
Channel Islands
C A L I F O R N I A S T A T E U N I V E R S I T Y

Turing M achine Simulator and its Underlying
M echanism

A Thesis Presented to

The Faculty of the Computer Science Department

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

by

Student Name:
Hang Zhang

Advisor:
Dr.Soltys

November 2019

© 2019
Hang Zhang
ALL RIGHTS RESERVED

APPROVED FO R MS IN CO M PU TER SCIENCE

Advisor: Dr. Michael Soltys D ate

Dec 10, 2019

Dr. Brian Thoms D ate

Dr. Jason Isaacs

Dec 10, 2019

D ate

APPRO VED FOR THE UNIVERITY

Dr. O zturgut, Osman D ate

Non-Exclusive Distribution License

In order for California State University Channel Islands (CSUCI) to reproduce, translate and
distribute your submission worldwide through the CSUCI Institutional Repository, your agreement to
the following terms is necessary. The author(s) retain any copyright currently on the item as well as
the ability to submit the item to publishers or other repositories.

By signing and submitting this license, you (the author(s) or copyright owner) grants to CSUCI the
nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission
(including the abstract) worldwide in print and electronic format and in any medium, including but not
limited to audio or video.

You agree that CSUCI may, without changing the content, translate the submission to any medium
or format for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of this submission for purposes of
security, backup and preservation.

You represent that the submission is your original work, and that you have the right to grant the
rights contained in this license. You also represent that your submission does not, to the best of
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the
submission contains no libelous or other unlawful matter and makes no improper invasion of the
privacy of any other person.

If the submission contains material for which you do not hold copyright, you represent that you have
obtained the unrestricted permission of the copyright owner to grant CSUCI the rights required by
this license, and that such third party owned material is clearly identified and acknowledged within
the text or content of the submission. You take full responsibility to obtain permission to use any
material that is not your own. This permission must be granted to you before you sign this form.

IF THE SUBMISSION IS BASED UPON WORK THAT HAS BEEN SPONSORED OR SUPPORTED
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH
CONTRACT OR AGREEMENT.

The CSUCI Institutional Repository will clearly identify your name(s) as the author(s) or owner(s) of
the submission, and will not make any alteration, other than as allowed by this license, to your
submission.

Turing Machine Simulator and its Underlying Mechanism
Title of Item

Turing Machine Simulator, Universal Turing Machine, General Recursive Function, Lambda Calculus

3 to 5 keywords or phrases to describe the item

Hang Zhang
Author(s) Name (Print)

dec. 12, 2019

Date

This is a permitted, modified version of the Non-exclusive Distribution
License from MIT Libraries and the University of Kansas.

Turing Machine Simulator and its Underlying
Mechanism

Hang Zhang

December 10, 2019

Abstract

Turing machines(TMs) are mathematical models of computation
that define abstract machines. Because of their simplicity and consis­
tency, they are amenable to mathematical analysis. These hypothetical
machines are intended to help explore the concept of what it meant to
be computable. These models form the foundation of theoretical com­
puter science. A lot of theoretical computer science has been beard
on TMs, and so a lot of the primary results are in the language of
Turing machines. I t’s essential for computer science students to build
up a strong foundation of computer science by understanding theoreti­
cal models behind this field. Nowadays, Universities provide computer
science education usually offers one or two classes to introduce Turing
Machine. However, studying Turing Machine without a useful visual
tool can be a little bit less intuitive. In this thesis, a Turing Machine
simulator was created. Also, a universal Turing machine was proposed
to show how a simulator works at a lower level.

Contents

1 In troduction 1
1.1 Motivation.. 1

2 Background 3
2.1 General Recursive Function ... 4
2.2 Lambda C alcu lus.. 6
2.3 Turing M achine... 8
2.4 Computational E quivalance... 10

3 Turing M achine Sim ulator 20
3.1 Code ... 20
3.2 Configure a transition table ... 24
3.3 Usage .. 25

4 U niversal Turing M achine 30
4.1 Background ... 30
4.2 Encoder ... 30
4.3 Design .. 32
4.4 Usage and Example ... 41

5 O bservation 43

6 Conclusion and fu ture work 45

References 47

i

List of Figures

1 Turing Machine E n ti ty ... 9
2 Turing Machine Simulator Overview .. 26
3 Turing Machine T a p e .. 26
4 Turing Machine Transition Table .. 27
5 Turing Machine Transition Table Highlighted 28
6 Turing Machine Operation B o x ... 28
7 Color sort transition r u l e s .. 31
8 Color sort transition description... 32
9 initial UTM t a p e .. 32
10 Fetch letter T M ... 33
11 Color Sort Fetch letter TM S ta r ts .. 33
12 Color Sort Fetch letter TM Ends .. 34
13 Match Instruction T M ... 35
14 Color Sort Match Instruction TM S t a r t s 35
15 Color Sort Match Instruction TM E n d s 35
16 Write And Move Letter T M ... 36
17 Color Sort Write And Move TM S ta r t s 37
18 Color Sort Write And Move TM E nds.. 37
19 Update State T M .. 38
20 Color Sort Update TM S t a r t s ... 39
21 Color Sort Update TM E n d s .. 39
22 Final T ape ... 39
23 UTM Part 1 .. 41
24 UTM Part 2 .. 41
25 UTM I n f o .. 42

ii

1 Introduction

1.1 M otivation
Turing machines are hypothetical machines which were created by Alan Tur­
ing in 1936 to explore the concept of what it meant to be computable[4]. A
typical Turing Machine has an infinitely long stripe of tape composed of a
number of squares with symbols written on them. These squares are used
to store inputs and outputs computations for this machine. It also has a
head that can read symbols from the squares, write symbols to the squares,
and move left and right. It also has a set of transition functions which is
essentially a program to tell Turing Machine what tasks to perform based
on the machine’s state and the read symbol. Every Turing Machine has an
initial state and a halt state. A Turing Machine starts its computations from
the initial state and finishes its task when it enters a halt state. Without a
halt state, a turing machine will never terminate.

Turing Machine is a foundation of modern computer programming. It
is very important for computer science students to understand this comput­
ing model to build up a strong foundation of their knowledge for computer
science. Those popular programming languages and technical frameworks
for practical use today will eventually be replaced by new technologies. In-
stead,the theory behind computer programming has a long-lasting value,
making people think about what problems can be solved and how can they be
addressed effectively. As for its importance, universities take “Computability”
Theory (this course may be called as “Format Language and Automata”)as
a required class for computer science majors. Exposure to Turing Machine,
students can get a general idea of what a computing model can do. However,
statically presenting Turing Machine might be less intuitive. Some difficulties
may occur in the learning process. First, how should an instructor explain
the process from a Turing Machine starts until it terminates? It may need
to draw a giant table to show all transition functions and an extremely long
turing machine tape and walk students through this process by writing and
erasing a massive amount of symbols. If the instructor would like to show
students the different outputs of a Turing Machine given by various inputs,
tha t’s an enormous burden on the instructor’s shoulder. Second, what if a
student designs a Turing Machine and then wants to test it with some in­
puts? He/She needs to check his/her transition table back and forth, while

1

simulating the turing machine computing process, and it’s very easy to make
a mistake. Also, this procedure is a little bit longer, and the student might
lose his focus on where his work is on, and then starts from the very begin­
ning again. An Turing Machine Simulator can be a beneficial visual aid for
this topic. Instructors no longer have to work on drawing Turing Machine on
a whiteboard, instead focus on explaining what is happening on the machine.
Also, if they want to switch Turing Machines, it can be done by just a few
clicks.
A Universal Turing machine (UTM) is a Turing Machine(TM) that can simu­
late another Turing Machine based on its encoded description and its input.
Some ideas in computer science such as compiler, interpreter are inspired
by UTM. Designing a Universal Turing Machine is essentially creating a
language. Like Micheal Soltys states in his book, "every computer science
students should do this exercise "[13]. This is very helpful to students to
gain knowledge of what a language is and what requirements are for a lan­
guage. However, textbooks used in computability theory class either don’t
mention Universal Turing Machine[15], or lacking explantion for designing a
UTM[11]. A Turing Machine simulator is essentially doing the same work as
a UTM, but it hides the detail of how UTM works. In this thesis, a Univer­
sal Turing Machine is created to reveal how a Turing Machine can simulate
another Turing Machine and how a Universal Turing Machine can simulate
all Turing Machines.

2

2 Background

In 1920, David Hilbert proposed a project now known as Hilbert’s program[2].
He asked for a complete logical foundation to formulate mathematics. In
1928, he introduced Entscheidungsproblem for this purpose[1]. This problem
asks for an algorithm that takes an axiomatic formal system and a logical
statement in that system as input, and the algorithm outputs true or false
depending on the value of that statement. He believed that every problem
is solvable.

However, a lot of mathematicians gave their negative answers to entschei­
dungsproblem. In the 1930s, GOdel presented a complete axiomatic sys­
tem based on first-order logic in his Ph.D. paper[7]. In this paper, GOdel
proved his Completeness Theorem, and it states that for any self-consistent
axiomatic system, it must contain theorem that cannot be proven. To prove
this statement, Godel developed a technique now known as Godel numbering,
which can code any formal expression as a single natural number. In 1933,
Kurt GOdel, with Jacques Herbrand, gave a formal definition of his axiomatic
system called general recursive functions[8]. General recursive functions are
a class of functions built from basic functions with composition, recursion,
and minimization operators.

In 1936, Church also proved that entscheidungsproblem is unsolvable by
his model of computability of A — calclus. Within and by A — calculus,
there is no effective way to determine whether a A term has a norm form.
Alan Turing introduced Turing Machines[16] in the same year. He proved
that entscheidungsproblem is unsolvable by presenting the Halting Problem.
Halting Problem is asking whether a program A that takes a description of
an arbitrary program B and B ’s input as its own input can determine pro­
gram B is able to finish its computations or run forever.

There is an extensive research about computability for mathematical
problems. The basic research objects in this field are computable functions.
In the notation of an algorithm, if there is an algorithm that can get the
same job done for a function, then this function is computable. Formally, a
function f : Nk ! N is computable , 9 Algorithm A for x 2 Nk yields y
and f (x) = y [6].

A lot of mathematicians from around the world gave their own opin­
ions about what is a computable function. Kurt GOdel described Recursive

3

functions[8], Alonzo Church defined the Lambda calculus[5], Stephen Kleene
introduced Formal systems[10], Alan Turing described imaginary comput­
ing device as Turing Machines, Emil Post defined Post machines[14], And
Markov defined what became known as Markov algorithms [12]. Compu­
tation functions are used to discuss computability without referencing any
models above. When it comes to any definition, however, it must refer to
some specific model of computation. As a function in Turing Machine, it
is computable if only if it is computable in A — Calculus, and similarly for
any other pairs of the above formal languages. Church expressed the belief
that the intuitive notion of “computable” is identical to the above models’
concept. This belief is called “Church-Turing Thesis” which is universally
accepted by mathematicians.

2.1 G eneral Recursive Function
In mathematical logic and computer science, the general recursive functions
are a class of partial functions that take a series of natural numbers as input
and yield a natural number as output.They are functions that are build from
basic functions by composition, primitive recursion, minimisation operators.
It is shown that the general recursive functions compute the the same class
of functions as by Turing Machines[3].

Basic functions:

1. C onstant function: A function takes a tuple of number as input, and
awalys yields the same value, which is given by

Cn(xi, ...xk) = n.

where n and k are natural numbers

2. Successor function S: A function take a natural number x as input,
and yields x + 1, which is given by

S (x) = x + 1

3. P ro jection function P k: A function takes a tpule of number as in­
put, and gives the value on certain position as output, which is given

4

by 1 < i < k :

Ptk(xi, ...,xk) = Xi

where i and k are natural numbers and i > k

Operators:

1. Com position opera to r o: Given a m-place function h(xi , ..., xm) and
m-place functions gi (xi , ...,xk), ...,gm(xi , ... xk):

ho(gi, ...gm) = f where f (xi, ...,xk) = h(gi(xi, ...,xk), ...,gm(xi, ...,xk))

2. P rim itive recursion opera to r p: Given a (k + 1)-place function
g(xi , ..., xk) and (k + 2)-place function h(y, z, x i , ... xk):

p(g, h) = f where the (k + 1)-place function f is defined by

f (0,xi, ...xk) = g(xi, ...xk)

(y + 1,xi , ...,x k) = h(y, f (y ,x i , ...,xk) ,x i , ...,xk)

3. M inim ization opera to r ^: Given a (k + 1)-place total function
f(y ,x i ,...,xk), the k-place function ^ (f) is defined by:

M f)(xi, ...,xk) = z f (z,xi, ...x k) = 0
and f (i,xi, ... xk) > 0 for i = 0,..., z — 1
minimization seeks that smallet z that meets f (z,x i , ...,xk) = 0, if this
z doesn’t exist, search will never terminate.

Exam ple

• The predecessor function Pred:N ! N, is a partial recursive function,
defined by the recusion pred(0) = 0, Pred(S(n)) = P>i2(n, Pred(n))

• Truncated sub traction , where x—y = x — y if x > y, else 0. It is
defined by the recursion x—0 = x ,x —(y + 1) = Pred(x—y)

5

2.2 L am bda Calculus
The lambda calculus is older than Turing’s machine model, apparently dating
from the period 1928-1929[9], and was invented to encapsulate the notion of
a schematic function that Church needed for a foundational logic he devised.

Definition Lambda calculus consists of constructing lambda terms and
performing reduction operations on them. Lambda terms are defined recur­
sively, t is a A term when it meets one of the following requirements[9],

1. t = x, x is a variable

2. t = Ax.M, x is variable and M is lambda term

3. t = (M N) ,M and N are both lambda terms

Hence, there are 3 kinds of A terms.

• Variable(referencing lambda expressions)

• lambda abstraction(defining functions)

• applications(invoking functions)

R eduction Basic lambda calculus has no “built-in” functions. The mean­
ing of lambda expressions is defined by how expressions can be reduced.
There are three kinds of reductions:

• a — conversion : changing bound variables, for example

Axy.xy = Apq.pq

• ft — reduction : applying functions to their arguments, for example:

(Ax.x)y = y

• q — conversion : if two functions yields the same result for all their
arguments, they are the same. for exmple:

Ax.(fx) = f

if f doesn’t contain x.

6

Free and Bound Variables In an expression, each appearance of a vari­
able is either “free” (to A) or “bound” (to a A). For example, x is free in the
expressions Aqp.x but not in expression Axy.xyxy.

N orm al Form A norm al form term is a A term that does not contain
any reducible expression, which means no fl — Reduction can be applied to
this term. If a A term that can become a norm form term, after a finite step
of reductions, is called normalizable. For example:

(Aa.a b) ! b
where the last term is a A norm form.
Some A terms are not normalizable. For example:

(Az.zz)(Xy.yy)

. Applying a fl — reduction to this term always yileds (Ay.yy)(Ay.yy), fl —
reduction can always be applied to this term.

W eak N orm Form: A A term has no reducible expression left, but its
sub-A term can still be reduced. For example:

Aabc. ((Ax.a(Axy)) bc)

Evaluation S trategies Evaluation Stategies are used to evaluate a A ex­
pression. Evaluation on an expression can terminate or not depends on the
choice of evaluation strategies. Leftm ost s tra tegy Reduce left most redu-
ciable expression first. This is called call-by-name, i.e. functions are called
without evaluating their inter A terms.

(Ax.z)((Ax.xx)(Ax.xx)) ! z
If a A expression, through a finite step of reduction, can become a A norm

form term, the left strategy reaches this normal form.
R ightm ost-innerm ost s tra tegy Evaluate the innermost A terms among
the rightmost reduciable expression. This is called call-by-value , i.e. sub-
A terms are evaluated before being reduced in a higher level A term:

(Ax.z)((Ax.xx)(Ax.xx)) !
(Ax.z)((Ax.xx)(Ax.xx)) ! •••

Evaluation of inter-most reduciable expression ((Ax.xx)(Ax.xx)) yields itself
and evaluation does not terminate.

7

Logic and predicates Church booleans are used for boolean values true(T)
and false(F) as follows:

T = XxXy.x

F = XxXy.y

Some logic operators can be defined by Church booleans.

A ND = XxXy.xyx

T = XxXy.xxy

T = Xx.xFT

A predicate function can be defined with Church booleans. For example,
Z is a predicate, which return T if its argument is Church numberal 0 and
return F if it is not.

Z = Xx.x(Xx.F)T

PRED = (Xn.Xf.Xx.n)(Xg.Xh.h(gf))(Xu.x)(Xu.u)

Recursion To define a recursion function in X — Calculus, it needs a
auxillary function Y to reference the recursion function itself becuause of
X — Calculus’s anonymity.

Y = (Xy.(Xx.y(xx))(Xx.y(xx))

Applying Y to a function R yields:

Y R = Xx.R(xx)(Xx.R(xx)) ! R((Xx.R(xx))(Xx.R(xx))) ! R(YR) ! R(R(YR))

! R(R(R(.. .(YR))

This means the function R is evaluated using the recursive call Y R as the
first argument.

2.3 Turing M achine
Turing machines are hypothetical machines that were created by Alan Turing
in 1936 to explore the concept of what it meant computable[16]. It consists
of an infinitely long tape divided into cells with symbols written on them, a
head which can read symbols from cells, write symbols to the cells, move left

8

Figure 1: Turing Machine Entity

and right, a state register stores the state of the Turing machine. A stage of
computation is determined by the content of the read cell and the state in
the state register, head write symbol to the read cell, move left or right and
then the state register enters a new state. Every Turing Machine has a halt
state, if Turing Machine enters this halt state, it completes its computation
task.

Definition Following Soltys’ Notation[13], a (one-tape) Turing machine
can be formally defined as a 4-tuple M = (Q, £, r , 8) where

• Q is a finite, non-empty set of states which includes qinit,qaccpet,qreject

• £ is the set of input symbols, that is, the set of symbols allowed to
appear in the initial tape contents

• r is the set of tape symbols, and it is always the case that £ C r

• 8 is a transition function; 8 : Q x r ! Q x r x {Left, Right}

An example of Turing Machine M which decides whether an input string has
even 0s.

9

Table 1: Transition table for even 0s

Letter

State
q0 q1

B T F
0 0, q1,R 0, q0, R
1 1, q0, R 1, q0, R

In this case we have:
Q = {Q0,Q1,T,F}

Qinit q0 Qaccpet T Qreject F
S = {0,1,B}

r = {0,1,B}

2.4 C om puta tional Equivalance
Computability is the ability to solve a problem efficiently. It is also a crucial
topic in computer science. Computable functions are the basic objects of this
field. As to what is computable, different mathematicians gave their different
Answers. Intuitively, a function f from natural numbers to natural numbers
is called computable if it can determine the value of f (x1, x2, ■■■ , xn) for
any argument x i,x 2, ■■■ ,xn given a list of instructions. The most widely
studied computation models are the Turing Machines and general recursive
functions, and the lambda calculus, all of which have the same power about
computability.

P roo f O utline

• A turing machine program (M) is partial recursive.

• General recursive function can be reduced to A function.

• A function can be simulated by Turing machines.

1. Every turing machine program (M) is recursive.
First of all, some recursive functions are listed in an intuitive manner
for better understanding the proof.

10

(a) add(0, x) = x
add(n + 1, x) = add(n, x) + 1

(b) mul(0, x) = 0
mul(n + 1, x) = x + mul(n, x)

(c) quo(x, y) = 0 if x—y = 0 else quo(x, y) = 1 + quo(x—y, y)
(d) mod(x, y) = 0 if x = 0

mod(x + 1, y) = mod(x, y) + 1 if mod(x, y) + 1 = y else 0
(e) exp(x, 0) = 1

exp(x, n+1) = exp(x, n) * x
(f) log(0, x) = 0

log(n, x) = 1 + log(quo(n, x), x)
(g) flog(c, n) = 0 if mod(c, n) = 0 else flog(c, n) = 1 + flog(quo(c, n),

n)

GOdel numbering is used to encode the Turing Machines. The Turing
Machines are restricted to to the alphabet {0,1}, and 0 is used to take
place of black cell. Then, a turing machine tape can be shown by binary
numerals.
Given a configuration of a Turing Machine, e.g. A configuration is

0 1 0 1 0 1 1 0

q7

0

Turing Machine Configuration

coded as the triple of integers (l, q, r) where q is the state number (e.g.
7), l is the tape contents to the left of the tape arrow interpreted as
a binary integer(e.g. 10 which is 2), and r is the tape contents under
and to the right of the arrow interpreted as a binary number reversely
(e.g. 1011 is interpreted as 1101 which is 13). The code for the above
configuration is

c = (2, 7,13) = 22 ■ 37 ■ 513

l, q, r can be recoverd from c using recursive function flog:

11

(a) l = left(c) = flog(c, 2

(b) q = state(c) = flog(c, 3)

(c) r = right(c) = flog(c, 5)

A computation task is coded by the GOdel number of a sequence:

<<l0,Q0, r0), r1), ••• , {In, Qn, rn}}

The code shows every thing about the each configuration, but says
nothing about how a configuration transfers to another. Consider a
Turing Machine < M > that computes function f (x), consecutive x
+ 1 1s as input for the Turing Machine, f(x) + 1 consecutive 1s for
its output. When the Turing Machine starts its computations, the left
side of the tape is completely blank, the right side is 11 ••• 1, a block
of x + 1 digits 1 with the head with at leftmost 1.
Thus the left number at the start of < M >' s computation of f (x) is
0, and the right number will be

exsub(x) = 2x+1 —1

Note that exsub is a composition of Exponentiation function and Trun­
cated Subtraction in formular 2.1 which is a partial recursive function.
When A Turing Machine performs one step, the left and right numbers
change based on what symbol is being read, as well as on what action
is performed. The read number either 0 or 1, and the right number on
the tape is interpreted reversely, it can be calculated by its remainder
of 2. If the right number is r, then the symbol read will be

read(r) = mod(r, 2)

Here,mod is a function to compute remainder which is a partial recur­
sive function.

Let l and r be the old left number and old right number, l and T be the
new left number and new right number. Suppose the action is to write

12

a 0 to the read cell. If there was a 0 in the read cell, the content of the
cell does not change. So, f = l and f = r. If the symbol in the read
cell was 1, the right number decreases 1, l = l and f = r —1. Then,
f = r—read(r) for this action. Similaryly, for action to write a 1 to the
read cell. If there was a 1 in read cell, l = l and f = r. If there was
a 0 in read cell, l = l, and right number increase 1 f = r + 1. Then
f = r + 1—read(r)
Next, consider functions when (M) moves left or right. For action to
move left, r appends the last digit of l, that is f = 2 r + mod(l, 2). For
left number, it drops its last digit, that is f = quo(l, 2). The same logic
can be used for action to move right, then barl = 2l + mod(l, 2) and
barr = quo(r, 2)
Let writing 0, writing 1, moving left, and moving right actions be num­
bers 0, 1, 2, 3, and action number is a then the new left number will
be given by

{l if a = 0 or a = 1
quo(l, 2) if a = 2

2l + mod(r, 2) if a = 3

Similarly, the new right number will be given by' r —read(r) if a = 0
r + 1—read(r) if a = 1

newriqht(p,r, a) =
y ' 2r + mod(l, 2) if a = 2

Kquo(r, 2) if a = 3

(1)

(2)

When (M) halts, it ends with a standard configuration where left
numberal is 0 and right numberal is f (x) + 1 consecutive 1s. The right
number is kept tracked through computations. Then right number
r = 2f(x)+1 — 1 when (M) finishes its computations, and f (x) will be
given by

value(r) = loq(r, 2)

Here log is the partial recursive function, so value is also partial recur­
sive.

13

So much, for the moment, for the topic of coding the contents of a
Turing Machine Tape. The coding for Turing Machines transition rules
as follows:

m = aw, qio,an , qn , 0,20, q20, a2i, 921 ■ ako, Qko, aki, Qki

and 0 will be used as halt state not coded in m. Where k is the number
of state of Turing Machines and a j <= 3 i is Turing Machines’ current
state and j is the read symbol. Let m be the single code number for
this sequence:

m = 2“10 3q10 5“n 7q11 •• ■

Then what action to perform and what state to enter when in state q
and read symbol read(r) will be given by:

action(m, q, r) = flog(m, C (4 (q -1) + 2 x read(r)))

newstate(m, q, r) = flog(m, C (4 (q -1) + 2 x read(r) + 1))

Now, turing machine configuration and coding functions of each com­
ponents have been defined. Next, consider a partial recursive func­
tion code(m,x,t) that give the code c for the the configuration after t
stages of computation with machine code m and function f (x)’s input
x. Clearly, at Turing Machines start their computations, the initial
configuration code c is given by

c0 = code(m,x, 0) = (0,1,exsub(x)) = 20315exsub(x)

that is left number is 0, state is 1, and right number is exsub(x).
A procudure to get code ct+1 from ct as follows:

1) lt = left(ct) qt = state(ct) n = right(ct)
2) at = action(m, qt, rt)

3) qt+1 = newstate(m,qt ,rt)
4) lt+1 = newleft(at, lt) rm = newright(at, rm)

5) ct+1 = (lt+1,qt+1,r t+1)

14

Thus, a function from ct to cc+1 is defined as follows:

ct+i = getcode(m, ct)

where getcode is a composition of the functions left, state, right, action,
newstate, newleft, newright, and tuple, and is therefore is a partial re-
cusive function.

The function code(m,x,t), giving the code for the configuration after
t stages of computation, can then be defined by partial recursion as
follows:

code(m, x, 0) = (0,1, exsub(x))

code(m, x , t + 1) = getcode(m, code(m, x, t))

It follows that code is itself a partial recursive function. The machine
will halt when state(code(m, x, t)) = 0, and will then halt in standard
position where right number is f (x) + 1 consecutive 1s. If the ma­
chine halts in standard configuration at time t, then the output of the
machine will be given by

output (m, x, t) = value (right(code(m, x, t)))

Then t will be given by

I the least t such that state(code(m,x,t)) = 0 if such a t exists
halt(m ,x)= S i n i ii •undefined otherwise

(3)
This function is obtained from compoisition and minimisation, thus it
is partial recursive or total recursive.
Let f (m , x) = output(m,x,halt(m,x)), then f 0(m,x) is recursive. If
(M) computes f (x), then f(m ,x) computes f(x), so (M) is recursive.

2. partial recursive functions can be reduced to lambda terms.
Here, we show how basic functions and operators from partial recursive
function can be represented in lambda terms.

15

Integer, C onstan t, P ro jection , Successor

• Church num erals are used to represent integers in A — Caculus.
Church defined natural numbers in A — Caculus as follows:

0c = Af.Ax.x
l c = Af.Ax. fx
2C = Af .A x f (fx)
3c = Af .A x f (f (fx))

nc = A f A x . f (f (/ •••)) x)
n

• The constant functions return a constant no matter what their pa­
rameters that is Cn(xi,x2, • • • , x k) = nc. This can be represented
by the lambda expression Ax1,x2, • • • , xk.nc,

• The projection functions takes a tuple of numbers as input and
return an integer in this tuple, P k = (x1,x2, • • • , xk) = x i. This
can be represented by the A expression Ax1x2 • • • x k.xi

• The successor function take an integer n as input and returns
n + 1, that is, S(n) = n + 1 , this can be represented by the
lambda expression Anc.Af.Ax.f (ncfx),

Com position, P rim itive Recusion, M inim ization

• Com position
The composition of function h with the functions g1,g2, • • • ,gm,
where h is a (m-place) function, and each of g function is a k-place
function. Then the composition is

f (x1 , x 2 , • • • , xk) = h(g1 (x1 , x 2 , • • • , xk),g2(x1 , x 2 , • • • , xk), • • • ,gm(x1 , x 2, • • • , xk)).

This can be represented by lambda expression

Ahg1g2 • • • gmx1x2 • • • xk.h(g1x^2 • • • xk)(g2x1 x • • • xk) • • • (gmx1x2 • • • xk)

16

• P rim itive Recursion pn(g, h) is the function f such that:

f (0,xi,x2 ■■■ ,Xk) = g(xi,X2, ••• ,Xk)

f (y + 1 , xi , X2 ■■■ , Xk) = h(y, f (y , x i , x 2, ■■ ■ , xfc) , xi , x 2, ■■■ , xfc)

This can be represented by the following lambda expression:

\ ghx1x2 ■■ ■ xn.Y(Xfx.Z(gx1x 2 ■■ ■ xn)(hx1x 2 ■■ ■ xn)(Px(f (Px))))

where Y is fixed-point, P is the predecessor function and Z is used
to test whether its argument is 0.

• M inim ization y (f) (x1x 2 ■■ ■ xn) returns the smallest z such that

f (xix2, ■■■ ,x,n,z) = 0

This can be represented by the following lambda expression:

\ f x ix 2 ■■ ■ xn. (Y(Xhz.Z(fxix 2 ■■ ■ xnz)z(h(Sz)))Z)

where S is Successor function
Now, we have shown that general recursive function can be re­
duced to lambda calculus.

3. lambda calculus can be reduced to Turing Machine.
Before thinking about the Turing machine itself, it is important to rep­
resent a A term in a way that makes their evaluation easy. In particular,
we wish to avoid ^-conversion. De Bruijn indices allows us to do that.

De B ruijn indices The unnamed A-calculus is defined as follows:

M ::= n\AM\(MM)

where n - natural numbers greater or equal to 0 are variables. The
n indicates the position of the A binding this variable, starting from
inside. For example:

Ax.Ay.x = AA1 Ax.(x x) = A(0 0)

17

Encoding we use alphabet E = (A, B, (,), 0 ,1 ,0 } , and translate a
lambda-term M into a tape M in the following way.

{o if n is a free variable
0 E if n is a bound variable

AM := AM
(M N) := (M) (N)

where E is the binary representation of the De Bruijn index of that
occurrence. Consider M = (Aq.q)(Aq.Ap.q), then its
De Bruijn form is (A0)(AA1), and our tape for this term is (A 0 0)(AA 0 1).
The Turing Machine (Mtm) operates by iteratively performing the fol­
lowing step. Take the expression (Ax.Ay.xyy)(Ay.y)(Ax.x) as an exam­
ple, this expression can be transformed into (AA 0 1 0 0 0 0)(A 0 0)(A 0 0)
as a input string for a TM (Mtm).

Step 1: The (Mtm) looks for the first pair of parenthesis. Here, first
pair is in the sense of the first (we find, combined with its close
counterpart. If we cannot find a pair of parenthesis, the machine
halts.

Step 2: Locate the second pair of parenthesis with the similar definition
of step 1. If the second pair can not be found, then erase the first
pair of parenthesis. Otherwise, erase the first occurrence of A and
replace every occurrence of the bounded variable by the content
inside the second pair (including the parenthesis), then erase the
second pair of parenthesis and whatever inside it.

Step 3: Erase first parenthesis if no A can be found inside it (without
looking nested parenthesis).

Step 4: Concatenate the left part and the right part. In the example, the
tape becomes (A(A J 0) J 0 J 0)(A J 0)

Every time the sequence of steps is essentially a normalization step. So,
(Mt m) halts on M if and only if M is normalizing and the output will

18

be the normal form of M. In this example, the tape evolves as follows:

(AA K 1K 0 K 0)(A K 0)(A K 0)

(A(A O 0) K 0 K 0)(A O 0)

(A K 0)(A K 0)(A K 0)
(A K 0)(A k 0)
AK 0

Turing Machines can intrepte A — Calculus, and General recursive functions
can be reduced to A — Calculus. Hence, a turing machine simular that can
animate the computing process of Tuinr Machines, is not only beneficial for
learning the concept of Turing Mchines, but also A — Calculus and General
recursive function, and from a higher level, computable funcitons.

19

3 Turing M achine Simulator
Turing Machines are imaginary devices for mathematical computation, which
perform their computations by manipulating symbols on a finitely length of
tape according to a set of transition functions. Turing machines are models
that can simulate any computer algorithm no matter how complex it is.

Nowadays, Turing Machines are used to help people gain a better un­
derstanding of algorithms and how a computer works, which is why this
simulator was created.

3.1 Code
Before going through the simulator’s functionality, it is imperative to provide
the data structure to be used.

D ata S truc tu re

• Node

class Node:
def _init__(self, letter):
self.letter = letter
self.R = None
self.L = None

simulate ''cell’’ in the turing machine’s tape •

• Action

class Action:
def _init__(self, letter, go_to, state):

self.write_letter = letter \\ write letter
self.go_to = go_to \\ movie direction
self.next_state = state \\ next state
self.length = len(letter + go_to + state)

this will be used to calculate cells’ width
of a transition table

20

which simulates instruction part of each transition rule

• Tape

A turing machine takes a string as input
and we use double linkedlist to simulate the tape
class Tape:

def _init__(self, str1):
self.arrow_node = None
self.length = 0
self.constructor(str1)

def constructor(self, str1):
if not str1:
raise RuntimeError(’input cannot be empty’)

pre_node = None
for char in str1:

self.length += 1
cur_node = Node(char)
if self.arrow_node is None:

self.arrow_node = cur_node
if pre_node is not None:

cur_node.L = pre_node
pre_node.R = cur_node

pre_node = cur_node

Utils

• parser

simulator takes a file as input
#to construct transition rules.
def parse_tm(file):

res = []
with open(file) as f:

strs = f.read()

21

rules = strs.split(";")
for i in rules:

rule = i.split()
if len(rule) == 5:
res.append(rule)

return res

• tape printer

def print_tape(node):
while node.L is not None:

node = node.L
res = ""
while node is not None:

if node.letter != "_":
res += node.letter
node = node.R

print(res)
this is used to print out the result given by
a string running on a turing machine

M ain Function

— Construct transition table

def construct_transition_table(rules):
init_state = None
table = dict()

Since 8 is a transition function; 8 : Q x r ! Q x r x {Left, Right}

for i in rules:
key = i[0] + "-" + i[1]

i[0] for current state
i[1] for reading letter

if init_state is None:

22

init_state = i[0]
if key not in table:
table[key] = Action(i[2], i[3], i[4])

i[2] for writing letter
i[3] for next state
i[4] for moving direction

else:
print("Transition table exists key conflict ")

return table

tm_file = sys.argv[1]
init_state = sys.argv[2]
tm_rules = parse_tm(tm_file)
parse file to transition rules

def run_tm(rules, input_str, init_state=None):
transitions = construct_transition_table(rules)
stop = ["T", "F", "H"]

terminate states
T: accept, F: reject H: halt

if init_state is None:
init_state = rules[0][0]

if init_state is not provided,
use current state in the first transition rule
as initial state

cur_state = init_state
to record runing steps for turing machine

step = 0
tm_tape = Tape(input_str)
arrow_node = tm_tape.arrow_node
cur_ins = cur_state + "-" + arrow_node.letter

current instruction

while cur_state not in stop:
step += 1
if cur_ins not in transitions:
break

23

arrow_node.letter = transitions[cur_ins].write_letter
if transitions[cur_ins].go_to == "L":

if arrow_node.L is None:
arrow_node.L = Node("_")
arrow_node.L.R = arrow_node
cur_ins = transitions[cur_ins].next_state + "-" \

+ arrow_node.L.letter
arrow_node = arrow_node.L

else:
if arrow_node.R is None:
arrow_node.R = Node("_")
arrow_node.R.L = arrow_node
cur_ins = transitions[cur_ins].next_state + "-" \

+ arrow_node.R.letter
arrow_node = arrow_node.R

cur_state = cur_ins[:cur_ins.index("-")]
return step, cur_state

return steps and final state

The code above consists of core logic of building a turing simulator without
GUI part.

3.2 Configure a tran sitio n tab le
According to the transition funciton:

8 : Q x r ! Q x r x {Left, Right}

A turing machine file is composed as below:

q0 * 1 R q0; q0 1 1 R q0;
q0 _ _ R H; q0 0 * L q1;
q1 1 1 L q1; q1 _ _ R q2;
q1 0 0 R q2; q2 1 0 R q0;
q2 0 0 R q2; q2 * 0 R q0;
q2 _ _ R H; q1 * * R H;

24

This is a turing machine which can be used to do simple sort, given a string
in the alphabet £ = {0,1}, yields a string all 0s are before 1s. A transition
is defined by a tuple with 5 symbols(C, R, W, D, N) where

• C: current state

• R: reading letter

• W: writing letter

• D: moving direction

• N: next state

“;” is used as delimiter to separate each transition.

3.3 Usage
Run python view.py <Your Turing M achine Configuration file>
through terminal. Once you entered this program, you will see an overview
of this simulator as Figure 2:

25

State: Step:

t
q i q3 q6 q2 q5 qO q4

2 2-R-H 2-R-q3 2-L-q6 2-R-H 2-L-q5 *-R-q3 #-L-q4

— _-R-q2 _-L-q4 _-R-H _-R-H _-R-qO _-R-H _-L-H

1 1-L-q1 1-R-q3 1-L-q6 O-R-qO 1-L-q5 1-R-qO #-L-q6

0 0-R-q2 0-R-q3 0-L-q6 0-R-q2 0-L-q5 *-L-q1 #-L-q5

* *-R-H *-R-H 1-R-qO O-R-qO *-L-q1 1-R-qO 2-R-qO

#-R-H #-L-q4 #-R-H #-R-H #-R-H 2-R-qO #-R-H

Figure 2: Turing Machine Simulator Overview

Now we introduce each part of this simulation. Going from top to bottom:

S ta te : S te p :

t

Figure 3: Turing Machine Tape

first, as it shows in Figure 3 we see a tape with empty cells that are meant
to be filled with letters from its alphabet E, in this case for turing machine
doing color sort, which will a string all 1s in the middle, all 0s before 1s, all
2s after 1s, given an input string composed by {0,1,2}.

26

There is an fixed arrow which enables you to see the tape moving anima­
tion when the machine is executing your code.

q i q3 qe q2 q5 qO q4

2 2-R-H 2-R-q3 2-L-q6 2-R-H 2-L-q5 *-R-q3 #-L-q4

- _-R-q2 _-L-q4 _-R-H _-R-H _-R-qO _-R-H _-L-H

1 1-L-q1 1-R-q3 1-L-q6 O-R-qO 1-L-q5 1-R-qO #-L-q6

0 0-R-q2 0-R-q3 0-L-q6 0-R-q2 0-L-q5 *-L-q1 #-L-q5

* *-R-H *-R-H 1-R-qO O-R-qO *-L-q1 1-R-qO 2-R-qO

#-R-H #-L-q4 #-R-H #-R-H #-R-H 2-R-qO #-R-H

Figure 4: Turing Machine Transition Table

A transition table in Figure 4 is used to show your transition rules of your
turing machine.

27

q3 qe q2 q5 qO q4

2 2-R-H 2-R-q3 2-L-q6 2-R-H 2-L-q5 *-R-q3 #-L-q4

- _-R-q2 _-L-q4 _-R-H _-R-H _-R-qO _-R-H _-L-H

1-R-q3 1-L-q6 O-R-qO 1-L-q5 1-R-qO #-L-q6

0 0-R-q2 0-R-q3 0-L-q6 0-R-q2 0-L-q5 *-L-q1 #-L-q5

* *-R-H *-R-H 1-R-qO O-R-qO *-L-q1 1-R-qO 2-R-qO

#-R-H #-L-q4 #-R-H #-R-H #-R-H 2-R-qO #-R-H

Figure 5: Turing Machine Transition Table Highlighted

A transition rule is highlighted(Figure 5) while the machine is executing
it.

Figure 6: Turing Machine Operation Box

Now we introduce the functionality of each part: input box,play, stop,
next, changing speed, set arrow position(6). Let’s go over them one by one:

1. Inpu t Box:
This allows you to feed different inputs into this program at each run.
After you give an input to this program, clicking OK will load your input
to the tape.

2. Play
This is used to run the code and continue the turing machine after you
enter Step M ode

3. T ransition Table
It shows the actual code of the turing machine. With hightlighted cell
while the machine is ruining, it enables us to know which code snippet
is running.

28

4. N ext
This is used for taking one step forward. Once we load the code in the
machine it will get clear. As an instructor, it’s quite useful to explain
what is happening on the machine.

5. Arrow Position
It servers three main functionality.

(a) set up initial arrow position
It’s convenient to set up initial arrow position with just intuitive
operations, instead of writing turing machine transition rules.

(b) moving position arrow after turing machine terminated can help
us see the whole final output.

6. Speed
This allows you to change the moving speed of the arrow

7. Stop
This is used to terminate your program.

29

4 Universal Turing M achine

4.1 Background
The Turing Machine Similator is a software that takes Turing Machine pro­
gram and the program’s input decription as its own input, and it animates
the TM program’s computing process. Here, the Machine Simulator actu­
ally serves as a Universal Turing Machine. Before computers, there were no
softwares avaiable. It brought a problem for Turing Machines. For each new
computation task, a different Turing Machine must be created to serve the
purpose. It is neither flexible nor cost-effective for hardwares. This is why
Alan Turing created the idea of U niversal Turing M achine . A U niver­
sal Turing M achine(U TM) is a Turing machine(TM) that can simulate
an arbitrary TM on arbitrary input by taking description of the TM be­
ing simulated and its input as input and performing action based a set of
transition functions.

4.2 Encoder
First, to create a description for a TM being simulated, it requires an encoder
to UTM be able to recoginize this description. Here, we introduce how we
encode (M) (Turing Machine) to a (M) description and its input which are
concatenated as a string that we can load it on (UTM) ’s tape.

1. Schema(structure)
We still use the same symbolism for (M) we introduced previously.
We add Caret A to these symbols denote encoded symbols and other
symbols such as ., : are used literally. A description should look like
below:

Qr ' 4 44 :> U r tV f m.

2. Encode TM alphabet
Binary encoding is used in general where

HE II = \log2 IITIH
For example:

r = {b , o, 1 }
then

B = oo 0 = 01 1 = 10

30

3. Encode TM state set
The same encoding strategy is used for state set as encoding TM aphal-
bet.

IIQ II = Ro£2lMll
For example:

Q = {q0,ql,q2,q3}
then

qO = 00 q1 = 01 q2 = 10 q3 = l l

4. Encode moving direction

• 0:left
• 1:right

After encoding these parts, we place them in the schema structure, this makes
a (UT M) input. We can still set up initial arrow position, by adjusting the
position of symbol A. The (M)color sort as in Figure 7 can be a good a
example to explain the encoder.

Figure 7: Color sort transition rules

1. state set:

* : 000 1 : 001 _ : 010 0 : 001 2 : 110 # : 101

2. alphabet set:

H : 001 q0 : 000 q1 : 010 q2 : 100 q3 : 011 q4 : 101 q5 : 110 q6 : 111

31

3. description in Figure 8:

000000'0000000011000,0000010011000,0000100101001,0000110001010,0001000001011,
0001011001000,0100010011010,0100100101100,0100110111100,0100000001001,0101011011001,
0101001001001,1000110111100,1000000111000,1000100101001,1000010111000,1001011011001,
1001001001001,0110110111011,0110010011011,0111001001011,0111011011101,0110100101101,
0110000001001,1010111011110,1010011011111,1010001001000,1011011011001,1011001011101,
1010100101001,1100110111110,1100010011110,1101001001110,1100000001010,1101011011001,
1100100101000,1110110111111,1110010011111,1111001001111,1110000011000,1111011011001,
1110100101001

Figure 8: Color sort transition description

4. input:

• original

> 20112011

• encoded input

> 100.011.001.001.100.011.001.001.

5. tape in Figure 9

000000 00000000H 000,0000010011000,0000100101001,0000110001010,
0001000001011, 0001011001000, 0100010011010, 0100100101100, 0100110111100,
0100000001001, 0101011011001, 0101001001001, 1000110111100, 1000000111000,
1000100101001, 1000010111000, 1001011011001, 1001001001001, 0110110111011,
0110010011011, 0111001001011, 0111011011101, 0110100101101, 0110000001001,
1010111011110, 1010011011111, 1010001001000, 1011011011001, 1011001011101,
1010100101001, 1100110111110, 1100010011110, 1101001001110, 1100000001010,
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111,
1110000011000, 1111011011001, 1110100101001: . 010>100. 011. 001. 001. 100. 011.
001. 001. 010. 010. 010. 010. 010. 010.

Figure 9: initial UTM tape

4.3 Design
1. Fetch Letter Turing Machine

32

P rocedure Start from left end

Step 1: Go to the right find symbol >
Step 2: Go to the right to find the next symbol .
Step 3: Go back to left find first 0 or 1 replace them with x, y repectively.

If find > before any 0, 1 do step7
Step 4: Go to the left find symbol '
Step 5: Go to the left find first 0 or 1 and replace them with x if we get

x from step3, otherwise y.
Step 6: From this position do step1
Step 7: Find next .
Step 8: Go to the left reset all x,y to 0, 1

Transition Rules (Figure 10)

q0 0 0 R q0; q0 X X R q0; q0 y y R q0; q0 1 1 R q0; q0 , , R q0; q0 . . R q0; q0 ' ' R q0; q0 > > R ql; q0 R q0; q0 _ R q0;
ql > > R ql; ql X X R ql; ql y y R ql; ql 1 1 R ql; ql 0 0 R ql; ql . . L q2; ql ' ' R ql; ql . , R ql; ql R ql; ql _ R ql;
q2 0 X L q3; q2 1 y L q4; q2 X X L q2; q2 y y L q2; q2 > > R q7; q2 ' ' L q2; q2 , , R q2; q2 . R q2; q2 L q2; q2 _ R q2;
q3 0 0 L q3; q3 1 l L q3; q3 , , L q3; q3 ' L q5; q3 > > L q3; q3 . . L q3; q3 x x L q3; q3 y y L q3; q3 L q3; q3 _ R q3;
q4 0 0 L q4; q4 1 l L q4; q4 , , L q4; q4 ' L q6; q4 > > L q4; q4 . . L q4; q4 x x L q4; q4 y y L q4; q4 L q4; q4 _ R q4;
q5 0 X R q0; q5 1 X R q0; q5 X X L q5; q5 y y L q5; q5 > > R q5; q5 . . R q5; q5 , , R q5; qs ' R q5; q5 R q5; q5 I _ R q5;
q6 0 y R q0; q6 1 y R q0; q6 X X L q6; q6 y y L q6; q6 > > R q6; q6 . . R q6; q6 , * R q6; q6 ' R q6; q6 R q6; q6 _ _ R q6;
q7 x 0 R q?; q7 y i R q7; q7 0 0 R q7; q7 1 i R q7; q7 L q8; q7 , , R q7; q7 ' ' R q7; q7 > > R q7; q7 R q7; q7 _ _ R q7;
q8 x 0 L q8; q8 y i L q8; q8 0 0 L q8; q8 1 i L q8; q8 L q8; q8 , , L q8; q8 . . L q8; q8 > > L q8; q8 L q8; q8 _ _ R H;

Figure 10: Fetch letter TM

Exam ple

• Tape configruation when the machine starts(Figure 11)

000000' 0000000011000, 0000010011000, 0000100101001, 0000110001010,
0001000001011, 0001011001000,0100010011010,0100100101100,0100110111100,
0100000001001, 0101011011001, 0101001001001, 1000110111100, 1000000111000,
1000100101001, 1000010111000, 1001011011001, 1001001001001, 0110110111011,
0110010011011, 0111001001011, 0111011011101, 0110100101101, 0110000001001,
1010111011110, 1010011011111, 1010001001000, 1011011011001, 1011001011101,
1010100101001, 1100110111110, 1100010011110, 1101001001110, 1100000001010,
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111,
1110000011000, 1111011011001, 1110100101001: . 010>100. 011. 001. 001. 100.011
001. 001. 010. 010. 010. 010. 010. 010.

Figure 11: Color Sort Fetch letter TM Starts

33

• Tape configruation when the machine halts(Figure 12)

000100' 0000000011000, 0000010011000, 0000100101001, 0000110001010,
0001000001011, 0001011001000, 0100010011010, 0100100101100, 0100110111100,
0100000001001, 0101011011001, 0101001001001, 1000110111100, 1000000111000,
1000100101001, 1000010111000, 1001011011001, 1001001001001, 0110110111011,
0110010011011, 0111001001011, 0111011011101, 0110100101101, 0110000001001,
1010111011110, 1010011011111, 1010001001000, 1011011011001, 1011001011101,
1010100101001, 1100110111110, 1100010011110, 1101001001110, 1100000001010,
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111,
1110000011000, 1111011011001, 1110100101001: . 010>100. 011. 001. 001. 100.011
001. 001. 010. 010. 010. 010. 010. 010.

Figure 12: Color Sort Fetch letter TM Ends

2. Match Instruction Turing Machine
instruction is a tuple (Q, r) which decides the action of TM which is
(Q, { le ft , right}, r)

P rocedure Start from the left end

Step 1: Go to the right find first 0 or 1 and replace them with x, y repec-
tively

Step 2: Go to the right find symbol ', if cannot find any
0 or 1, stop.

Step 3: Go to the right find first 0 or 1, and replace them with x, y
repectively, if the symbol matches symbol from step 1, go back to
the left end then, do step1. Otherwise, do step4.

Step 4: Mark all 0 and 1 with x, y until meet {, } or {:}. If {, } then go
to the left find symbol { '} , otherwise stop(this means cannot find
instruction in transition table in the sense of simulating a turing
machine).

Step 5: Reset x, y to 0, 1 to the left end

34

Transition Rules (Figure 13)

q0 0 x R ql; q0 1 y R q2; q0 x x R q0; q0 y y R q0; q0 ' ' R H; q0 , , R q0; q0 . . R q0; q0 : : R q0; q0 > > R q0; q0 ___ R q0;
ql x x R ql; ql 0 0 R ql; ql 1 1 R ql; ql y y R ql; ql ' ' R q3; ql , , R ql; ql . . R ql; ql : : R ql; ql > > R ql; ql _ R ql;
q2 0 0 R q2; q2 1 1 R q2; q2 x x R q2; q2 y y R q2; q2 ' ' R q4; q2 , , R q2; q2 . . R q2; q2 : : R q2; q2 > > R q2; q2 _ R q2;
q3 x x R q3; q3 y y R q3; q3 , , R q3; q3 0 x L q5; q3 1 y R q6; q3 ' ' R q3; q3 . . R q3; q3 : : R q3; q3 > > R q3; q3 _ R q3;
q4 x x R q4; q4 y y R q4; q4 , , R q4; q4 1 y L q5; q4 0 x R q6; q4 ' ' R q4; q4 . . R q4; q4 : : R q4; q4 > > R q4; q4 _ R q4;
q5 ' ' L q5; q5 x x L q5; q5 y y L q5; q5 , , L q5; q5 __ R q0; q5 0 0 L q5; q5 1 1 L q5; q5 : : L q5; q5 > > R q5; q5 . . L q5;
q6 0 x R q6; q6 1 y R q6; q6 , , L q7; q6 : : R H; q6 x x R q6; q6 y y R q6; q6 . . R q6; q6 > > R q6; q6 ' ' R q6; q6 ___ R q6;
q7 x x L q7; q7 y y L q7; q7 0 0 L q7; q7 1 1 L q7; q7 , , L q7; q7 . . L q7; q7 ; : L q7; q7 > > L q7; q7 ' ' L q8; q7 ___ L q7;
q8 x 0 L q8; q8 y 1 L q8; q8 ___ R q0; q8 0 0 L q8; q8 1 1 L q8; q8 . . L q8; q8 : : L q8; q8 > > L q8; q8 ' ' L q8; q8 , , L q8;

Figure 13: Match Instruction TM

Exam ple

• Tape configruation when the machine starts(Figure 14)

000100'0000000011000,0000010011000,0000100101001,0000110001010,

0001000001011, 0001011001000, 0100010011010, 0100100101100, 0100110111100,
0100000001001, 0101011011001, 0101001001001, 1000110111100, 1000000111000,
1000100101001, 1000010111000, 1001011011001, 1001001001001, 0110110111011,
0110010011011, 0111001001011, 0111011011101, 0110100101101, 0110000001001,
1010111011110, 1010011011111, 1010001001000, 1011011011001, 1011001011101,
1010100101001, 1100110111110, 1100010011110, 1101001001110, 1100000001010,
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111,
1110000011000, 1111011011001, 1110100101001: . 010>100. 011. 001. 001. 100. 011.
001. 001. 010. 010. 010. 010. 010. 010.

Figure 14: Color Sort Match Instruction TM Starts

• Tape configruation when the machine halts(Figure 15)

xxxyxx' xxxxxxxxyyxxx, xxxxxyxxyyxxx, xxxxyxxyxyxxy, xxxxyyxxxyxyx,
xxxyxx0001011, 0001011001000,0100010011010,0100100101100,0100110111100,
0100000001001,0101011011001, 0101001001001,1000110111100,1000000111000,
1000100101001,1000010111000,1001011011001, 1001001001001,0110110111011,
0110010011011,0111001001011,0111011011101,0110100101101, 0110000001001,
1010111011110, 1010011011111, 1010001001000, 1011011011001, 1011001011101,
1010100101001, 1100110111110, 1100010011110, 1101001001110, 1100000001010,
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111,
1110000011000, 1111011011001, 1110100101001: . 010>100. 011. 001. 001. 100. 011.
001. 001. 010. 010. 010. 010. 010. 010.

Figure 15: Color Sort Match Instruction TM Ends

35

3. Write And Move Turing Machine

P rocedure Start from right of the symbol '

Step 1: Go to right find first 0 or 1 and replace them with x, y repectively
Step 2: Go to right find >
Step 3: Go to right find first 0 or 1 before {.} and replace them with x if

fetched symbol from step 1 is 0, otherwise y. If cannot get 0 or 1
before {.}, do step 5

Step 4: Go to left find the first x or y do step 1
Step 5: If fetched symbol from step 1 is 0, go to left to find >, replace it

with {.}, then go to left again, find {.}, replace it with {>} and
stop.
Else replace current symbol {.} with >, then go to left to find >
and replace it with {.} and stop.

Transition Rules (Figure 16)

q0 0 x R ql; q0 1 y R q2; q0 x x R q0; q0 y y R q0; q0 , , R q0; q0 . . R q0; q0 : : R q0; q0 > > R q0; q0 ___ R q0; q0 ' ' R q0;
ql 0 0 R ql; ql 1 1 R ql; ql , , R ql; ql . . R ql; ql : : R ql; ql > > R q3; ql x x R ql; ql y y R ql; ql ___ R ql; ql ' ' R ql;
q2 0 0 R q2; q2 1 1 R q2; q2 , , R q2; q2 . . R q2; q2 : : R q2; q2 > > R q4; q2 x x R q2; q2 y y R q2; q2 ___ R q2; q2 ' ' R q2;
q3 x x R q3; q3 y y R q3; q3 0 x L q5; q3 1 x L q5; q3 . . L q6; q3 > > L q3; q3 : : L q3; q3 ' ' L q3; q3 ___ R q3; q3 , , L q3;
q6 x 0 L q6; q6 y 1 L q6; q6 0 0 L q6; q6 1 1 L q6; q6 > . L q6; q6 . > L H; q6 : : L q6; q6 ' ' L q6; q6 __ R q6; q6 , , L q6;
q4 x x R q4; q4 y y R q4; q4 0 y L q5; q4 1 y L q5; q4 . > L q8; q4 > > L q4; q4 : : L q4; q4 ' ' L q4; q4 __ R q4; q4 , , L q4;
q8 x 0 L q8; q8 y 1 L q8; q8 . . L q8; q8 0 0 L q8; q8 1 1 L q8; q8 > . L H; q8 : : L q8; q8 ' ' L q8; q8 __ L q8; q8 , , L q8;
q5 0 0 L q5; q5 1 1 L q5; q5 x x L q5; q5 y y L q5; q5 > > L q5; q5 . . L q5; q5 : : L q7; q5 , , L q5; q5 ___ L q5; q5 ' ' L q5;
q7 0 0 L q7; q7 1 1 L q7; q7 x x R q0; q7 jj y R q0; q7 , , L q7; q7 ' ' R q0; q7 : : L q7; q7 . . L q7; q7 ___ L q7; q7 > > L q7;

Figure 16: Write And Move Letter TM

36

Exam ple

• Tape configruation when the machine starts(Figure 17)

xxxyxx' xxxxxxxxyyxxx, xxxxxyxxyyxxx, xxxxyxxyxyxxy, xxxxyyxxxyxyx,
xxxyxx0001011, 0001011001000,0100010011010,0100100101100,0100110111100,
0100000001001,0101011011001, 0101001001001,1000110111100,1000000111000,
1000100101001,1000010111000,1001011011001, 1001001001001,0110110111011,
0110010011011,0111001001011,0111011011101,0110100101101, 0110000001001,
1010111011110,1010011011111,1010001001000,1011011011001,1011001011101,
1010100101001,1100110111110,1100010011110,1101001001110,1100000001010,
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111,
1110000011000, 1111011011001, 1110100101001: . 010>100. 011. 001. 001. 100. 011.
001. 001. 010. 010. 010. 010. 010. 010.

Figure 17: Color Sort Write And Move TM Starts

• Tape configruation when the machine halts(Figure 18)

xxxyxx' xxxxxxxxyyxxx, xxxxxyxxyyxxx, xxxxyxxyxyxxy, xxxxyyxxxyxyx,
xxxyxx0001011, 0001011001000,0100010011010,0100100101100,0100110111100,
0100000001001,0101011011001, 0101001001001,1000110111100,1000000111000,
1000100101001,1000010111000,1001011011001, 1001001001001,0110110111011,
0110010011011,0111001001011,0111011011101,0110100101101, 0110000001001,
1010111011110,1010011011111,1010001001000,1011011011001,1011001011101,
1010100101001,1100110111110,1100010011110,1101001001110,1100000001010,
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111,
1110000011000, 1111011011001, 1110100101001: . 010>100. 011. 001. 001. 100. 011.
001. 001. 010. 010. 010. 010. 010. 010.

Figure 18: Color Sort Write And Move TM Ends

4. Update State Turing Machine

P rocedure Start at > or from the left first{.} of >

Step 1: Go to the left find symbol {:}
Step 2: Go to the left find the first x or y
Step 3: Go to the right find first 0 or 1 before symbol {:}, if meet {:}

stop, otherwise go to right.
Step 4: go to the left if the left symbol x or y, go to the right replace

0, 1 with 0, 1 repectively.
Step 5: Go to left end (for simplicity)

37

Step 6: Go to right to find first 0 or 1 before and replace them with x if
fetched symbol from step 1 is 0, otherwise y.

Step 7: Go to right to find symbol ' , then do step3

Transition Rules (Figure 19)

q0 0 0 L q0; q0 1 1 L q0; q0 . . L q0; q0 : : L q0; q0 > > L q0; q0 x x R ql; q0 y y R ql; q0 ' ' L q0; q0 __ L q0; q0 , , L q0;
ql 0 x L q2; ql 1 y L q3; ql , , R H; ql : : R H; ql x x R q4; ql y y R ql; ql > > R ql; ql . . R ql; ql ___ R ql; ql ' ' R ql;
q2 x x L q2; q2 y y L q2; q2 , , L q2; q2 ' ' L q2; q2 0 0 L q2; q2 1 1 L q2; q2 ___ R q4; q2 . . R q2; q2 > > R q2; q2 : : R q2;
q3 x x L q3; q3 y y L q3; q3 , , L q3; q3 ' ' L q3; q3 0 0 L q3; q3 1 1 L q3; q3 ___ R q5; q3 . . R q3; q3 > > R q3; q3 : : R q3;
q4 0 0 R q4; q4 1 1 R q4; q4 x 0 R q6; q4 y 0 R q6; q4 ' ' R q4; q4 , , R q4; q4 . . R q4; q4 > > R q4; q4 _ R q4; q4 : : R q4;
q5 0 0 R q5; q5 1 1 R q5; q5 x 1 R q6; q5 y 1 R q6; q5 ' ' R q5; q5 , , R q5; q5 . . R q5; q5 > > R q5; q5 _ R q5; q5 : : R q5;
q6 x x R q6; q6 y y R q6; q6 ' ' R q6; q6 , , R q6; q6 0 0 L q0; q6 1 1 L q0; q6 : : L H; q6 __ R q6; q6 > > R q6; q6 . . R q6;

Figure 19: Update State TM

38

E xam ple

• Tape configruation when the machine starts(Figure 20)

xxxyxx' xxxxxxxxyyxxx, xxxxxyxxyyxxx, xxxxyxxyxyxxy, xxxxyyxxxyxyx,
xxxyxx0001011, 0001011001000,0100010011010,0100100101100,0100110111100,
0100000001001,0101011011001, 0101001001001,1000110111100,1000000111000,
1000100101001,1000010111000,1001011011001, 1001001001001,0110110111011,
0110010011011,0111001001011,0111011011101,0110100101101, 0110000001001,
1010111011110,1010011011111,1010001001000,1011011011001,1011001011101,
1010100101001,1100110111110,1100010011110,1101001001110,1100000001010,
1101011011001, 1100100101000,1110110111111,1110010011111,1111001001111,
1110000011000,1111011011001, 1110100101001:.010>100.011.001.001.100.011
001.001.010.010.010.010.010.010.

Figure 20: Color Sort Update TM Starts

• Tape configruation when the machine halts(Figure 21)

01 lyxx' xxxxxxxxyyxxx, xxxxxyxxyyxxx, xxxxyxxyxyxxy, xxxxyyxxxyxyx,
xxxyxxxxxyxyy, 0001011001000,0100010011010,0100100101100,0100110111100,
0100000001001,0101011011001, 0101001001001,1000110111100,1000000111000,
1000100101001,1000010111000,1001011011001, 1001001001001,0110110111011,
0110010011011,0111001001011,0111011011101,0110100101101, 0110000001001,
1010111011110,1010011011111,1010001001000,1011011011001,1011001011101,
1010100101001,1100110111110,1100010011110,1101001001110,1100000001010,
1101011011001, 1100100101000,1110110111111,1110010011111,1111001001111,
1110000011000,1111011011001, 1110100101001:.010.100>011.001.001.100.011
001.001.010.010.010.010.010.010.

Figure 21: Color Sort Update TM Ends

5. Clean markers (Figure 22)

011100' 0000000011000, 0000010011000, 0000100101001, 0000110001010,
0001000001011, 0001011001000, 0100010011010, 0100100101100, 0100110111100,
0100000001001, 0101011011001, 0101001001001, 1000110111100, 1000000111000,
1000100101001, 1000010111000, 1001011011001, 1001001001001, 0110110111011,
0110010011011, 0111001001011, 0111011011101, 0110100101101, 0110000001001,
1010111011110, 1010011011111, 1010001001000, 1011011011001, 1011001011101,
1010100101001, 1100110111110, 1100010011110, 1101001001110, 1100000001010,
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111,
1110000011000, 1111011011001, 1110100101001: . 010. 100>011.001. 001. 100.011
001.001.010.010.010.010.010.010.

Figure 22: Final Tape

These four examples show how a Universal Turing Machine simulates
for another Turing Machine for its one step Computation. At the be­
ginning, we have initial state q0, reading letter 2, write letter *, moving

39

right, enter state q3. Before the Universal Turing Machine runs, on the
left of its tape, we have state q0 represented by 000. When it begins
running, the arrow > points 100 which represents 2 according to its
encoded code {100 : 2}. After simulating one step of that Turing Ma­
chine, . The arrow > moved to the next {.} and points 011 which
represents 0 here(Note the input is 20112011). Now, look at the left
3 letters of the symbol >, we have 000 for * in the original Turing
Machine. Now, left tape ends up with 011100, the first 3 letters rep­
resent the original Turing Machine state, also according to its encoded
code, it represents q3({011 : q3}). This is exactly what we want for the
transition rule q0, 2, *,R,q3

6. Creating UTM with 4 TMs above

P rocedure With the four Turing Machines we showed above. Arrow
starts at the left most position.

Step 1: Run Fetch Letter Turing Machine with current Turing Machine
configuration.

Step 2: Run Match Instruction Turing machine with the end configura­
tion by running Fetch Letter Turing Machine. If this machine
stops at its own step 4, then the Universal Turing Machine stops.
Otherwise, do next step.

Step 3: Run Write And Move Turing Machine with the end configuration
by running Match Instruction Turing machine.

Step 4: Run State Update Turing machine with the end configuration by
running Write And Move Turing Machine.

Step 5: Reset every x, y to 0, 1, then go to the left most symbol, pass end
configuration to Fetch Letter Turing Machine, do step 1.

40

Transition Rules (Figure 23 and Figure 24)

ql > > R ql; ql x x R ql; ql y y R ql; ql 1 1 R ql; ql 0 0 R ql; ql . . L q2; ql ' ' R ql; ql , , R ql; ql : : R ql; ql _ R ql;
q2 0 x L q3; q2 1 y L q4; q2 x x L q2; q2 y y L q2; q2 > > R q7; q2 ' ' L q2; q2 , , R q2; q2 . . R q2; q2 : : L q2; q2 _ R q2;
q3 0 0 L q3; q3 1 1 L q3; q3 , , L q3; q3 ' ' L q5; q3 > > L q3; q3 . . L q3; q3 x x L q3; q3 y y L q3; q3 : : L q3; q3 _ R q3;
q4 0 0 L q4; q4 1 1 L q4; q4 , , L q4; q4 ' ' L q6; q4 > > L q4; q4 . . L q4; q4 x x L q4; q4 y y L q4; q4 : : L q4; q4 _ R q4;
q5 0 x R q0; q5 1 x R q0; q5 x x L q5; q5 y y L q5; q5 > > R q5; q5 . . R q5; q5 , , R q5; q5 ' ' R q5; q5 : : R q5; q5 _ R q5;
q6 0 y R q0; q6 1 y R q0; q6 x x L q6; q6 y y L q6; q6 > > R q6; q6 . . R q6; q6 , , R q6; q6 ' ' R q6; q6 : : R q6; q6 _ R q6;
q7 x 0 R q7; q7 y 1 R q7; q7 0 0 R q7; q7 1 1 R q7; q7 . . L q8; q7 , , R q7; q7 ' ' R q7; q7 > > R q7; q7 : : R q7; q7 _ R q7;
q8 x 0 L q8; q8 y 1 L q8; q8 0 0 L q8; q8 1 1 L q8; q8 ' ' L q8; q8 , , L q8; q8 . . L q8; q8 > > L q8; q8 : : L q8; q8 _ R q9;

Figure 23: UTM Part 1

qi 0 x R qj; qi 1 y R qk; qi x x R qi; qi y y R qi; qi , , R qi; qi . . R qi; qi : : R qi; qi > > R qi; qi ___ R qi; qi ' ' R qi;
qj 0 0 R qj; qj 1 1 R qj; qj , , R qji qj . . R qj; qj : : R qj; qj > > R ql; qj x x R qj; qj y y R qj; qj _ _ R qj; qj ' ' R qji
qk 0 0 R qk; qk 1 1 R qk; qk , , R qk; qk . . R qk; qk : : R qk; qk > > R qm; qk x x R qk; qk y y R qk; qk _ R qk; qk ' ' R qk;
ql x x R ql; ql y y R ql; ql 0 x L qn; ql 1 x L qn; ql . . L qo; ql > > L ql; ql : : L ql; ql ' ' L ql; ql _ R ql; ql , , L ql;
qo x 0 L qo; qo y 1 L qo; qo 0 0 L qo; qo 1 1 L qo; qo > . L qo; qo . > L qr; qo : : L qo; qo ' ' L qo; qo _ R qo; qo , , L qo;
qm x x R qm; qm y y R qm; qm 0 y L qn; qm 1 y L qn; qm . > L qq; qm > > L qm; qm : : L qm; qm ' ' L qm; qm _ R qm; qm , , L qm;
qq x 0 L qq; qq y 1 L qq; qq . . L qq; qq 0 0 L qq; qq 1 1 L qq; qq > . L qr; qq : : L qq; qq ' ' L qq; qq _ L qq; qq , , L qq;
qn 0 0 L qn; qn 1 1 L qn; qn x x L qn; qn y y L qn; qn > > L qn; qn . . L qn; qn : ; L qp; qn , , L qn; qn _ L qn; qn ' ' L qn;
qp 0 0 L qp; qp 1 1 L qp; qp x x R qi; qp y y R qi; qp , , L qp; qp ' ' R qi; qp : : L qp; qp . . L qp; qp ___ L qp; qp > > L qp;

qr 0 0 L qr; qr 1 1 L qr; qr . . L qr; qr : : L qr; qr > > L qr; qr x x R qs; qr y y R qs; qr ' ' L qr; q r _L qr; qr , , L qr;
qs 0 x L qt; qs 1 y L qu; qs , , R qy; qs : : R qy; qs x x R qv; qs y y R qs; qs > > R qs; qs . . R qs; qs ___ R qs; qs ' ' R qs;
qt x x L qt; qt y y L qt; qt , , L qt; qt ' ' L qt; qt 0 0 L qt; qt 1 1 L qt; q t _R qv; qt . . R qt; qt > > R qt; qt : : R qt;
qu x x L qu; qu y y L qu; qu , , L qu; qu ' ' L qu; qu 0 0 L qu; qu 1 1 L qu; qu _ R qw; qu . . R qu; qu > > R qu; qu : : R qu;
qv 0 0 R qv; qv 1 1 R qv; qv x 0 R qx; qv y 0 R qx; qv ' ' R qv; qv , , R qv; qv . . R qv; qv > > R qv; qv _ R qv; qv : : R qv;
qw 0 0 R qw; qw 1 1 R qw; qw x 1 R qx; qw y 1 R qx; qw ' ' R qw; qw , , R qw; qw . . R qw; qw > > R qw; qw ___ R qw; qw : : R qw;
qx x x R qx; qx y y R qx; qx ' ' R qx; qx , , R qx; qx 0 0 L qr; qx 1 1 L qr; qx : : L qr; qx _ R qx; qx > > R qx; qx . . R qx;

qy 0 0 L qy; qy 1 1 L qy; qy x 0 L qy; qy y 1 L qy; qy , , L qy; qy . . L qy; qy : : L qy; qy ' ' L qy; qy > > L qy; qy _ R q0;

Figure 24: UTM Part 2

4.4 Usage and Exam ple
Mathematicians and computer scientists usually describe a Universal Turing
Machine in the following format.

{Mutm)((Mtm),x) = (Mtm)(x)

In this case, users need to encode (Mtm) and its input x, then run these two
inputs on (Mutm). The program has implemented a subroutine for users to
encode inputs. Users only need to provide a Turing Machine transition rules
and its input for this UTM.
Through terminal, run python u tm .py <Y our transition file> <Y our
input for your Turing M achine>. For example,
python u tm .py co lo r_ so rt.tm ’>20112011’
The quote for input for the input is required, since “> ” is a keyword in most
shells, such as bash, and zsh. ‘> ’ is used to specify the arrow’s location on
a Turing Machine. If users would like to have some space on both sides of
the input string add “_ ” to them, like this “_____ > 20112011______ ” This

41

UTM program by default does not provide an animation for simulating a
Turing Machine program(If a user really wants to see an animation process,
he can use the encoder provided in this project, then get the encoded string
and run command view.py utm.tm through terminal, next copy this string
into GUI input box), since it will take too long to show this whole process.
After the UTM program terminated, it will provide the information as below.

U TM R esult Inform ation (Figure 25)

--------------------------- tm - in fo -----------------------------
tm - in p u t tape :
20112011
tm -ou tpu t tape:
00111122
tm -ou tpu t s te p s:45
------------------------- u tm - in fo -----------------------------
encod ing map: ' 000' , ' 1 ' : ' 001\ ' 010' , ' 0 ' : ' 011' , ' 2 ' : ' 100' , '# ': ' 101' , ' q0 ' : ' 000 ' , *H': ' 001' , ' q l ' : ' 010 ' , ' q3 ': ' 011' , ' q2 ' : ' 100' , 'q4 '
: ' 101' , 'q S 1: ' 110' , ' q6 ' : ' 111'}
re v e rse s ta t e map: { '000' : 'q 0 ' , ' 001 ' : 'H ' , ' 010' : ' q l ' , '011 *: 'q 3 \ ' 100' : ' q2 ' , ' 101' : 'q4 ' , ' 110' : ' q5 ' , ' 111' : 'q6 ’ >
re v e rse le t t e r map: { ' 000' : ' 001 ' : ' 1 ' , ' 010' : ' 011' : ' 0 ' , ' 100' : ' 2 ' , ' 101' : '# '}
u tm -in pu t tape:
000000' 0000000011000, 0000010011000, 0000100101001, 0000110000010, 0001000001011, 0001011001000, 0100010010010, 0100100101100, 0100110111100, 0100000001001,01010110
11001, 0101001001001, 1000110111100, 1000000111000, 1000100101001, 1000010111000, 1001011011001, 1001001001001, 0110110111011, 0110010011011, 0111001001011,011101101
0101, 0110100100101, 0110000001001, 1010111010110, 1010011010111, 1010001001000, 1011011011001, 1011001010101, 1010100100001, 1100110110110, 1100010010110,1101001000
110, 1100000000010, 1101011011001, 1100100101000, 1110110110111, 1110010010111, 1111001000111, 1110000011000, 1111011011001, 1110100101001:•010>100. 011. 001. 001. 100.
011. 001. 001. 010. 010. 010. 010. 010. 010. 010. 010. 010. 010.
u tm -output tape:X01010" xxxxxxxxyyxxx , xxxxxyxxyyxxx , xxxxyxxyxyxxy , xxxxyyxxxxxyx , xxxyxxxxxyxyy , xxxyxyyxxyxxx , xyxxxyxxyxxyx , xyxxyxxyxyyxx , xyxxyyxyyyyxx , xyxxxxxxxyxxy , xyxyxyyx
yyxxy , xyxyxxyxxyxxy , yxxxyyxyy yy xx , yxxxxxxyyyxxx , yxxxyxxyxyxxy , yxxxxyxyyyxxx , yxxyxyyxyyxxy , y xx y x xy x xy x xy .x yyxyyxyyyxyy ,xyyxxyxxyyxyy , xyyyxxyxxyxyy .xyyyxyyxy
xyx y , xyyxyxxyxxyxy , xyyxxxxxxyxxy , yxyxyyyxyxyyx , yxyxxyyxyxyyy , yxyxxxyxxyxxx , yxyyxyyxyyxxy , yxyyxxyxyxyxy , yxyxyxxyxxxxy , yyxxyyxyyxyyx , yyxxxyxxyxyyx , yyxyxxyxxx
yyx,yy x xx x xx xx x y x ,y y x y xy y xy y x xy , y y xx y xx yxyxxx ,yyyxyyxyyxyyy ,yyyxxyxxyxyyy , yyyyxxyxxxyyy , y y y xxxxxyyxxx ,yyyyxyyxyyxxy , y y y xyxxyxyxxy : .010.011.011.001.001.001. 001.100.100.010>010.010.010.010.010.010.010.010.010.
u tm -output s te p s:1200143

Figure 25: UTM Info

The steps of running the original Turing Machine and the Universal Turing
Machine are provided to show how much efforts it takes for UTM to simulate
a Turing machine given by specific inputs. Also, letter map and state map are
provided in reverse direction of our encoding system, to help to check if the
UTM output can interpret the original Turing Machine’s terminated configu­
ration. In UTM output tape, everything after {:} represents what left on the
original Turing Machine when it halts. Moreover, the most left three letters
on UTM tape represent the final state. According to the letter map and state
map provided above, after translating it back, the result is the same as the one
being simulated. For tape, we have 011.011.001.001.001.001.100.100.010 >
which can map to 00111122 and arrow ended up at the right of the blank
cell. For the state, we have x01 interpreted as 001, which presents H in the
original Turing Machine.

42

5 Observation

A Turing machine is an abstract computer.It use a tape which works like
memory to store inputs and outputs. Also, it contains a set of transition
functions which is the same concept as CPU instruction set. A Turing ma­
chine perform its action based on its transition functions, and a computer
does its tasks based on its instructions from a operating system and data in
memory.
In our example, it takes 1200143 steps for our

Universal Turing Machine to get the same job done by the original Turing
Machine with 45 steps. Formally, consider a TM with |r | = n and |Q| = m
given arbitary input with the length of k. In our UTM, the tape length for
this machine will be logn + logm + 1 + lognlogm(2logmn + 2) + 2 + (k + 1)logn,
since a Turing Machine Program P description is fixed, we can take k as
the length for this UTM. Also, stages for Match Instruction and Update
State never go through input description part on UTM tape, we take them
out of our consideration. Then, stage for Restore, Fetch, Write take O(k),
O(log(n)k), O(log(n)k). Overall, it takes O(k) for this UTM to simulate
one step computation of a Turing Machine since logn is fixed. If it takes
time t for a TM being simulated to finish its computation task, then it takes
O(tk) for UTM to complete the simulation. And This different computing
cost can be a good explanation of why Interpreting languages(code runs on
a virtual machine) such as python, javascript, php are cross-platform and
slower, while executable files from compling languages(complied code runs
on a operating system) such as c, c+—+, go do not run on different operating
systems, but faster.
Note Java is also a Interpreting language from this point of view. Next,
we compare C + + and Java to illustate the difference. First, consider the
process of a c + + program compilation.

• Processing:
Copy the content from header files to the source file, replace constants
with customized symbols defined by key word # define in the source
file

• Compiling: ComplieD code in the source file into assembler code. •

• Assembling: Assemble the code into the object code for a specific

43

platform

• Linking: Object code file is used to produce an executable file.

Notice all OS are different, so the compiled code is different. Moreover,
each OS has different CPU instruction set architecture to interpret the final
binaries, and the same binaries may have different meanings on different
instruction set architecture, as it for different Turing Machines-faster but
not portable.

With java, things are different. Its virtual machine-JVM plays the role
of such OS and hardware abstraction. JVM is not a library. Instead, it is
a whole platform working on top of native OS, and its implementation is
different for different OS. A Java compiler does not compile a Java program
into CPU instructions. It compiles a program to the instructions of the
virtual machine, byte-code. Also, the virtual machine interprets byte-code
instructions as native code and executes it, in the sense that a Univeral Turing
machine interprets a Turing Machine’s description and its input(byte-code)
as the Turing Machine runs for its input(native code)-portable yet slower.

44

6 Conclusion and future work

In this thesis, a Turing Machine Simulator was built to serve a visual educa­
tional aid for computability theory teaching and learning. Also a Universal
Turing Machine was created to present the core idea about how a Turing Ma­
chine can simulate another Turing Machine. It shows how a computer and
algorithm work in the aspect of the computation model. Also, it uses the
difference in computing performance between Java and C + + as an exam­
ple, explains why a compiling programming language is generally faster than
an interpreting language. Computer science origins from these computation
models we discussed. Learning computation models is an essential step for
building up an architecture of knowledge for computer science. Looking at
computer science with “computing” in mind, not only helps students find
the solution when they encounter some problem but also builds their muscle
to seek the ‘solution.’ for creating solutions - “Meta-Solution”. This thesis
presents a simulator for the original Alan Turing’s machine to show how a
single tape Turing Machine works. Multi-tapes Turing Machine simulator
can be built to show how multi-tapes Turing The machine completes a com­
puting task. How it is different from a single tape Turing Machine. Also, a
Non-deterministic Turing Machine is beneficial for the understanding of time
complexity for an algorithm. Think about one of the most critical questions
in computer science-P = NP?. NP is a set of questions that are defined by a
non-deterministic Turing Machine. Presenting how different Turing Machine
variants yield the same result for the problem in a visual animation manner
can be very helpful for students to gain an understanding of why these mod­
els are equivalent. Turing Machine is a milestone of computability theory,
but now all of it. A visual tool for deterministic finite automata(DFA), a
Regular Expression - DFA converter, a Lambda interpreter, and Lambda -
Turing Machine converter, all have a significant meaning for a computability
theory class.

45

References

[1] Wilhelm Ackermann and David Hilbert. Grundzuge der theoretischen
logik. Berlin, Springer, 1037(23):4, 1928.

[2] Otto Blumenthal. David hilbert. Naturwissensehaften, 10(4):67-72,
1922.

[3] George S Boolos, John P Burgess, and Richard C Jeffrey. Computability
and logic. Cambridge university press, 2002.

[4] Jonathan P Bowen. The impact of alan turing: Formal methods and
beyond. In International Summer School on Engineering Trustworthy
Software Systems, pages 202-235. Springer, 2018.

[5] Alonzo Church. An unsolvable problem of elementary number theory.
American journal of mathematics, 58(2):345-363, 1936.

[6] Herbert B Enderton. A mathematical introduction to logic. san diego
(calif.)[etc.], 2002.

[7] Kurt Godel. Die vollstandigkeit der axiome des logischen funktio-
nenkalkuls. Monatshefte fur Mathematik, 37(1):349-360, 1930.

[8] Kurt Godel. Zur intuitionistischen arithmetik und zahlentheorie. Ergeb-
nisse eines mathematischen Kolloquiums, 4(1933):34-38, 1933.

[9] J Roger Hindley and Jonathan P Seldin. Lambda-calculus and Combi-
nators, an Introduction, volume 13. Cambridge University Press Cam­
bridge, 2008.

[10] Stephen Cole Kleene. A theory of positive integers in formal logic. part
i. American journal of mathematics, 57(1): 153-173, 1935.

[11] Dexter C Kozen. Automata and computability. Springer Science A Busi­
ness Media, 2012.

[12] Andrei Markov. Impossibility of certain algorithms in the theory of
associative systems. Journal of Symbolic Logic, 13:52-53, 1948.

[13] Soltys-kulinicz Michael. Introduction To The Analysis Of Algorithms,
An. World Scientific, 2018.

46

[14] Emil L Post. Finite combinatory processes—formulation 1. The Journal
of Symbolic Logic, 1(3): 103—105, 1936.

[15] Michael Sipser et al. Introduction to the Theory of Computation, vol­
ume 2. Thomson Course Technology Boston, 2006.

[16] Alan Mathison Turing. On computable numbers, with an application
to the Proceedings of the London mathematical
society, 2(1):230-265, 1937.

47

