of Taylor’s theorem. The remainder was completely 

left out of the Matlab code, perhaps continuing work of this thesis would in-

93



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

elude an evaluation of error analysis.

Surfing is an emerging sport, especially in recent years we have seen an 

abundance of surf contests making their way into big sports networks like 

ESPN. Surfing will even be in the 2020 summer Olympics for the first time ever. 

Due to the raw elements nature of surfing, it makes it very tough to hold, film 

and document contests. Which is why we have seen an abundance of wave 

pools in recent years. Wave pools are able to produce controlled waves, un

like the fickle ocean. As Mathematicians we should at the least be interested 

in the Mathematics behind these very complex wave pools,wave forecasting 

and related control problems. Below is an image of a wave pool in Australia.

94



7.2. FUTURE WORK

Figure 7.1: This is a wave pool in Australia that uses the "plunger" in the middle and 
compressed air to generate waves.

Something that is extremely exciting, unlike ocean waves which are gen

erated by wind, wave pools are not limited to any method of wave generation. 

As seen in figure 7.1 one method of approach could be having an object in 

the center of a circular pool that moves up and down to displace water. We 

hope that the polar coordinates of the wave equation come to mind upon see

ing this picture. Other methods that have already been implemented include 

sucking water into a chamber then releasing it. Also, dragging an item through 

the pool. All it takes to create a wave is to displace water. Who knows, maybe 

in the future wave pools will generate waves from underwater explosions!

Ocean waves are dramatically more challenging than 2-D wave equations. 

Ocean waves have a seemingly infinite amount of parameters that make them
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act the way they do. Wind blows over a region of water that creates little rip

ples that form and group together to make larger waves that travel for thou

sands of miles, and during their trip they are affecting by storms, reefs, shad

owing etc. Although the jump from 2-D wave modeling to ocean waves is a 

large one, our understanding of the wave equation,harmonic motion and the 

shallow water equations serve as great models. A very rigorous understand

ing of motion in the ocean would require a study of the Navier-Stokes equa

tion which were presented in section 6.3. The Navier-Stokes equation takes 

into account variables such as vorticity which were not covered in this thesis. 

Figure 7.2 below is presented to give the reader of what the ideal ocean wave 

looks like and why it would be so hard to model it.
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Figure 7.2: The "Perfect" Wave. Photo taken by Rany Phenning.

Figure 7.2 shows a beautiful ocean wave, the type that engineers are trying 

to model in wave pools. Recall that this wave was created from wind thou

sands of miles away then refracted off of an underwater canyon to arrive at it’s 

beautiful form it takes in the picture as the perfect wave. Differences between 

ocean waves and 2-D waves can be seen in figure 7.2. Notice that ocean waves 

plunge. That is, the base of the wave slows down as the crest forms upward 

and continues to spin. We hope that any Algebra student can recognize that
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this wave will not pass the vertical line test which makes it extremely difficult 

to write a function that could resemble it. In fact, many models for plunging 

waves are written as piecewise functions. Additionally, hen the crest of the 

wave crashes back down into the water the "explosion" causes the particle to 

scatter and is nearly impossible to model.

An idea that the author is interested in is a cross between a wave pool and 

the ocean. The idea is based off of the fact that waves can be added together to 

create larger waves. As we noticed with the wave pools, displacement is what 

it takes to create a wave. What if there was a device that could be placed in the 

ocean to absorb all of the small waves that are created by localized wind then 

"add" them together to create a larger wave. Perhaps the device could rise a 

weight with every wind chop then suddenly fall at the desired height to create 

displacement. Santa Barbara would be an area of interest for the device as it 

has some of the best bathymetry for surfing waves, almost always lacks large 

swell for surfing but constantly has wind swell which could be added together. 

Although the idea is very farfectched, it should not be abandoned completely. 

In the Gold coast of Australia, which is a premiere surf destination, $3.3 billion 

dollars are generated in the city annually through surf tourism alone! Surely 

this kind of revenue would be a great motivator for a project that combines
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the ideas of wave pools and ocean waves.

Continuing work of this thesis would include a rigorous transition from 

shallow water waves to the Navier-Stokes equation and attempts to accurately 

model plunging ocean waves.
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