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Abstract

Turing machines(TMs) are mathematical models of computation 
that define abstract machines. Because of their simplicity and consis­
tency, they are amenable to mathematical analysis. These hypothetical 
machines are intended to help explore the concept of what it meant to 
be computable. These models form the foundation of theoretical com­
puter science. A lot of theoretical computer science has been beard 
on TMs, and so a lot of the primary results are in the language of 
Turing machines. I t’s essential for computer science students to build 
up a strong foundation of computer science by understanding theoreti­
cal models behind this field. Nowadays, Universities provide computer 
science education usually offers one or two classes to introduce Turing 
Machine. However, studying Turing Machine without a useful visual 
tool can be a little bit less intuitive. In this thesis, a Turing Machine 
simulator was created. Also, a universal Turing machine was proposed 
to show how a simulator works at a lower level.
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1 Introduction

1.1 M otivation
Turing machines are hypothetical machines which were created by Alan Tur­
ing in 1936 to explore the concept of what it meant to be computable[4]. A 
typical Turing Machine has an infinitely long stripe of tape composed of a 
number of squares with symbols written on them. These squares are used 
to store inputs and outputs computations for this machine. It also has a 
head that can read symbols from the squares, write symbols to the squares, 
and move left and right. It also has a set of transition functions which is 
essentially a program to tell Turing Machine what tasks to perform based 
on the machine’s state and the read symbol. Every Turing Machine has an 
initial state and a halt state. A Turing Machine starts its computations from 
the initial state and finishes its task when it enters a halt state. Without a 
halt state, a turing machine will never terminate.

Turing Machine is a foundation of modern computer programming. It 
is very important for computer science students to understand this comput­
ing model to build up a strong foundation of their knowledge for computer 
science. Those popular programming languages and technical frameworks 
for practical use today will eventually be replaced by new technologies. In- 
stead,the theory behind computer programming has a long-lasting value, 
making people think about what problems can be solved and how can they be 
addressed effectively. As for its importance, universities take “Computability” 
Theory (this course may be called as “Format Language and Automata”)as 
a required class for computer science majors. Exposure to Turing Machine, 
students can get a general idea of what a computing model can do. However, 
statically presenting Turing Machine might be less intuitive. Some difficulties 
may occur in the learning process. First, how should an instructor explain 
the process from a Turing Machine starts until it terminates? It may need 
to draw a giant table to show all transition functions and an extremely long 
turing machine tape and walk students through this process by writing and 
erasing a massive amount of symbols. If the instructor would like to show 
students the different outputs of a Turing Machine given by various inputs, 
tha t’s an enormous burden on the instructor’s shoulder. Second, what if a 
student designs a Turing Machine and then wants to test it with some in­
puts? He/She needs to check his/her transition table back and forth, while
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simulating the turing machine computing process, and it’s very easy to make 
a mistake. Also, this procedure is a little bit longer, and the student might 
lose his focus on where his work is on, and then starts from the very begin­
ning again. An Turing Machine Simulator can be a beneficial visual aid for 
this topic. Instructors no longer have to work on drawing Turing Machine on 
a whiteboard, instead focus on explaining what is happening on the machine. 
Also, if they want to switch Turing Machines, it can be done by just a few 
clicks.
A Universal Turing machine (UTM) is a Turing Machine(TM) that can simu­
late another Turing Machine based on its encoded description and its input. 
Some ideas in computer science such as compiler, interpreter are inspired 
by UTM. Designing a Universal Turing Machine is essentially creating a 
language. Like Micheal Soltys states in his book, "every computer science 
students should do this exercise "[13]. This is very helpful to students to 
gain knowledge of what a language is and what requirements are for a lan­
guage. However, textbooks used in computability theory class either don’t 
mention Universal Turing Machine[15], or lacking explantion for designing a 
UTM[11]. A Turing Machine simulator is essentially doing the same work as 
a UTM, but it hides the detail of how UTM works. In this thesis, a Univer­
sal Turing Machine is created to reveal how a Turing Machine can simulate 
another Turing Machine and how a Universal Turing Machine can simulate 
all Turing Machines.

2



2 Background

In 1920, David Hilbert proposed a project now known as Hilbert’s program[2]. 
He asked for a complete logical foundation to formulate mathematics. In 
1928, he introduced Entscheidungsproblem for this purpose[1]. This problem 
asks for an algorithm that takes an axiomatic formal system and a logical 
statement in that system as input, and the algorithm outputs true or false 
depending on the value of that statement. He believed that every problem 
is solvable.

However, a lot of mathematicians gave their negative answers to entschei­
dungsproblem. In the 1930s, GOdel presented a complete axiomatic sys­
tem based on first-order logic in his Ph.D. paper[7]. In this paper, GOdel 
proved his Completeness Theorem, and it states that for any self-consistent 
axiomatic system, it must contain theorem that cannot be proven. To prove 
this statement, Godel developed a technique now known as Godel numbering, 
which can code any formal expression as a single natural number. In 1933, 
Kurt GOdel, with Jacques Herbrand, gave a formal definition of his axiomatic 
system called general recursive functions[8]. General recursive functions are 
a class of functions built from basic functions with composition, recursion, 
and minimization operators.

In 1936, Church also proved that entscheidungsproblem is unsolvable by 
his model of computability of A — calclus. Within and by A — calculus, 
there is no effective way to determine whether a A term has a norm form. 
Alan Turing introduced Turing Machines[16] in the same year. He proved 
that entscheidungsproblem is unsolvable by presenting the Halting Problem. 
Halting Problem is asking whether a program A that takes a description of 
an arbitrary program B and B ’s input as its own input can determine pro­
gram B is able to finish its computations or run forever.

There is an extensive research about computability for mathematical 
problems. The basic research objects in this field are computable functions. 
In the notation of an algorithm, if there is an algorithm that can get the 
same job done for a function, then this function is computable. Formally, a 
function f  : Nk !  N is computable ,  9 Algorithm A for x 2 Nk yields y 
and f  (x) =  y [6].

A lot of mathematicians from around the world gave their own opin­
ions about what is a computable function. Kurt GOdel described Recursive
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functions[8], Alonzo Church defined the Lambda calculus[5], Stephen Kleene 
introduced Formal systems[10], Alan Turing described imaginary comput­
ing device as Turing Machines, Emil Post defined Post machines[14], And 
Markov defined what became known as Markov algorithms [12]. Compu­
tation functions are used to discuss computability without referencing any 
models above. When it comes to any definition, however, it must refer to 
some specific model of computation. As a function in Turing Machine, it 
is computable if only if it is computable in A — Calculus, and similarly for 
any other pairs of the above formal languages. Church expressed the belief 
that the intuitive notion of “computable” is identical to the above models’ 
concept. This belief is called “Church-Turing Thesis” which is universally 
accepted by mathematicians.

2.1 G eneral Recursive Function
In mathematical logic and computer science, the general recursive functions 
are a class of partial functions that take a series of natural numbers as input 
and yield a natural number as output.They are functions that are build from 
basic functions by composition, primitive recursion, minimisation operators. 
It is shown that the general recursive functions compute the the same class 
of functions as by Turing Machines[3].

Basic functions:

1. C onstant function: A function takes a tuple of number as input, and 
awalys yields the same value, which is given by

Cn(xi, ...xk) =  n.

where n and k are natural numbers

2. Successor function S: A function take a natural number x as input, 
and yields x + 1, which is given by

S (x) = x  + 1

3. P ro jection  function P k: A function takes a tpule of number as in­
put, and gives the value on certain position as output, which is given
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by 1 < i < k :

Ptk(xi, ...,xk) =  Xi

where i and k are natural numbers and i > k 

Operators:

1. Com position opera to r o: Given a m-place function h(xi , ..., xm) and 
m-place functions gi (xi , ...,xk), ...,gm(xi , ... xk):

ho(gi, ...gm) = f  where f  (xi, ...,xk) =  h(gi(xi, ...,xk), ...,gm(xi, ...,xk))

2. P rim itive recursion opera to r p: Given a (k +  1)-place function 
g(xi , ..., xk) and (k +  2)-place function h(y, z, x i , ... xk):

p(g, h) =  f  where the (k +  1)-place function f  is defined by

f  (0,xi, ...xk) =  g(xi, ...xk)

(y + 1,xi , ...,x k) =  h(y, f  (y ,x i , ...,xk ) ,x i , ...,xk)

3. M inim ization opera to r ^: Given a (k +  1)-place total function 
f(y ,x i ,...,xk), the k-place function ^ ( f ) is defined by:

M f)(xi, ...,xk) =  z f  (z,xi, ...x k ) =  0
and f  (i,xi, ... xk) > 0 for i =  0,..., z — 1
minimization seeks that smallet z that meets f  (z,x i , ...,xk) =  0, if this 
z doesn’t exist, search will never terminate.

Exam ple

• The predecessor function Pred:N !  N, is a partial recursive function, 
defined by the recusion pred(0) =  0, Pred(S(n)) =  P>i2(n, Pred(n))

• Truncated sub traction , where x—y =  x — y if x > y, else 0. It is 
defined by the recursion x—0 =  x ,x —(y + 1) =  Pred(x—y)
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2.2 L am bda Calculus
The lambda calculus is older than Turing’s machine model, apparently dating 
from the period 1928-1929[9], and was invented to encapsulate the notion of 
a schematic function that Church needed for a foundational logic he devised.

Definition Lambda calculus consists of constructing lambda terms and 
performing reduction operations on them. Lambda terms are defined recur­
sively, t is a A term when it meets one of the following requirements[9],

1. t =  x, x is a variable

2. t =  Ax.M, x is variable and M is lambda term

3. t =  (M N ) ,M and N are both lambda terms 

Hence, there are 3 kinds of A terms.

• Variable(referencing lambda expressions)

• lambda abstraction(defining functions)

• applications(invoking functions)

R eduction Basic lambda calculus has no “built-in” functions. The mean­
ing of lambda expressions is defined by how expressions can be reduced. 
There are three kinds of reductions:

• a — conversion : changing bound variables, for example

Axy.xy = Apq.pq

• ft — reduction : applying functions to their arguments, for example:

(Ax.x)y = y

• q — conversion : if two functions yields the same result for all their 
arguments, they are the same. for exmple:

Ax.(fx) = f

if f  doesn’t contain x.
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Free and Bound Variables In an expression, each appearance of a vari­
able is either “free” (to A) or “bound” (to a A). For example, x is free in the 
expressions Aqp.x but not in expression Axy.xyxy.

N orm al Form  A norm al form term is a A term that does not contain 
any reducible expression, which means no fl — Reduction can be applied to 
this term. If a A term that can become a norm form term, after a finite step 
of reductions, is called normalizable. For example:

(Aa.a b) !  b
where the last term is a A norm form.
Some A terms are not normalizable. For example:

(Az.zz)(Xy.yy)

. Applying a fl — reduction to this term always yileds (Ay.yy)(Ay.yy), fl — 
reduction can always be applied to this term.

W eak N orm  Form: A A term has no reducible expression left, but its 
sub-A term can still be reduced. For example:

Aabc. ((Ax.a( Axy)) bc)

Evaluation S trategies Evaluation Stategies are used to evaluate a A ex­
pression. Evaluation on an expression can terminate or not depends on the 
choice of evaluation strategies. Leftm ost s tra tegy  Reduce left most redu- 
ciable expression first. This is called call-by-name, i.e. functions are called 
without evaluating their inter A terms.

(Ax.z)((Ax.xx)(Ax.xx)) !  z
If a A expression, through a finite step of reduction, can become a A norm 

form term, the left strategy reaches this normal form.
R ightm ost-innerm ost s tra tegy  Evaluate the innermost A terms among 
the rightmost reduciable expression. This is called call-by-value , i.e. sub- 
A terms are evaluated before being reduced in a higher level A term:

(Ax.z)((Ax.xx)(Ax.xx)) !
(Ax.z)((Ax.xx)(Ax.xx)) !  •••

Evaluation of inter-most reduciable expression ((Ax.xx)(Ax.xx)) yields itself 
and evaluation does not terminate.
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Logic and predicates Church booleans are used for boolean values true(T) 
and false(F) as follows:

T  =  XxXy.x 

F = XxXy.y

Some logic operators can be defined by Church booleans.

A ND  = XxXy.xyx

T  = XxXy.xxy 

T  = Xx.xFT

A predicate function can be defined with Church booleans. For example,
Z  is a predicate, which return T  if its argument is Church numberal 0 and 
return F  if it is not.

Z  = Xx.x(Xx.F )T

PRED = (Xn.Xf.Xx.n)(Xg.Xh.h(gf ))(Xu.x)(Xu.u)

Recursion To define a recursion function in X — Calculus, it needs a 
auxillary function Y  to reference the recursion function itself becuause of 
X — Calculus’s anonymity.

Y  = (Xy.(Xx.y(xx))(Xx.y(xx))

Applying Y  to a function R  yields:

Y R  = Xx.R(xx)(Xx.R(xx)) !  R((Xx.R(xx))(Xx.R(xx))) !  R(YR) !  R(R(YR))

!  R(R(R(.. .(YR))

This means the function R  is evaluated using the recursive call Y R  as the 
first argument.

2.3 Turing M achine
Turing machines are hypothetical machines that were created by Alan Turing 
in 1936 to explore the concept of what it meant computable[16]. It consists 
of an infinitely long tape divided into cells with symbols written on them, a 
head which can read symbols from cells, write symbols to the cells, move left
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Figure 1: Turing Machine Entity

and right, a state register stores the state of the Turing machine. A stage of 
computation is determined by the content of the read cell and the state in 
the state register, head write symbol to the read cell, move left or right and 
then the state register enters a new state. Every Turing Machine has a halt 
state, if Turing Machine enters this halt state, it completes its computation 
task.

Definition Following Soltys’ Notation[13], a (one-tape) Turing machine 
can be formally defined as a 4-tuple M = (Q, £, r ,  8) where

• Q is a finite, non-empty set of states which includes qinit,qaccpet,qreject

• £  is the set of input symbols, that is, the set of symbols allowed to 
appear in the initial tape contents

• r  is the set of tape symbols, and it is always the case that £  C r

• 8 is a transition function; 8 : Q x r  !  Q x r  x {Left,  Right}

An example of Turing Machine M which decides whether an input string has 
even 0s.
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Table 1: Transition table for even 0s

Letter

State
q0 q1

B T F
0 0, q1,R 0, q0, R
1 1, q0, R 1, q0, R

In this case we have:
Q =  {Q0,Q1,T,F}

Qinit q0 Qaccpet T  Qreject F
S  =  {0,1,B} 

r  =  {0,1,B}

2.4 C om puta tional Equivalance
Computability is the ability to solve a problem efficiently. It is also a crucial 
topic in computer science. Computable functions are the basic objects of this 
field. As to what is computable, different mathematicians gave their different 
Answers. Intuitively, a function f  from natural numbers to natural numbers 
is called computable if it can determine the value of f  (x1, x2, ■■■ , xn) for 
any argument x i,x 2, ■■■ ,xn given a list of instructions. The most widely 
studied computation models are the Turing Machines and general recursive 
functions, and the lambda calculus, all of which have the same power about 
computability.

P roo f O utline

• A turing machine program (M ) is partial recursive.

• General recursive function can be reduced to A function.

• A function can be simulated by Turing machines.

1. Every turing machine program (M) is recursive.
First of all, some recursive functions are listed in an intuitive manner 
for better understanding the proof.
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(a) add(0, x) = x
add(n +  1, x) = add(n, x) +  1

(b) mul(0, x) = 0
mul(n +  1, x) = x +  mul(n, x)

(c) quo(x, y) = 0 if x—y = 0 else quo(x, y) = 1 +  quo(x—y, y)
(d) mod(x, y) = 0 if x =  0

mod(x +  1, y) = mod(x, y) +  1 if mod(x, y) +  1 =  y else 0
(e) exp(x, 0) = 1

exp(x, n+1) = exp(x, n) * x
(f) log(0, x) = 0

log(n, x) = 1 +  log(quo(n, x), x)
(g) flog(c, n) = 0 if mod(c, n) = 0 else flog(c, n) = 1 +  flog(quo(c, n), 

n)

GOdel numbering is used to encode the Turing Machines. The Turing 
Machines are restricted to to the alphabet {0,1}, and 0 is used to take 
place of black cell. Then, a turing machine tape can be shown by binary 
numerals.
Given a configuration of a Turing Machine, e.g. A configuration is

0 1 0 1 0 1 1 0

q7

0

Turing Machine Configuration

coded as the triple of integers (l, q, r) where q is the state number (e.g. 
7), l is the tape contents to the left of the tape arrow interpreted as 
a binary integer(e.g. 10 which is 2), and r is the tape contents under 
and to the right of the arrow interpreted as a binary number reversely 
(e.g. 1011 is interpreted as 1101 which is 13). The code for the above 
configuration is

c =  (2, 7,13) =  22 ■ 37 ■ 513

l, q, r can be recoverd from c using recursive function flog:
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(a) l = left(c) = flog(c, 2

(b) q = state(c) = flog(c, 3)

(c) r = right(c) = flog(c, 5)

A computation task is coded by the GOdel number of a sequence:

<<l0,Q0, r0), r1), ••• , {In, Qn, rn}}

The code shows every thing about the each configuration, but says 
nothing about how a configuration transfers to another. Consider a 
Turing Machine < M  > that computes function f  (x), consecutive x 
+  1 1s as input for the Turing Machine, f(x) +  1 consecutive 1s for 
its output. When the Turing Machine starts its computations, the left 
side of the tape is completely blank, the right side is 11 ••• 1, a block 
of x  + 1 digits 1 with the head with at leftmost 1.
Thus the left number at the start of < M  >' s computation of f  (x) is 
0, and the right number will be

exsub(x) = 2x+1 —1

Note that exsub is a composition of Exponentiation function and Trun­
cated Subtraction in formular 2.1 which is a partial recursive function.
When A Turing Machine performs one step, the left and right numbers 
change based on what symbol is being read, as well as on what action 
is performed. The read number either 0 or 1, and the right number on 
the tape is interpreted reversely, it can be calculated by its remainder 
of 2. If the right number is r, then the symbol read will be

read(r) = mod(r, 2)

Here,mod is a function to compute remainder which is a partial recur­
sive function.

Let l and r be the old left number and old right number, l and T be the 
new left number and new right number. Suppose the action is to write
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a 0 to the read cell. If there was a 0 in the read cell, the content of the 
cell does not change. So, f =  l and f  =  r. If the symbol in the read 
cell was 1, the right number decreases 1, l  =  l and f  =  r —1. Then, 
f  =  r—read(r) for this action. Similaryly, for action to write a 1 to the 
read cell. If there was a 1 in read cell, l = l and f  =  r. If there was 
a 0 in read cell, l =  l, and right number increase 1 f  =  r + 1. Then 
f  =  r + 1—read(r)
Next, consider functions when (M) moves left or right. For action to 
move left, r appends the last digit of l, that is f  = 2 r + mod(l, 2). For 
left number, it drops its last digit, that is f =  quo(l, 2). The same logic 
can be used for action to move right, then barl =  2l + mod(l, 2) and 
barr =  quo(r, 2)
Let writing 0, writing 1, moving left, and moving right actions be num­
bers 0, 1, 2, 3, and action number is a then the new left number will 
be given by

{l if a =  0 or a =  1
quo(l, 2) if a =  2

2l + mod(r, 2) if a =  3

Similarly, the new right number will be given by' r —read(r) if a =  0
r +  1—read(r) if a =  1

newriqht(p,r, a) =
y ' 2r + mod(l, 2) if a =  2

Kquo(r, 2) if a =  3

(1)

(2)

When (M) halts, it ends with a standard  configuration where left 
numberal is 0 and right numberal is f  (x) + 1 consecutive 1s. The right 
number is kept tracked through computations. Then right number 
r =  2f(x)+1 — 1 when (M) finishes its computations, and f  (x) will be 
given by

value(r) =  loq(r, 2)

Here log is the partial recursive function, so value is also partial recur­
sive.
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So much, for the moment, for the topic of coding the contents of a 
Turing Machine Tape. The coding for Turing Machines transition rules 
as follows:

m  =  aw, qio,an , qn , 0,20, q20, a2i, 921 ■ ako, Qko, aki, Qki

and 0 will be used as halt state not coded in m. Where k is the number 
of state of Turing Machines and a j  <= 3 i is Turing Machines’ current 
state and j is the read symbol. Let m be the single code number for 
this sequence:

m =  2“10 3q10 5“n 7q11 •• ■

Then what action to perform and what state to enter when in state q 
and read symbol read(r) will be given by:

action(m, q, r) =  flog(m, C (4 (q -1) + 2 x read(r))) 

newstate(m, q, r) =  flog(m, C (4 (q -1) + 2 x read(r) + 1))

Now, turing machine configuration and coding functions of each com­
ponents have been defined. Next, consider a partial recursive func­
tion code(m,x,t) that give the code c for the the configuration after t 
stages of computation with machine code m and function f  (x)’s input 
x. Clearly, at Turing Machines start their computations, the initial 
configuration code c is given by

c0 =  code(m,x, 0) =  (0,1,exsub(x)) =  20315exsub(x)

that is left number is 0, state is 1, and right number is exsub(x).
A procudure to get code ct+1 from ct as follows:

1) lt =  left(ct) qt =  state(ct) n  =  right(ct)
2) at =  action(m, qt, rt)

3) qt+1 =  newstate(m,qt ,rt)
4) lt+1 =  newleft(at, lt) rm  =  newright(at, rm )

5) ct+1 =  (lt+1,qt+1,r t+1)
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Thus, a function from ct to cc+1 is defined as follows:

ct+i =  getcode(m, ct)

where getcode is a composition of the functions left, state, right, action, 
newstate, newleft, newright, and tuple, and is therefore is a partial re- 
cusive function.

The function code(m,x,t), giving the code for the configuration after 
t stages of computation, can then be defined by partial recursion as 
follows:

code(m, x, 0) =  (0,1, exsub(x))

code(m, x , t  + 1) =  getcode(m, code(m, x, t))

It follows that code is itself a partial recursive function. The machine 
will halt when state(code(m, x, t)) = 0, and will then halt in standard 
position where right number is f  (x) + 1 consecutive 1s. If the ma­
chine halts in standard configuration at time t, then the output of the 
machine will be given by

output (m, x, t) =  value (right(code(m, x, t)))

Then t will be given by

I the least t such that state(code(m,x,t)) =  0 if such a t exists
halt(m ,x)= S i n i  ii •undefined otherwise

(3)
This function is obtained from compoisition and minimisation, thus it 
is partial recursive or total recursive.
Let f ( m , x )  = output(m,x,halt(m,x)),  then f 0(m,x) is recursive. If 
(M) computes f  (x), then f(m ,x) computes f(x), so (M) is recursive.

2. partial recursive functions can be reduced to lambda terms.
Here, we show how basic functions and operators from partial recursive
function can be represented in lambda terms.
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Integer, C onstan t, P ro jection , Successor

• Church num erals are used to represent integers in A — Caculus.
Church defined natural numbers in A — Caculus as follows:

0c =  Af.Ax.x 
l c = Af.Ax. fx  
2C =  Af .A x f  (fx)
3c =  Af .A x f  ( f  (fx))

nc = A f A x . f ( f  ( / •••))  x)
n

• The constant functions return a constant no matter what their pa­
rameters that is Cn(xi,x2, • • • , x k) =  nc. This can be represented 
by the lambda expression Ax1,x2, • • • , xk.nc,

• The projection functions takes a tuple of numbers as input and 
return an integer in this tuple, P k = (x1,x2, • • • , xk) = x i. This 
can be represented by the A expression Ax1x2 • • • x k.xi

• The successor function take an integer n as input and returns 
n + 1, that is, S(n) = n + 1 , this can be represented by the 
lambda expression Anc.Af.Ax.f (ncfx),

Com position, P rim itive Recusion, M inim ization

• Com position
The composition of function h with the functions g1,g2, • • • ,gm, 
where h is a (m-place) function, and each of g function is a k-place 
function. Then the composition is

f  (x1 , x 2 , • • • , xk) = h(g1 (x1 , x 2 , • • • , xk),g2(x1 , x 2 , • • • , xk), • • • ,gm(x1 , x 2, • • • , xk)). 

This can be represented by lambda expression

Ahg1g2 • • • gmx1x2 • • • xk.h(g1x^2 • • • xk)(g2x1 x  • • • xk) • • • (gmx1x2 • • • xk)
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• P rim itive Recursion pn(g, h) is the function f such that:

f  (0,xi,x2 ■■■ ,Xk ) =  g(xi,X2, ••• ,Xk )

f  (y + 1 , xi , X2 ■■■ , Xk) = h(y, f  (y , x i , x 2, ■■ ■ , xfc) , xi , x 2, ■■■ , xfc) 

This can be represented by the following lambda expression:

\ ghx1x2 ■■ ■ xn.Y(Xfx.Z(gx1x 2 ■■ ■ xn)(hx1x 2 ■■ ■ xn)(Px( f  (Px))))

where Y is fixed-point, P is the predecessor function and Z is used 
to test whether its argument is 0.

• M inim ization y ( f ) ( x1x 2 ■■ ■ xn) returns the smallest z such that

f  (xix2, ■■■ ,x,n,z) = 0

This can be represented by the following lambda expression: 

\ f x ix 2 ■■ ■ xn. (Y(Xhz.Z(fxix 2 ■■ ■ xnz)z(h(Sz)))Z) 

where S is Successor function
Now, we have shown that general recursive function can be re­
duced to lambda calculus.

3. lambda calculus can be reduced to Turing Machine.
Before thinking about the Turing machine itself, it is important to rep­
resent a A term in a way that makes their evaluation easy. In particular, 
we wish to avoid ^-conversion. De Bruijn indices allows us to do that.

De B ruijn  indices The unnamed A-calculus is defined as follows:

M  ::= n\AM\(MM)

where n -  natural numbers greater or equal to 0 are variables. The 
n indicates the position of the A binding this variable, starting from 
inside. For example:

Ax.Ay.x = AA1 Ax.(x x) = A(0 0)
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Encoding we use alphabet E =  (A, B, (,), 0 ,1 ,0 } , and translate a 
lambda-term M into a tape M in the following way.

{o if n is a free variable 
0  E  if n is a bound variable 

AM := AM 
(M N ) := (M) (N)

where E is the binary representation of the De Bruijn index of that 
occurrence. Consider M =  (Aq.q)(Aq.Ap.q), then its
De Bruijn form is (A0)(AA1), and our tape for this term is (A 0  0)(AA 0  1).
The Turing Machine (Mtm ) operates by iteratively performing the fol­
lowing step. Take the expression (Ax.Ay.xyy)(Ay.y)(Ax.x) as an exam­
ple, this expression can be transformed into (AA 0  1 0  0 0  0)(A 0  0)(A 0  0) 
as a input string for a TM (Mtm ).

Step 1: The (Mtm ) looks for the first pair of parenthesis. Here, first 
pair is in the sense of the first ( we find, combined with its close 
counterpart. If we cannot find a pair of parenthesis, the machine 
halts.

Step 2: Locate the second pair of parenthesis with the similar definition 
of step 1. If the second pair can not be found, then erase the first 
pair of parenthesis. Otherwise, erase the first occurrence of A and 
replace every occurrence of the bounded variable by the content 
inside the second pair (including the parenthesis), then erase the 
second pair of parenthesis and whatever inside it.

Step 3: Erase first parenthesis if no A can be found inside it (without 
looking nested parenthesis).

Step 4: Concatenate the left part and the right part. In the example, the 
tape becomes (A(A J  0) J  0 J  0)(A J  0)

Every time the sequence of steps is essentially a normalization step. So, 
(Mt m ) halts on M if and only if M is normalizing and the output will
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be the normal form of M. In this example, the tape evolves as follows: 

(AA K  1K  0 K  0)(A K  0)(A K  0)

(A(A O  0) K  0 K  0)(A O  0)

(A K 0)(A K 0)(A K 0)
(A K  0)(A k  0)
AK 0

Turing Machines can intrepte A — Calculus, and General recursive functions 
can be reduced to A — Calculus. Hence, a turing machine simular that can 
animate the computing process of Tuinr Machines, is not only beneficial for 
learning the concept of Turing Mchines, but also A — Calculus and General 
recursive function, and from a higher level, computable funcitons.
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3 Turing M achine Simulator
Turing Machines are imaginary devices for mathematical computation, which 
perform their computations by manipulating symbols on a finitely length of 
tape according to a set of transition functions. Turing machines are models 
that can simulate any computer algorithm no matter how complex it is.

Nowadays, Turing Machines are used to help people gain a better un­
derstanding of algorithms and how a computer works, which is why this 
simulator was created.

3.1 Code
Before going through the simulator’s functionality, it is imperative to provide 
the data structure to be used.

D ata  S truc tu re

• Node

class Node:
def _init__(self, letter):
self.letter = letter 
self.R = None 
self.L = None

# simulate ''cell’’ in the turing machine’s tape •

• Action

class Action:
def _init__(self, letter, go_to, state):

self.write_letter = letter \\ write letter 
self.go_to = go_to \\ movie direction 
self.next_state = state \\ next state 
self.length = len(letter + go_to + state)

# this will be used to calculate cells’ width
# of a transition table
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# which simulates instruction part of each transition rule

• Tape

# A turing machine takes a string as input
# and we use double linkedlist to simulate the tape 
class Tape:

def _init__(self, str1):
self.arrow_node = None 
self.length = 0 
self.constructor(str1)

def constructor(self, str1): 
if not str1:
raise RuntimeError(’input cannot be empty’) 

pre_node = None 
for char in str1: 

self.length += 1 
cur_node = Node(char) 
if self.arrow_node is None: 

self.arrow_node = cur_node 
if pre_node is not None: 

cur_node.L = pre_node 
pre_node.R = cur_node 

pre_node = cur_node

Utils

• parser

# simulator takes a file as input 
#to construct transition rules. 
def parse_tm(file): 

res = []
with open(file) as f: 

strs = f.read()
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rules = strs.split(";") 
for i in rules: 

rule = i.split() 
if len(rule) == 5: 
res.append(rule) 

return res

• tape printer

def print_tape(node):
while node.L is not None: 

node = node.L 
res = ""
while node is not None: 

if node.letter != "_": 
res += node.letter 
node = node.R 

print(res)
# this is used to print out the result given by
# a string running on a turing machine

M ain Function

— Construct transition table

def construct_transition_table(rules): 
init_state = None 
table = dict()

Since 8 is a transition function; 8 : Q x r  !  Q x r  x {Left,  Right}

for i in rules:
key = i[0] + "-" + i[1]

# i[0] for current state
# i[1] for reading letter

if init_state is None:
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init_state = i[0] 
if key not in table:
table[key] = Action(i[2], i[3], i[4])

# i[2] for writing letter
# i[3] for next state
# i[4] for moving direction

else:
print("Transition table exists key conflict ") 

return table

tm_file = sys.argv[1] 
init_state = sys.argv[2] 
tm_rules = parse_tm(tm_file)
# parse file to transition rules

def run_tm(rules, input_str, init_state=None): 
transitions = construct_transition_table(rules) 
stop = ["T", "F", "H"]

# terminate states
# T: accept, F: reject H: halt 

if init_state is None:
init_state = rules[0][0]

# if init_state is not provided,
# use current state in the first transition rule
# as initial state 

cur_state = init_state
# to record runing steps for turing machine 

step = 0
tm_tape = Tape(input_str)
arrow_node = tm_tape.arrow_node
cur_ins = cur_state + "-" + arrow_node.letter

# current instruction

while cur_state not in stop: 
step += 1
if cur_ins not in transitions: 
break
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arrow_node.letter = transitions[cur_ins].write_letter 
if transitions[cur_ins].go_to == "L": 

if arrow_node.L is None: 
arrow_node.L = Node("_") 
arrow_node.L.R = arrow_node
cur_ins = transitions[cur_ins].next_state + "-" \ 

+ arrow_node.L.letter
arrow_node = arrow_node.L 

else:
if arrow_node.R is None: 
arrow_node.R = Node("_") 
arrow_node.R.L = arrow_node
cur_ins = transitions[cur_ins].next_state + "-" \ 

+ arrow_node.R.letter
arrow_node = arrow_node.R 

cur_state = cur_ins[:cur_ins.index("-")] 
return step, cur_state 

# return steps and final state

The code above consists of core logic of building a turing simulator without 
GUI part.

3.2 Configure a tran sitio n  tab le
According to the transition funciton:

8 : Q x r  !  Q x r  x {Left,  Right}

A turing machine file is composed as below:

q0 * 1 R q0; q0 1 1 R q0; 
q0 _ _ R H; q0 0 * L q1; 
q1 1 1 L q1; q1 _ _ R q2; 
q1 0 0 R q2; q2 1 0 R q0; 
q2 0 0 R q2; q2 * 0 R q0; 
q2 _ _ R H; q1 * * R H;
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This is a turing machine which can be used to do simple sort, given a string 
in the alphabet £  =  {0,1}, yields a string all 0s are before 1s. A transition 
is defined by a tuple with 5 symbols(C, R, W, D, N ) where

• C: current state

• R: reading letter

• W: writing letter

• D: moving direction

• N: next state

“;” is used as delimiter to separate each transition.

3.3 Usage
Run python view.py <Your Turing M achine Configuration file>
through terminal. Once you entered this program, you will see an overview 
of this simulator as Figure 2:
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State: Step:

t
q i q3 q6 q2 q5 qO q4

2 2-R-H 2-R-q3 2-L-q6 2-R-H 2-L-q5 *-R-q3 #-L-q4

— _-R-q2 _-L-q4 _-R-H _-R-H _-R-qO _-R-H _-L-H

1 1-L-q1 1-R-q3 1-L-q6 O-R-qO 1-L-q5 1-R-qO #-L-q6

0 0-R-q2 0-R-q3 0-L-q6 0-R-q2 0-L-q5 *-L-q1 #-L-q5

* *-R-H *-R-H 1-R-qO O-R-qO *-L-q1 1-R-qO 2-R-qO

# #-R-H #-L-q4 #-R-H #-R-H #-R-H 2-R-qO #-R-H

Figure 2: Turing Machine Simulator Overview

Now we introduce each part of this simulation. Going from top to bottom:

S ta te : S te p :

t

Figure 3: Turing Machine Tape

first, as it shows in Figure 3 we see a tape with empty cells that are meant 
to be filled with letters from its alphabet E, in this case for turing machine 
doing color sort, which will a string all 1s in the middle, all 0s before 1s, all 
2s after 1s, given an input string composed by {0,1,2}.
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There is an fixed arrow which enables you to see the tape moving anima­
tion when the machine is executing your code.

q i q3 qe q2 q5 qO q4

2 2-R-H 2-R-q3 2-L-q6 2-R-H 2-L-q5 *-R-q3 #-L-q4

- _-R-q2 _-L-q4 _-R-H _-R-H _-R-qO _-R-H _-L-H

1 1-L-q1 1-R-q3 1-L-q6 O-R-qO 1-L-q5 1-R-qO #-L-q6

0 0-R-q2 0-R-q3 0-L-q6 0-R-q2 0-L-q5 *-L-q1 #-L-q5

* *-R-H *-R-H 1-R-qO O-R-qO *-L-q1 1-R-qO 2-R-qO

# #-R-H #-L-q4 #-R-H #-R-H #-R-H 2-R-qO #-R-H

Figure 4: Turing Machine Transition Table

A transition table in Figure 4 is used to show your transition rules of your 
turing machine.
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q3 qe q2 q5 qO q4

2 2-R-H 2-R-q3 2-L-q6 2-R-H 2-L-q5 *-R-q3 #-L-q4

- _-R-q2 _-L-q4 _-R-H _-R-H _-R-qO _-R-H _-L-H

1-R-q3 1-L-q6 O-R-qO 1-L-q5 1-R-qO #-L-q6

0 0-R-q2 0-R-q3 0-L-q6 0-R-q2 0-L-q5 *-L-q1 #-L-q5

* *-R-H *-R-H 1-R-qO O-R-qO *-L-q1 1-R-qO 2-R-qO

# #-R-H #-L-q4 #-R-H #-R-H #-R-H 2-R-qO #-R-H

Figure 5: Turing Machine Transition Table Highlighted

A transition rule is highlighted(Figure 5) while the machine is executing 
it.

Figure 6: Turing Machine Operation Box

Now we introduce the functionality of each part: input box,play, stop, 
next, changing speed, set arrow position(6). Let’s go over them one by one:

1. Inpu t Box:
This allows you to feed different inputs into this program at each run. 
After you give an input to this program, clicking OK will load your input 
to the tape.

2. Play
This is used to run the code and continue the turing machine after you 
enter Step M ode

3. T ransition Table
It shows the actual code of the turing machine. With hightlighted cell 
while the machine is ruining, it enables us to know which code snippet 
is running.
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4. N ext
This is used for taking one step forward. Once we load the code in the 
machine it will get clear. As an instructor, it’s quite useful to explain 
what is happening on the machine.

5. Arrow Position
It servers three main functionality.

(a) set up initial arrow position
It’s convenient to set up initial arrow position with just intuitive 
operations, instead of writing turing machine transition rules.

(b) moving position arrow after turing machine terminated can help 
us see the whole final output.

6. Speed
This allows you to change the moving speed of the arrow

7. Stop
This is used to terminate your program.
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4 Universal Turing M achine

4.1 Background
The Turing Machine Similator is a software that takes Turing Machine pro­
gram and the program’s input decription as its own input, and it animates 
the TM program’s computing process. Here, the Machine Simulator actu­
ally serves as a Universal Turing Machine. Before computers, there were no 
softwares avaiable. It brought a problem for Turing Machines. For each new 
computation task, a different Turing Machine must be created to serve the 
purpose. It is neither flexible nor cost-effective for hardwares. This is why 
Alan Turing created the idea of U niversal Turing M achine . A U niver­
sal Turing M achine(U TM ) is a Turing machine(TM) that can simulate 
an arbitrary TM on arbitrary input by taking description of the TM be­
ing simulated and its input as input and performing action based a set of 
transition functions.

4.2 Encoder
First, to create a description for a TM being simulated, it requires an encoder 
to UTM be able to recoginize this description. Here, we introduce how we 
encode (M) (Turing Machine) to a (M ) description and its input which are 
concatenated as a string that we can load it on (UTM) ’s tape.

1. Schema(structure)
We still use the same symbolism for (M) we introduced previously. 
We add Caret A to these symbols denote encoded symbols and other 
symbols such as ., : are used literally. A description should look like 
below:

Qr ' 4 4 .........4  :> U r tV .......... f m.

2. Encode TM alphabet
Binary encoding is used in general where

HE II =  \log2 IITIH
For example:

r  =  {b , o, 1 }
then

B =  oo 0 =  01 1 =  10
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3. Encode TM state set
The same encoding strategy is used for state set as encoding TM aphal- 
bet.

IIQ II =  Ro£2lMll
For example:

Q = {q0,ql,q2,q3}
then

qO =  00 q1 = 01 q2 = 10 q3 = l l

4. Encode moving direction

• 0:left
• 1:right

After encoding these parts, we place them in the schema structure, this makes 
a (UT M ) input. We can still set up initial arrow position, by adjusting the 
position of symbol A. The (M)color sort as in Figure 7 can be a good a 
example to explain the encoder.

Figure 7: Color sort transition rules

1. state set:

* : 000 1 : 001 _  : 010 0 : 001 2 : 110 #  : 101

2. alphabet set:

H : 001 q0 : 000 q1 : 010 q2 : 100 q3 : 011 q4 : 101 q5 : 110 q6 : 111
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3. description in Figure 8:

# 000000'0000000011000,0000010011000,0000100101001,0000110001010,0001000001011, 
0001011001000,0100010011010,0100100101100,0100110111100,0100000001001,0101011011001, 
0101001001001,1000110111100,1000000111000,1000100101001,1000010111000,1001011011001, 
1001001001001,0110110111011,0110010011011,0111001001011,0111011011101,0110100101101, 
0110000001001,1010111011110,1010011011111,1010001001000,1011011011001,1011001011101, 
1010100101001,1100110111110,1100010011110,1101001001110,1100000001010,1101011011001, 
1100100101000,1110110111111,1110010011111,1111001001111,1110000011000,1111011011001, 
1110100101001

Figure 8: Color sort transition description

4. input:

• original

> 20112011

• encoded input

> 100.011.001.001.100.011.001.001.

5. tape in Figure 9

# 000000 00000000H 000,0000010011000,0000100101001,0000110001010, 
0001000001011, 0001011001000, 0100010011010, 0100100101100, 0100110111100, 
0100000001001, 0101011011001, 0101001001001, 1000110111100, 1000000111000, 
1000100101001, 1000010111000, 1001011011001, 1001001001001, 0110110111011, 
0110010011011, 0111001001011, 0111011011101, 0110100101101, 0110000001001, 
1010111011110, 1010011011111, 1010001001000, 1011011011001, 1011001011101, 
1010100101001, 1100110111110, 1100010011110, 1101001001110, 1100000001010, 
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111, 
1110000011000, 1111011011001, 1110100101001: . 010>100. 011. 001. 001. 100. 011. 
001. 001. 010. 010. 010. 010. 010. 010.

Figure 9: initial UTM tape

4.3 Design
1. Fetch Letter Turing Machine
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P rocedure  Start from left end

Step 1: Go to the right find symbol >
Step 2: Go to the right to find the next symbol .
Step 3: Go back to left find first 0 or 1 replace them with x, y repectively. 

If find > before any 0, 1 do step7
Step 4: Go to the left find symbol '
Step 5: Go to the left find first 0 or 1 and replace them with x if we get 

x from step3, otherwise y.
Step 6: From this position do step1
Step 7: Find next .
Step 8: Go to the left reset all x,y to 0, 1

Transition Rules (Figure 10)

q0 0 0 R q0; q0 X X R q0; q0 y y R q0; q0 1 1 R q0; q0 , , R q0; q0 . . R q0; q0 ' ' R q0; q0 > > R ql; q0 R q0; q0 _ R q0;
ql > > R ql; ql X X R ql; ql y y R ql; ql 1 1 R ql; ql 0 0 R ql; ql . . L q2; ql ' ' R ql; ql . , R ql; ql R ql; ql _ R ql;
q2 0 X L q3; q2 1 y L q4; q2 X X L q2; q2 y y L q2; q2 > > R q7; q2 ' ' L q2; q2 , , R q2; q2 . R q2; q2 L q2; q2 _ R q2;
q3 0 0 L q3; q3 1 l L q3; q3 , , L q3; q3 ' L q5; q3 > > L q3; q3 . . L q3; q3 x x L q3; q3 y y L q3; q3 L q3; q3 _ R q3;
q4 0 0 L q4; q4 1 l L q4; q4 , , L q4; q4 ' L q6; q4 > > L q4; q4 . . L q4; q4 x x L q4; q4 y y L q4; q4 L q4; q4 _ R q4;
q5 0 X R q0; q5 1 X R q0; q5 X X L q5; q5 y y L q5; q5 > > R q5; q5 . . R q5; q5 , , R q5; qs ' R q5; q5 R q5; q5 I _ R q5;
q6 0 y R q0; q6 1 y R q0; q6 X X L q6; q6 y y L q6; q6 > > R q6; q6 . . R q6; q6 , * R q6; q6 ' R q6; q6 R q6; q6 _ _ R q6;
q7 x 0 R q?; q7 y i R q7; q7 0 0 R q7; q7 1 i R q7; q7 L q8; q7 , , R q7; q7 ' ' R q7; q7 > > R q7; q7 R q7; q7 _ _ R q7;
q8 x 0 L q8; q8 y i L q8; q8 0 0 L q8; q8 1 i L q8; q8 L q8; q8 , , L q8; q8 . . L q8; q8 > > L q8; q8 L q8; q8 _ _ R H;

Figure 10: Fetch letter TM

Exam ple

• Tape configruation when the machine starts(Figure 11)

# 000000' 0000000011000, 0000010011000, 0000100101001, 0000110001010, 
0001000001011, 0001011001000,0100010011010,0100100101100,0100110111100,
0100000001001, 0101011011001, 0101001001001, 1000110111100, 1000000111000,
1000100101001, 1000010111000, 1001011011001, 1001001001001, 0110110111011,
0110010011011, 0111001001011, 0111011011101, 0110100101101, 0110000001001,
1010111011110, 1010011011111, 1010001001000, 1011011011001, 1011001011101,
1010100101001, 1100110111110, 1100010011110, 1101001001110, 1100000001010, 
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111,
1110000011000, 1111011011001, 1110100101001: . 010>100. 011. 001. 001. 100.011
001. 001. 010. 010. 010. 010. 010. 010.

Figure 11: Color Sort Fetch letter TM Starts
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• Tape configruation when the machine halts(Figure 12)

# 000100' 0000000011000, 0000010011000, 0000100101001, 0000110001010, 
0001000001011, 0001011001000, 0100010011010, 0100100101100, 0100110111100,
0100000001001, 0101011011001, 0101001001001, 1000110111100, 1000000111000,
1000100101001, 1000010111000, 1001011011001, 1001001001001, 0110110111011,
0110010011011, 0111001001011, 0111011011101, 0110100101101, 0110000001001,
1010111011110, 1010011011111, 1010001001000, 1011011011001, 1011001011101,
1010100101001, 1100110111110, 1100010011110, 1101001001110, 1100000001010, 
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111,
1110000011000, 1111011011001, 1110100101001: . 010>100. 011. 001. 001. 100.011
001. 001. 010. 010. 010. 010. 010. 010.

Figure 12: Color Sort Fetch letter TM Ends

2. Match Instruction Turing Machine
instruction is a tuple (Q, r)  which decides the action of TM which is 
(Q, { le ft , right}, r )

P rocedure  Start from the left end

Step 1: Go to the right find first 0 or 1 and replace them with x, y repec- 
tively

Step 2: Go to the right find symbol ',  if cannot find any 
0 or 1, stop.

Step 3: Go to the right find first 0 or 1, and replace them with x, y 
repectively, if the symbol matches symbol from step 1, go back to 
the left end then, do step1. Otherwise, do step4.

Step 4: Mark all 0 and 1 with x, y until meet {, } or {:}. If {, } then go 
to the left find symbol { '} , otherwise stop(this means cannot find 
instruction in transition table in the sense of simulating a turing 
machine).

Step 5: Reset x, y to 0, 1 to the left end
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Transition Rules (Figure 13)

q0 0 x R ql; q0 1 y R q2; q0 x x R q0; q0 y y R q0; q0 ' ' R H; q0 , , R q0; q0 . . R q0; q0 : : R q0; q0 > > R q0; q0 ___ R q0;
ql x x R ql; ql 0 0 R ql; ql 1 1 R ql; ql y y R ql; ql ' ' R q3; ql , , R ql; ql . . R ql; ql : : R ql; ql > > R ql; ql _ R ql;
q2 0 0 R q2; q2 1 1 R q2; q2 x x R q2; q2 y y R q2; q2 ' ' R q4; q2 , , R q2; q2 . . R q2; q2 : : R q2; q2 > > R q2; q2 _ R q2;
q3 x x R q3; q3 y y R q3; q3 , , R q3; q3 0 x L q5; q3 1 y R q6; q3 ' ' R q3; q3 . . R q3; q3 : : R q3; q3 > > R q3; q3 _ R q3;
q4 x x R q4; q4 y y R q4; q4 , , R q4; q4 1 y L q5; q4 0 x R q6; q4 ' ' R q4; q4 . . R q4; q4 : : R q4; q4 > > R q4; q4 _ R q4;
q5 ' ' L q5; q5 x x L q5; q5 y y L q5; q5 , , L q5; q5 __  R q0; q5 0 0 L q5; q5 1 1 L q5; q5 : : L q5; q5 > > R q5; q5 . . L q5;
q6 0 x R q6; q6 1 y R q6; q6 , , L q7; q6 : : R H; q6 x x R q6; q6 y y R q6; q6 . . R q6; q6 > > R q6; q6 ' ' R q6; q6 ___ R q6;
q7 x x L q7; q7 y y L q7; q7 0 0 L q7; q7 1 1 L q7; q7 , , L q7; q7 . . L q7; q7 ; : L q7; q7 > > L q7; q7 ' ' L q8; q7 ___ L q7;
q8 x 0 L q8; q8 y 1 L q8; q8 ___ R q0; q8 0 0 L q8; q8 1 1 L q8; q8 . . L q8; q8 : : L q8; q8 > > L q8; q8 ' ' L q8; q8 , , L q8;

Figure 13: Match Instruction TM

Exam ple

• Tape configruation when the machine starts(Figure 14)

#  000100'0000000011000,0000010011000,0000100101001,0000110001010,

0001000001011, 0001011001000, 0100010011010, 0100100101100, 0100110111100, 
0100000001001, 0101011011001, 0101001001001, 1000110111100, 1000000111000, 
1000100101001, 1000010111000, 1001011011001, 1001001001001, 0110110111011, 
0110010011011, 0111001001011, 0111011011101, 0110100101101, 0110000001001, 
1010111011110, 1010011011111, 1010001001000, 1011011011001, 1011001011101, 
1010100101001, 1100110111110, 1100010011110, 1101001001110, 1100000001010,
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111, 
1110000011000, 1111011011001, 1110100101001: . 010>100. 011. 001. 001. 100. 011. 
001. 001. 010. 010. 010. 010. 010. 010.

Figure 14: Color Sort Match Instruction TM Starts

• Tape configruation when the machine halts(Figure 15)

# xxxyxx' xxxxxxxxyyxxx, xxxxxyxxyyxxx, xxxxyxxyxyxxy, xxxxyyxxxyxyx, 
xxxyxx0001011, 0001011001000,0100010011010,0100100101100,0100110111100, 
0100000001001,0101011011001, 0101001001001,1000110111100,1000000111000, 
1000100101001,1000010111000,1001011011001, 1001001001001,0110110111011, 
0110010011011,0111001001011,0111011011101,0110100101101, 0110000001001,
1010111011110, 1010011011111, 1010001001000, 1011011011001, 1011001011101, 
1010100101001, 1100110111110, 1100010011110, 1101001001110, 1100000001010,
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111,
1110000011000, 1111011011001, 1110100101001: . 010>100. 011. 001. 001. 100. 011. 
001. 001. 010. 010. 010. 010. 010. 010.

Figure 15: Color Sort Match Instruction TM Ends
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3. Write And Move Turing Machine

P rocedure  Start from right of the symbol '

Step 1: Go to right find first 0 or 1 and replace them with x, y repectively 
Step 2: Go to right find >
Step 3: Go to right find first 0 or 1 before {.} and replace them with x if 

fetched symbol from step 1 is 0, otherwise y. If cannot get 0 or 1 
before {.}, do step 5

Step 4: Go to left find the first x or y do step 1
Step 5: If fetched symbol from step 1 is 0, go to left to find >, replace it 

with {.}, then go to left again, find {.}, replace it with {>} and 
stop.
Else replace current symbol {.} with >, then go to left to find > 
and replace it with {.} and stop.

Transition Rules (Figure 16)

q0 0 x R ql; q0 1 y R q2; q0 x x R q0; q0 y y R q0; q0 , , R q0; q0 . . R q0; q0 : : R q0; q0 > > R q0; q0 ___ R q0; q0 ' ' R q0;
ql 0 0 R ql; ql 1 1 R ql; ql , , R ql; ql . . R ql; ql : : R ql; ql > > R q3; ql x x R ql; ql y y R ql; ql ___ R ql; ql ' ' R ql;
q2 0 0 R q2; q2 1 1 R q2; q2 , , R q2; q2 . . R q2; q2 : : R q2; q2 > > R q4; q2 x x R q2; q2 y y R q2; q2 ___ R q2; q2 ' ' R q2;
q3 x x R q3; q3 y y R q3; q3 0 x L q5; q3 1 x L q5; q3 . . L q6; q3 > > L q3; q3 : : L q3; q3 ' '  L q3; q3 ___ R q3; q3 , , L q3;
q6 x 0 L q6; q6 y 1 L q6; q6 0 0 L q6; q6 1 1 L q6; q6 > . L q6; q6 . > L H; q6 : : L q6; q6 ' ' L q6; q6 __  R q6; q6 , , L q6;
q4 x x R q4; q4 y y R q4; q4 0 y L q5; q4 1 y L q5; q4 . > L q8; q4 > > L q4; q4 : : L q4; q4 ' ' L q4; q4 __  R q4; q4 , , L q4;
q8 x 0 L q8; q8 y 1 L q8; q8 . . L q8; q8 0 0 L q8; q8 1 1 L q8; q8 > . L H; q8 : : L q8; q8 ' ' L q8; q8 __  L q8; q8 , , L q8;
q5 0 0 L q5; q5 1 1 L q5; q5 x x L q5; q5 y y L q5; q5 > > L q5; q5 . . L q5; q5 : : L q7; q5 , , L q5; q5 ___ L q5; q5 ' ' L q5;
q7 0 0 L q7; q7 1 1 L q7; q7 x x R q0; q7 jj y R q0; q7 , , L q7; q7 ' ' R q0; q7 : : L q7; q7 . . L q7; q7 ___ L q7; q7 > > L q7;

Figure 16: Write And Move Letter TM 
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Exam ple

• Tape configruation when the machine starts(Figure 17)

# xxxyxx' xxxxxxxxyyxxx, xxxxxyxxyyxxx, xxxxyxxyxyxxy, xxxxyyxxxyxyx, 
xxxyxx0001011, 0001011001000,0100010011010,0100100101100,0100110111100, 
0100000001001,0101011011001, 0101001001001,1000110111100,1000000111000, 
1000100101001,1000010111000,1001011011001, 1001001001001,0110110111011, 
0110010011011,0111001001011,0111011011101,0110100101101, 0110000001001, 
1010111011110,1010011011111,1010001001000,1011011011001,1011001011101, 
1010100101001,1100110111110,1100010011110,1101001001110,1100000001010,
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111, 
1110000011000, 1111011011001, 1110100101001: . 010>100. 011. 001. 001. 100. 011. 
001. 001. 010. 010. 010. 010. 010. 010.

Figure 17: Color Sort Write And Move TM Starts

• Tape configruation when the machine halts(Figure 18)

# xxxyxx' xxxxxxxxyyxxx, xxxxxyxxyyxxx, xxxxyxxyxyxxy, xxxxyyxxxyxyx, 
xxxyxx0001011, 0001011001000,0100010011010,0100100101100,0100110111100, 
0100000001001,0101011011001, 0101001001001,1000110111100,1000000111000, 
1000100101001,1000010111000,1001011011001, 1001001001001,0110110111011, 
0110010011011,0111001001011,0111011011101,0110100101101, 0110000001001, 
1010111011110,1010011011111,1010001001000,1011011011001,1011001011101, 
1010100101001,1100110111110,1100010011110,1101001001110,1100000001010,
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111, 
1110000011000, 1111011011001, 1110100101001: . 010>100. 011. 001. 001. 100. 011. 
001. 001. 010. 010. 010. 010. 010. 010.

Figure 18: Color Sort Write And Move TM Ends

4. Update State Turing Machine

P rocedure  Start at > or from the left first{.} of >

Step 1: Go to the left find symbol {:}
Step 2: Go to the left find the first x or y
Step 3: Go to the right find first 0 or 1 before symbol {:}, if meet {:} 

stop, otherwise go to right.
Step 4: go to the left if the left symbol x or y, go to the right replace 

0, 1 with 0, 1 repectively.
Step 5: Go to left end (for simplicity)
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Step 6: Go to right to find first 0 or 1 before and replace them with x if 
fetched symbol from step 1 is 0, otherwise y.

Step 7: Go to right to find symbol ' ,  then do step3 

Transition Rules (Figure 19)

q0 0 0 L q0; q0 1 1 L q0; q0 . . L q0; q0 : : L q0; q0 > > L q0; q0 x x R ql; q0 y y R ql; q0 ' ' L q0; q0 __  L q0; q0 , , L q0;
ql 0 x L q2; ql 1 y L q3; ql , , R H; ql : : R H; ql x x R q4; ql y y R ql; ql > > R ql; ql . . R ql; ql ___ R ql; ql ' ' R ql;
q2 x x L q2; q2 y y L q2; q2 , , L q2; q2 ' ' L q2; q2 0 0 L q2; q2 1 1 L q2; q2 ___ R q4; q2 . . R q2; q2 > > R q2; q2 : : R q2;
q3 x x L q3; q3 y y L q3; q3 , , L q3; q3 ' ' L q3; q3 0 0 L q3; q3 1 1 L q3; q3 ___ R q5; q3 . . R q3; q3 > > R q3; q3 : : R q3;
q4 0 0 R q4; q4 1 1 R q4; q4 x 0 R q6; q4 y 0 R q6; q4 ' ' R q4; q4 , , R q4; q4 . . R q4; q4 > > R q4; q4 _ R q4; q4 : : R q4;
q5 0 0 R q5; q5 1 1 R q5; q5 x 1 R q6; q5 y 1 R q6; q5 ' ' R q5; q5 , , R q5; q5 . . R q5; q5 > > R q5; q5 _ R q5; q5 : : R q5;
q6 x x R q6; q6 y y R q6; q6 ' ' R q6; q6 , , R q6; q6 0 0 L q0; q6 1 1 L q0; q6 : : L H; q6 __  R q6; q6 > > R q6; q6 . . R q6;

Figure 19: Update State TM 
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E xam ple

• Tape configruation when the machine starts(Figure 20)

# xxxyxx' xxxxxxxxyyxxx, xxxxxyxxyyxxx, xxxxyxxyxyxxy, xxxxyyxxxyxyx, 
xxxyxx0001011, 0001011001000,0100010011010,0100100101100,0100110111100,
0100000001001,0101011011001, 0101001001001,1000110111100,1000000111000,
1000100101001,1000010111000,1001011011001, 1001001001001,0110110111011,
0110010011011,0111001001011,0111011011101,0110100101101, 0110000001001,
1010111011110,1010011011111,1010001001000,1011011011001,1011001011101,
1010100101001,1100110111110,1100010011110,1101001001110,1100000001010, 
1101011011001, 1100100101000,1110110111111,1110010011111,1111001001111,
1110000011000,1111011011001, 1110100101001:.010>100.011.001.001.100.011
001.001.010.010.010.010.010.010.

Figure 20: Color Sort Update TM Starts

• Tape configruation when the machine halts(Figure 21)

# 01 lyxx' xxxxxxxxyyxxx, xxxxxyxxyyxxx, xxxxyxxyxyxxy, xxxxyyxxxyxyx, 
xxxyxxxxxyxyy, 0001011001000,0100010011010,0100100101100,0100110111100,
0100000001001,0101011011001, 0101001001001,1000110111100,1000000111000,
1000100101001,1000010111000,1001011011001, 1001001001001,0110110111011,
0110010011011,0111001001011,0111011011101,0110100101101, 0110000001001,
1010111011110,1010011011111,1010001001000,1011011011001,1011001011101,
1010100101001,1100110111110,1100010011110,1101001001110,1100000001010, 
1101011011001, 1100100101000,1110110111111,1110010011111,1111001001111,
1110000011000,1111011011001, 1110100101001:.010.100>011.001.001.100.011
001.001.010.010.010.010.010.010.

Figure 21: Color Sort Update TM Ends

5. Clean markers (Figure 22)

# 011100' 0000000011000, 0000010011000, 0000100101001, 0000110001010, 
0001000001011, 0001011001000, 0100010011010, 0100100101100, 0100110111100,
0100000001001, 0101011011001, 0101001001001, 1000110111100, 1000000111000,
1000100101001, 1000010111000, 1001011011001, 1001001001001, 0110110111011,
0110010011011, 0111001001011, 0111011011101, 0110100101101, 0110000001001,
1010111011110, 1010011011111, 1010001001000, 1011011011001, 1011001011101,
1010100101001, 1100110111110, 1100010011110, 1101001001110, 1100000001010, 
1101011011001, 1100100101000, 1110110111111, 1110010011111, 1111001001111,
1110000011000, 1111011011001, 1110100101001: . 010. 100>011.001. 001. 100.011
001.001.010.010.010.010.010.010.

Figure 22: Final Tape

These four examples show how a Universal Turing Machine simulates 
for another Turing Machine for its one step Computation. At the be­
ginning, we have initial state q0, reading letter 2, write letter *, moving
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right, enter state q3. Before the Universal Turing Machine runs, on the 
left of its tape, we have state q0 represented by 000. When it begins 
running, the arrow > points 100 which represents 2 according to its 
encoded code {100 : 2}. After simulating one step of that Turing Ma­
chine, . The arrow > moved to the next {.} and points 011 which 
represents 0 here(Note the input is 20112011). Now, look at the left 
3 letters of the symbol >, we have 000 for * in the original Turing 
Machine. Now, left tape ends up with 011100, the first 3 letters rep­
resent the original Turing Machine state, also according to its encoded 
code, it represents q3({011 : q3}). This is exactly what we want for the 
transition rule q0, 2, *,R,q3

6. Creating UTM with 4 TMs above

P rocedure  With the four Turing Machines we showed above. Arrow 
starts at the left most position.

Step 1: Run Fetch Letter Turing Machine with current Turing Machine 
configuration.

Step 2: Run Match Instruction Turing machine with the end configura­
tion by running Fetch Letter Turing Machine. If this machine 
stops at its own step 4, then the Universal Turing Machine stops. 
Otherwise, do next step.

Step 3: Run Write And Move Turing Machine with the end configuration 
by running Match Instruction Turing machine.

Step 4: Run State Update Turing machine with the end configuration by 
running Write And Move Turing Machine.

Step 5: Reset every x, y to 0, 1, then go to the left most symbol, pass end 
configuration to Fetch Letter Turing Machine, do step 1.
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Transition Rules (Figure 23 and Figure 24)

ql > > R ql; ql x x R ql; ql y y R ql; ql 1 1 R ql; ql 0 0 R ql; ql . . L q2; ql ' ' R ql; ql , , R ql; ql : : R ql; ql _ R ql;
q2 0 x L q3; q2 1 y L q4; q2 x x L q2; q2 y y L q2; q2 > > R q7; q2 ' ' L q2; q2 , , R q2; q2 . . R q2; q2 : : L q2; q2 _ R q2;
q3 0 0 L q3; q3 1 1 L q3; q3 , , L q3; q3 ' ' L q5; q3 > > L q3; q3 . . L q3; q3 x x L q3; q3 y y L q3; q3 : : L q3; q3 _ R q3;
q4 0 0 L q4; q4 1 1 L q4; q4 , , L q4; q4 ' ' L q6; q4 > > L q4; q4 . . L q4; q4 x x L q4; q4 y y L q4; q4 : : L q4; q4 _ R q4;
q5 0 x R q0; q5 1 x R q0; q5 x x L q5; q5 y y L q5; q5 > > R q5; q5 . . R q5; q5 , , R q5; q5 ' ' R q5; q5 : : R q5; q5 _ R q5;
q6 0 y R q0; q6 1 y R q0; q6 x x L q6; q6 y y L q6; q6 > > R q6; q6 . . R q6; q6 , , R q6; q6 ' ' R q6; q6 : : R q6; q6 _ R q6;
q7 x 0 R q7; q7 y 1 R q7; q7 0 0 R q7; q7 1 1 R q7; q7 . . L q8; q7 , , R q7; q7 ' ' R q7; q7 > > R q7; q7 : : R q7; q7 _ R q7;
q8 x 0 L q8; q8 y 1 L q8; q8 0 0 L q8; q8 1 1 L q8; q8 ' ' L q8; q8 , , L q8; q8 . . L q8; q8 > > L q8; q8 : : L q8; q8 _ R q9;

Figure 23: UTM Part 1

qi 0 x R qj; qi 1 y R qk; qi x x R qi; qi y y R qi; qi , , R qi; qi . . R qi; qi : : R qi; qi > > R qi; qi ___  R qi; qi ' ' R qi;
qj 0 0 R qj; qj 1 1 R qj; qj , , R qji qj . . R qj; qj : : R qj; qj > > R ql; qj x x R qj; qj y y R qj; qj _ _  R qj; qj ' ' R qji
qk 0 0 R qk; qk 1 1 R qk; qk , , R qk; qk . . R qk; qk : : R qk; qk > > R qm; qk x x R qk; qk y y R qk; qk _ R qk; qk ' ' R qk;
ql x x R ql; ql y y R ql; ql 0 x L qn; ql 1 x L qn; ql . . L qo; ql > > L ql; ql : : L ql; ql ' ' L ql; ql _ R ql; ql , , L ql;
qo x 0 L qo; qo y 1 L qo; qo 0 0 L qo; qo 1 1 L qo; qo > . L qo; qo . > L qr; qo : : L qo; qo ' ' L qo; qo _ R qo; qo , , L qo;
qm x x R qm; qm y y R qm; qm 0 y L qn; qm 1 y L qn; qm . > L qq; qm > > L qm; qm : : L qm; qm ' ' L qm; qm _ R qm; qm , , L qm;
qq x 0 L qq; qq y 1 L qq; qq . . L qq; qq 0 0 L qq; qq 1 1 L qq; qq > . L qr; qq : : L qq; qq ' ' L qq; qq _ L qq; qq , , L qq;
qn 0 0 L qn; qn 1 1 L qn; qn x x L qn; qn y y L qn; qn > > L qn; qn . . L qn; qn : ; L qp; qn , , L qn; qn _ L qn; qn ' ' L qn;
qp 0 0 L qp; qp 1 1 L qp; qp x x R qi; qp y y R qi; qp , , L qp; qp ' ' R qi; qp : : L qp; qp . . L qp; qp ___  L qp; qp > > L qp;

qr 0 0 L qr; qr 1 1 L qr; qr . . L qr; qr : : L qr; qr > > L qr; qr x x R qs; qr y y R qs; qr ' ' L qr; q r _L qr; qr , , L qr;
qs 0 x L qt; qs 1 y L qu; qs , , R qy; qs : : R qy; qs x x R qv; qs y y R qs; qs > > R qs; qs . . R qs; qs ___ R qs; qs ' ' R qs;
qt x x L qt; qt y y L qt; qt , , L qt; qt ' ' L qt; qt 0 0 L qt; qt 1 1 L qt; q t _R qv; qt . . R qt; qt > > R qt; qt : : R qt;
qu x x L qu; qu y y L qu; qu , , L qu; qu ' ' L qu; qu 0 0 L qu; qu 1 1 L qu; qu _ R qw; qu . . R qu; qu > > R qu; qu : : R qu;
qv 0 0 R qv; qv 1 1 R qv; qv x 0 R qx; qv y 0 R qx; qv ' ' R qv; qv , , R qv; qv . . R qv; qv > > R qv; qv _ R qv; qv : : R qv;
qw 0 0 R qw; qw 1 1 R qw; qw x 1 R qx; qw y 1 R qx; qw ' ' R qw; qw , , R qw; qw . . R qw; qw > > R qw; qw ___  R qw; qw : : R qw;
qx x x R qx; qx y y R qx; qx ' ' R qx; qx , , R qx; qx 0 0 L qr; qx 1 1 L qr; qx : : L qr; qx _ R qx; qx > > R qx; qx . . R qx;

qy 0 0 L qy; qy 1 1 L qy; qy x 0 L qy; qy y 1 L qy; qy , , L qy; qy . . L qy; qy : : L qy; qy ' ' L qy; qy > > L qy; qy _ R q0;

Figure 24: UTM Part 2

4.4 Usage and Exam ple
Mathematicians and computer scientists usually describe a Universal Turing 
Machine in the following format.

{Mutm)((Mtm),x) = (Mtm)(x)

In this case, users need to encode (Mtm) and its input x, then run these two 
inputs on (Mutm). The program has implemented a subroutine for users to 
encode inputs. Users only need to provide a Turing Machine transition rules 
and its input for this UTM.
Through terminal, run python u tm .py <Y our transition  file> <Y our 
input for your Turing M achine>. For example, 
python u tm .py co lo r_ so rt.tm  ’>20112011’
The quote for input for the input is required, since “> ” is a keyword in most 
shells, such as bash, and zsh. ‘> ’ is used to specify the arrow’s location on 
a Turing Machine. If users would like to have some space on both sides of 
the input string add “_ ” to them, like this “_____ > 20112011______ ” This
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UTM program by default does not provide an animation for simulating a 
Turing Machine program(If a user really wants to see an animation process, 
he can use the encoder provided in this project, then get the encoded string 
and run command view.py utm.tm through terminal, next copy this string 
into GUI input box), since it will take too long to show this whole process. 
After the UTM program terminated, it will provide the information as below.

U TM  R esult Inform ation (Figure 25)

--------------------------- tm - in fo -----------------------------
tm - in p u t tape :
20112011 
tm -ou tpu t tape:
00111122 
tm -ou tpu t s te p s:45
------------------------- u tm - in fo -----------------------------
encod ing  map: ' 000' ,  ' 1 ' :  ' 001\  ' 010' ,  ' 0 ' :  ' 011' ,  ' 2 ' :  ' 100' ,  '# ':  ' 101' ,  ' q0 ' : ' 000 ' ,  *H': ' 001' ,  ' q l ' :  ' 010 ' ,  ' q3 ':  ' 011' ,  ' q2 ' :  ' 100' ,  'q4 '
: ' 101' ,  'q S 1: ' 110' ,  ' q6 ' :  ' 111'}
re v e rse  s ta t e  map: { '000' :  'q 0 ' ,  ' 001 ' :  'H ' ,  ' 010' :  ' q l ' ,  '011 *: 'q 3 \  ' 100' :  ' q2 ' ,  ' 101' :  'q4 ' ,  ' 110' :  ' q5 ' ,  ' 111' :  'q6 ’ >
re v e rse  le t t e r  map: { ' 000' :  ' 001 ' :  ' 1 ' ,  ' 010' :  ' 011' :  ' 0 ' ,  ' 100' :  ' 2 ' ,  ' 101' :  '# '}
u tm -in pu t tape:
000000' 0000000011000, 0000010011000, 0000100101001, 0000110000010, 0001000001011, 0001011001000, 0100010010010, 0100100101100, 0100110111100, 0100000001001,01010110 
11001, 0101001001001, 1000110111100, 1000000111000, 1000100101001, 1000010111000, 1001011011001, 1001001001001, 0110110111011, 0110010011011, 0111001001011,011101101 
0101, 0110100100101, 0110000001001, 1010111010110, 1010011010111, 1010001001000, 1011011011001, 1011001010101, 1010100100001, 1100110110110, 1100010010110,1101001000 
110, 1100000000010, 1101011011001, 1100100101000, 1110110110111, 1110010010111, 1111001000111, 1110000011000, 1111011011001, 1110100101001:•010>100. 011. 001. 001. 100. 
011. 001. 001. 010. 010. 010. 010. 010. 010. 010. 010. 010. 010. 
u tm -output tape:X01010" xxxxxxxxyyxxx , xxxxxyxxyyxxx , xxxxyxxyxyxxy , xxxxyyxxxxxyx , xxxyxxxxxyxyy , xxxyxyyxxyxxx , xyxxxyxxyxxyx , xyxxyxxyxyyxx , xyxxyyxyyyyxx , xyxxxxxxxyxxy , xyxyxyyx 
yyxxy , xyxyxxyxxyxxy , yxxxyyxyy yy xx , yxxxxxxyyyxxx , yxxxyxxyxyxxy , yxxxxyxyyyxxx , yxxyxyyxyyxxy , y xx y x xy x xy x xy .x yyxyyxyyyxyy ,xyyxxyxxyyxyy , xyyyxxyxxyxyy .xyyyxyyxy  
xyx y , xyyxyxxyxxyxy , xyyxxxxxxyxxy , yxyxyyyxyxyyx , yxyxxyyxyxyyy , yxyxxxyxxyxxx , yxyyxyyxyyxxy , yxyyxxyxyxyxy , yxyxyxxyxxxxy , yyxxyyxyyxyyx , yyxxxyxxyxyyx , yyxyxxyxxx 
yyx,yy x xx x xx xx x y x ,y y x y xy y xy y x xy , y y xx y xx yxyxxx ,yyyxyyxyyxyyy ,yyyxxyxxyxyyy , yyyyxxyxxxyyy , y y y xxxxxyyxxx ,yyyyxyyxyyxxy , y y y xyxxyxyxxy : .010.011.011.001.001.001. 001.100.100.010>010.010.010.010.010.010.010.010.010. 
u tm -output s te p s:1200143

Figure 25: UTM Info

The steps of running the original Turing Machine and the Universal Turing 
Machine are provided to show how much efforts it takes for UTM to simulate 
a Turing machine given by specific inputs. Also, letter map and state map are 
provided in reverse direction of our encoding system, to help to check if the 
UTM output can interpret the original Turing Machine’s terminated configu­
ration. In UTM output tape, everything after {:} represents what left on the 
original Turing Machine when it halts. Moreover, the most left three letters 
on UTM tape represent the final state. According to the letter map and state 
map provided above, after translating it back, the result is the same as the one 
being simulated. For tape, we have 011.011.001.001.001.001.100.100.010 > 
which can map to 00111122 and arrow ended up at the right of the blank 
cell. For the state, we have x01 interpreted as 001, which presents H in the 
original Turing Machine.
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5 Observation

A Turing machine is an abstract computer.It use a tape which works like 
memory to store inputs and outputs. Also, it contains a set of transition 
functions which is the same concept as CPU instruction set. A Turing ma­
chine perform its action based on its transition functions, and a computer 
does its tasks based on its instructions from a operating system and data in 
memory.
In our example, it takes 1200143 steps for our

Universal Turing Machine to get the same job done by the original Turing 
Machine with 45 steps. Formally, consider a TM with |r | =  n and |Q| = m  
given arbitary input with the length of k. In our UTM, the tape length for 
this machine will be logn + logm + 1 + lognlogm(2logmn + 2) + 2 + (k + 1 )logn, 
since a Turing Machine Program P description is fixed, we can take k as 
the length for this UTM. Also, stages for Match Instruction and Update 
State never go through input description part on UTM tape, we take them 
out of our consideration. Then, stage for Restore, Fetch, Write take O(k), 
O(log(n)k), O(log(n)k). Overall, it takes O(k) for this UTM to simulate 
one step computation of a Turing Machine since logn is fixed. If it takes 
time t for a TM being simulated to finish its computation task, then it takes 
O(tk) for UTM to complete the simulation. And This different computing 
cost can be a good explanation of why Interpreting languages(code runs on 
a virtual machine) such as python, javascript, php are cross-platform and 
slower, while executable files from compling languages(complied code runs 
on a operating system) such as c, c+—+, go do not run on different operating 
systems, but faster.
Note Java is also a Interpreting language from this point of view. Next, 
we compare C + + and Java to illustate the difference. First, consider the 
process of a c + + program compilation.

• Processing:
Copy the content from header files to the source file, replace constants 
with customized symbols defined by key word # define in the source 
file

• Compiling: ComplieD code in the source file into assembler code. •

• Assembling: Assemble the code into the object code for a specific
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platform

• Linking: Object code file is used to produce an executable file.

Notice all OS are different, so the compiled code is different. Moreover, 
each OS has different CPU instruction set architecture to interpret the final 
binaries, and the same binaries may have different meanings on different 
instruction set architecture, as it for different Turing Machines-faster but 
not portable.

With java, things are different. Its virtual machine-JVM plays the role 
of such OS and hardware abstraction. JVM is not a library. Instead, it is 
a whole platform working on top of native OS, and its implementation is 
different for different OS. A Java compiler does not compile a Java program 
into CPU instructions. It compiles a program to the instructions of the 
virtual machine, byte-code. Also, the virtual machine interprets byte-code 
instructions as native code and executes it, in the sense that a Univeral Turing 
machine interprets a Turing Machine’s description and its input(byte-code) 
as the Turing Machine runs for its input(native code)-portable yet slower.
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6 Conclusion and future work

In this thesis, a Turing Machine Simulator was built to serve a visual educa­
tional aid for computability theory teaching and learning. Also a Universal 
Turing Machine was created to present the core idea about how a Turing Ma­
chine can simulate another Turing Machine. It shows how a computer and 
algorithm work in the aspect of the computation model. Also, it uses the 
difference in computing performance between Java and C + + as an exam­
ple, explains why a compiling programming language is generally faster than 
an interpreting language. Computer science origins from these computation 
models we discussed. Learning computation models is an essential step for 
building up an architecture of knowledge for computer science. Looking at 
computer science with “computing” in mind, not only helps students find 
the solution when they encounter some problem but also builds their muscle 
to seek the ‘solution.’ for creating solutions - “Meta-Solution”. This thesis 
presents a simulator for the original Alan Turing’s machine to show how a 
single tape Turing Machine works. Multi-tapes Turing Machine simulator 
can be built to show how multi-tapes Turing The machine completes a com­
puting task. How it is different from a single tape Turing Machine. Also, a 
Non-deterministic Turing Machine is beneficial for the understanding of time 
complexity for an algorithm. Think about one of the most critical questions 
in computer science-P =  NP?. NP is a set of questions that are defined by a 
non-deterministic Turing Machine. Presenting how different Turing Machine 
variants yield the same result for the problem in a visual animation manner 
can be very helpful for students to gain an understanding of why these mod­
els are equivalent. Turing Machine is a milestone of computability theory, 
but now all of it. A visual tool for deterministic finite automata(DFA), a 
Regular Expression -  DFA converter, a Lambda interpreter, and Lambda -  
Turing Machine converter, all have a significant meaning for a computability 
theory class.

45



References

[1] Wilhelm Ackermann and David Hilbert. Grundzuge der theoretischen 
logik. Berlin, Springer, 1037(23):4, 1928.

[2] Otto Blumenthal. David hilbert. Naturwissensehaften, 10(4):67-72, 
1922.

[3] George S Boolos, John P Burgess, and Richard C Jeffrey. Computability 
and logic. Cambridge university press, 2002.

[4] Jonathan P Bowen. The impact of alan turing: Formal methods and 
beyond. In International Summer School on Engineering Trustworthy 
Software Systems, pages 202-235. Springer, 2018.

[5] Alonzo Church. An unsolvable problem of elementary number theory. 
American journal of mathematics, 58(2):345-363, 1936.

[6] Herbert B Enderton. A mathematical introduction to logic. san diego 
(calif.)[etc.], 2002.

[7] Kurt Godel. Die vollstandigkeit der axiome des logischen funktio- 
nenkalkuls. Monatshefte fur Mathematik, 37(1):349-360, 1930.

[8] Kurt Godel. Zur intuitionistischen arithmetik und zahlentheorie. Ergeb- 
nisse eines mathematischen Kolloquiums, 4(1933):34-38, 1933.

[9] J Roger Hindley and Jonathan P Seldin. Lambda-calculus and Combi- 
nators, an Introduction, volume 13. Cambridge University Press Cam­
bridge, 2008.

[10] Stephen Cole Kleene. A theory of positive integers in formal logic. part 
i. American journal of mathematics, 57(1): 153-173, 1935.

[11] Dexter C Kozen. Automata and computability. Springer Science A Busi­
ness Media, 2012.

[12] Andrei Markov. Impossibility of certain algorithms in the theory of 
associative systems. Journal of Symbolic Logic, 13:52-53, 1948.

[13] Soltys-kulinicz Michael. Introduction To The Analysis Of Algorithms, 
An. World Scientific, 2018.

46



[14] Emil L Post. Finite combinatory processes—formulation 1. The Journal 
of Symbolic Logic, 1(3): 103—105, 1936.

[15] Michael Sipser et al. Introduction to the Theory of Computation, vol­
ume 2. Thomson Course Technology Boston, 2006.

[16] Alan Mathison Turing. On computable numbers, with an application 
to the Proceedings of the London mathematical 
society, 2(1):230-265, 1937.

47


