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Abstract

Central place foraging algorithms for multiple robots are gaining 
attention due to their performance and efficiency in various applica­
tions like planetary surveys, mining, object transportation and ma­
nipulation. In foraging tasks, multiple robots search for resources and 
deposit the collected resources to a particular location called “nest” 
or “home” . If the resources are deposited at a central single collec­
tion point, it becomes a central place foraging task. The performance 
of central place foraging approaches is reduced due to reactive inter­
robot collision avoidance. The performance decreases in two cases, 
first case is when two or more robots collect the resources from the 
same cluster and go to the central location for deposition and the sec­
ond case is when the path of one robot going to nest from its search 
position or vice versa intersects with the path of another robot search­
ing for resources. The approach proposed in this thesis is called Path 
Planning And Collision Avoidance Algorithm For Clustered Central 
Place Foraging (PPCA-CCPFA). PPCA-CCPFA concentrates on im­
proving the performance of central place foraging task in terms of 
reducing the number of inter robot collisions and improving target 
collection in given time for clustered resource distributions. We com­
pare our approach to the popular Distributed Deterministic Spiral 
Algorithm (DDSA). The proposed algorithm detects inter robot col­
lision and finds an alternate collision free path for a robot in case 1 
and adds a delay time for a robot in case 2. This approach has shown 
notable increase in the performance of DDSA with a single 8 x 8 re­
source cluster. This algorithm is tested on a single cluster resource 
distribution at random locations in the arena for a swarm size of 3 to 
15 robots.
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1 Introduction

Swarm Intelligence (SI) [3] is a fundamental discipline that deals with co­

ordination of several individual entities to complete a task. The concept 

focuses on local interactions of the individual entities with each other and 

with the environment they are in. The individual entities are not under any 

supervision and are self organized [4]. Swarm Intelligence mainly studies the 

group behavior and interaction between individual agents for flocks of birds 

[5, 6], colonies of ants [5, 7] and termites [5, 8], bee hives [5, 9], schools of fish 

[5, 10], herd of land animals [5, 11], human colonies [5, 12] and proliferation 

of bacteria [5, 13]. These examples simulate the social behavior and collective 

intelligence rather than individual structure of the colonies. Over the past 

two decades, researchers have developed accurate mathematical models and 

techniques to describe the behavior of social insects to solve business issues 

and optimize business solutions. It has now become an important aspect in 

different fields like artificial intelligence, economics, sociology and biology to 

complete complex tasks through cooperation and division of labor [2].

Swarm Intelligence Systems usually consist of simple interactive individ­

ual agents governed by a set of rules. Intelligent behavior is observed as 

the swarm agents interact locally without global knowledge of the environ­

ment. Complex tasks are easily and efficiently completed by swarms that 

are decentralized. Thus, swarms provide scalable and efficient solutions to 

complex tasks as compared to an individual agent performing that task [2].
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Swarm Intelligent Systems provide robustness and flexibility at lower costs 

as compared to a single robot.

Swarm robotics is a field inspired from Swarm Intelligence, where multi­

ple robots are coordinated and distributed in a decentralized manner. The 

collective behavior is observed through the interaction between simple robots 

and with the environment that they are in. The swarm shows high efficiency, 

parallelism, scalability and robustness as compared to individual agents for 

accomplishing a complex task [2]. Robot swarms can perform complex tasks 

with distributed actions and have higher fault tolerance as any single failure 

of a certain robot in the group does not affect the performance of the entire 

swarm. The main drawback of robot swarms is that its performance is de­

creased due to interference of robots i.e. inter robot collision [14]. Algorithms 

like path planning, foraging, pattern formation, etc. are used to help robot 

swarms perform complex tasks.

Foraging algorithms for robot swarms are designed for search or explo­

ration problems and are used as a benchmark for swarm robotics performance 

evaluation [15]. In the foraging algorithms, the robot swarm searches a par­

ticular area for certain resources. When the searched resources are required 

to be transported to a central location, these algorithms are called central 

foraging algorithms. Some of the applications for foraging algorithms are 

planetary exploration and crop harvesting [16, 17]. The performance of for­

aging algorithms is usually defined by the collection of resources and the 

duration needed to collect those resources. Though robot swarms are ef­
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ficient for foraging tasks, the performance of foraging tasks is significantly 

affected by the swarm size. Previous research [16, 18] has showed that the 

performance of foraging algorithms have reduced when the size of swarm 

exceeds a certain number of robots. This decrease in the performance of 

foraging algorithms is associated with interference of robots in the swarm. 

The robots either miss detection of the resources or take more time to collect 

the resource because of inter robot collision.

Path Planning problems are critical for robot swarms in order to increase 

the performance and duration of the foraging task with the increase in the 

count of robots in the swarm. Path Planning finds a collision free path for 

a robot whose initial and target position are known. One approach for path 

planning is to plan the paths of every robot in swarm independently and 

then coordinate their paths. Another approach is to sequentially plan the 

path based on the priority of the robot in the swarm [19].

In this thesis, path planning and collision avoidance is integrated with an 

existing central place foraging algorithm to improve its performance. Dis­

tributed Deterministic Search Algorithm (DDSA) is a central foraging al­

gorithm that generalizes the spiral search pattern for robot swarms of any 

number of robots [16]. The DDSA has three characteristics: 1) it is simple 

and deterministic; 2) it collects all the resources closer to the nest i.e. central 

location first; 3) it achieves complete coverage minimum resampling of the 

search area in error free case. The DDSA first generates the spiral pattern for 

each robot in the swarm. The robots search resources in spiral path starting
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from the central location. A robot goes to the nest to deposit the found 

resource and returns back to the spiral position once the collected resource is 

deposited. When robots leave their spiral position and go towards the nest 

or vice versa, there may be cases where multiple robot paths intersect or are 

collinear. DDSA uses reactive inter robot collision avoidance wherein robots 

slightly turn off their course to avoid each other and retry to get on their 

original course.This increases the time required to collect the resources by 

robot swarm [16].

This thesis provides a technique to improve the collection of resources in 

a given duration and to reduce the inter robot collision for the DDSA. The 

path of a robot that goes to the nest to deposit collected resources or the 

path of the robot returning to its spiral search position after depositing the 

resource is checked with other robots. Two robots can collide if one of them is 

in spiral and another is going to the nest to deposit the collected resource or 

is coming back from the nest to search position after depositing the collected 

resource. In this case, the robot farther from the collision point is stopped 

and the other robot is allowed to pass avoiding the collision. The robot going 

to the nest to deposit the collected resource traverses a triangular path to 

reach the original search position in the search spiral. This allows multiple 

robots to efficiently collect and deposit resources from the cluster reducing 

the collisions and managing the collection time. This thesis generalizes the 

path coordination to get a consistent path for every robot in the swarm and 

can be used for swarms of any number of robots. Checking for inter-robot
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collision allows the robot swarm to efficiently collect resources in lesser time 

as compared to the DDSA. The robots need to communicate their current 

and target locations with their neighbors to perform this collision check. 

The thesis limits the requirement of robots having global knowledge to local 

interactions by defining the radius for communicating with other robots and 

also demonstrates that the performance of DDSA is improved significantly 

by the planning techniques. The path planning and collision avoidance for 

cluster resource distribution techniques are tested on various cluster locations 

in the arena with different swarm size ranging from 3 robots to 15 robots and 

shows to be an efficient planning and collision avoidance technique .

The main contributions of this thesis are two-fold:

1. Develop a path planning and collision avoidance technique for multi­

robot system. This helps reduce the physical interference of robots with 

coincident paths using spatial delay and intersecting paths adding time 

delay.

2. Evaluate the performance of the multi-robot foraging system in terms 

of target collection rate and average collision rate on a single 8 x 8  

cluster using DDSA and ARGoS swarm simulator.

The rest of this document is structured as follows: In Chapter 2, the related 

works are presented. In Chapter 3, the method for multi-robot path plan­

ning and collision avoidance for clustered resource distribution problem is 

proposed. Tests, results, main conclusions and perspectives of future work
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are shared in Chapter 4.
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2 Background

This chapter is organized into different sub-sections that introduce the re­

search domains used in this thesis. The first sub-section gives a brief informa­

tion and history of Swarm Intelligence and Swarm Robotics. The benchmark 

problem area studied for swarm robotics is central place foraging algorithm. 

The second sub-section gives an insight into the problem domain of central 

place foraging and its use to understand the swarm behavior. The main prob­

lem affecting the performance of central place foraging algorithms is interfer­

ence among the robots. Collision avoidance techniques and path planning are 

mainly used in order to reduce the collisions and improve the performance of 

swarms. The third sub-section discusses the path planning techniques and 

different coordination methods used in swarm robotics. The last sub-section 

of this chapter concentrates on the researches similar to the approach used 

in this thesis.

2.1 Swarm Intelligence and Swarm Robotics

Current day applications like remote surgery, web enabled digital appliances, 

sensor networks and orbiting satellites need complex communication systems 

that have numerous interacting entities. There is a need for new approaches 

in network management and controlling these complex systems. One promis­

ing approach was Swarm Intelligence. Swarm Intelligence represents an idea 

that the complex system containing interacting entities can work together
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with minimal control on these entities and their interactions. Swarm Intel­

ligence is based on the observation of social organisms such as ants or bees. 

Ants or bees conduct complex tasks like searching for food sources in an orga­

nized manner with simple rules and display collective survival. There is still 

research ongoing on how these small creatures show collective intelligence 

with low brain power and interactions to exhibit a global purpose [20].

The concept of group of simple agents solving optimization problems 

on graphs, lattices and networks was present in early days before the term 

“Swarm Intelligence” was defined [3]. Butrimenko [21] applied this idea to 

the field of telecommunications, Stefanyuk [22] to coordination of multiple 

radio stations, Tsetlin [23] to biologically inspired automata in random envi­

ronment displaying collective behavior through their interaction. Rabin [24] 

introduced randomized algorithms to solve concurrent coordination choice 

problem for multiple processes. Swarm Intelligence is a field that has been 

evolving for 25 years. The term “Swarm Intelligence” was used in context of 

Cellular Robotics by Gerardo Beni and Jing Wang in 1989 to define intelli­

gent behavior of multiple interacting agents in n-dimensional space to form 

pattern by interacting with neighbors [3].

With the spread of Swarm Intelligence (SI) term over the years, it has 

gained a broader meaning and holds any concept of collective behavior [20]. 

Gerardo Beni in [20] presents broader SI notion as:

The intuitive notion of “swarm intelligence” is that of a “swarm” of 

agents (biological or artificial) which, without central control, collectively (and
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only collectively) carry out (unknowingly, and in a somewhat-random way) 

tasks normally requiring some form of “intelligence” . However, this defini­

tion only partially explains the widespread SI term and does not define all 

types of collective behavior for simple agents. The characteristics of SI by 

listing the advantages of “swarms” over centralized systems [2, 20] are as 

follows:

1. Economical: The swarm components are mass producible, modular, in­

terchangeable and disposable as they are structurally same and simple.

2. Reliable: The performance of swarm is not affected much due to dam­

age of few components as the components are same.

3. Scalable: The swarm can adapt to different population size without a 

major software/ hardware change.

4. Parallel: Swarm can efficiently perform search tasks with multiple tar­

gets distributed in vast area.

5. Energy Efficient: Simple smaller multiple robots save lot energy and 

the life time of swarm is more as compared to single robot.

There is no widely accepted definition of SI or mathematical model to 

define it. Many terms with varied definitions have been associated with SI 

applications: emergent behavior, self-organized behavior and collective intel­

ligence. These lack of definitions and mathematical models cause difficulties
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in using the SI concept to its full potential. SI concepts can be applied prac­

tically when the efficient behavior in social colonies can be characterized by 

optimized mathematical models combined with structural framework that 

requires consistent behavior of every swarm entity and a concrete way of 

defining the problem statement to focus on a particular research area [20].

Different fields of science and technology deal with the idea of Swarm 

Intelligence: robotics, artificial intelligence, computation, economics, etc. 

Three broad areas of SI are: scientific interest versus technological inter­

est, standard mathematics versus cellular computational mathematics and 

synchronous operation versus asynchronous operation [25].

The popular scientific and technological interest in SI was by Beni and 

Wang with the study of social insects and design of distributed robotics 

system in 1989 [25]. In 1999 Bonabeau et al. [3] dealt with the scientific 

and technological interest in parallel. The first pioneering biological study 

was “double bridge” in 1989 by Goss et al. [26] about the foraging behav­

ior of ants and how they choose the shortest path between their nest and 

food source. The experiment describes that given two branches: one shorter 

and other longer, the ants randomly choose the branch to the food source 

from the nest and while returning back to the nest most of the ants choose 

the shorter branch. The ants find the best path by laying pheromones - a 

chemical through which they all communicate and use stigmergy (modifica­

tion of the environment). This study showed the collective intelligence and 

self organization of ant colonies. Later Dorigo et al. [27] proposed a dis­
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tributed problem solving and optimization based on “artificial ants” to solve 

complex problems using ant colony behavior. They developed three instanti­

ations based on behavior of ants and demonstrated it on traveling salesman 

problem to solve optimization problems. Many other bio-inspired algorithms 

were developed to solve swarm optimization problems: group movements of 

flocks of birds and schools of fish were demonstrated by groups of agents 

called “boids” [28], algorithms inspired from wasps [29] and termites [8]. Bee 

algorithms have gained attention since last decade [30, 25].

Swarm Robotics is the application of SI to a group of robots. There 

has been lot of research in this field since 1980 [31]. In 1986, R.Brooks 

proposed a robust behavioral architecture with multiple layers for mobile 

robot control system that did not need central control module [32]. In 1993, 

Mataric discussed the implementation of swarm robots called “Nerd herd” , an 

approach to understand group behavior through simple interaction between 

agents [33]. Simultaneously there were different research on hardware level for 

the robots in swarm robotics. The use of numerous small, cheaper and simple 

gnat robots in place of a single robot for incorporating parallelism is described 

in [34] and this approach can be applied for tasks requiring flying, swimming 

or crawling. Similarly, [35] proposes a new type of autonomous robotic units 

called “Cellular Robotic Systems” to solve complex tasks collectively using 

algorithms for distributed robotic systems.

There are various classification methods used for swarm robotics. In 

1993, Dudek et al. [36] classified swarm robotics based on five areas: swarm
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size, communication range, communication topology, communication band­

width, swarm reconfigurability and swarm unit processing ability. Cao et al. 

[37] presented classification of cooperative robotics in five areas: group ar­

chitecture, resource conflicts, origins of cooperation, learning and geometric 

problems. Luca Iocchi et al. [38] presented the classification of multi-robot 

systems on the basis of reactive and social behavior. Lynne provided classifi­

cation based on different research areas [31]. Brambilla et al classified swarm 

robotics from engineering perspective and real world applications [39].

In 2005, a swarm robotics application called ANTS (autonomic nanotech­

nology swarm) project by NASA gained media attention [40]. This project 

used “nanobots” a swarm of autonomous microscopic robots for space explo­

ration tasks. Also in 2005, the European Union sponsored a swarm robotics 

project exhibiting autonomous self-assembly forming organized structures, 

obstacle avoidance and transport tasks with group cooperation techniques 

using new types of robots called “s-bots” was completed. This project was 

later continued as “Swarmanoid” project. The main objective was to develop 

distributed robot system of small heterogeneous, autonomous and dynami­

cally connected robots. The project built around 60 robots of three types: 

eye-bots, hand-bots, and foot-bots. This project was completed in 2011 [41]. 

The “Kilobot” project demonstrated the largest swarm of 1024 self organized 

autonomous robots in 2014 [25].

There are various fields of research such as multi-robot systems, multi­

agent systems and sensor networks inspired from swarm behavior that are

12



often confused with swarm robotics. Though these research fields use coop­

erative behavior among multiple entities to accomplish a special task, there 

are fundamental differences associated with population size, homogeneity, 

control and application areas [2].

The differences between different systems is illustrated in Table 1.

S w a r m  R o b o t i c s M u l t i - r o b o t  s y s t e m S e n s o r  n e t w o r k M u lt i - a g e n t  s y s t e m

P o p u l a t i o n  s iz e L a r g e  r a n g e S m a ll F ix e d S m a ll  ra n g e
C o n t r o l D e c e n t r a l iz e d C e n t r a l iz e d  o r  R e m o t e C e n t r a l iz e d  o r  R e m o t e C e n t r a l iz e d  o r  H ie r a r c h ic a l

H o m o g e n e i t y H o m o g e n e o u s M o s t l y  H e t e r o g e n e o u s H o m o g e n e o u s H o m o g e n e o u s  o r  H e t e r o g e n e o u s
F le x ib i l i t y H ig h L o w L o w M e d iu m
S c a la b i l i t y H ig h L o w M e d iu m M e d iu m
E n v ir o n m e n t U n k n o w n K n o w n  o r  u n k n o w n K n o w n K n o w n
M o t i o n Y e s Y e s N o R a r e

T y p ic a l
a p p l ic a t io n s

P o s t -d is a s t e r  r e l ie f T r a n s p o r t a t i o n S u r v e i l la n c e N e t  r e s o u r c e s  m a n a g e m e n t

M i l i t a r y  a p p l ic a t i o n S e n s in g M e d ic a l  c a r e D is t r ib u t e d  c o n t r o l
D a n g e r o u s  a p p l ic a t i o n R o b o t  f o o t b a l l E n v ir o n m e n t a l  p r o t e c t i o n

Table 1: Comparison of Different Systems [2]

The study of swarm robotics requires testing and observing the perfor­

mance of developed algorithms on large number of robots. As it is difficult 

to afford the physical robots, computer simulators are used by researchers 

for their research. Simulators are easy to setup, less expensive and con­

venient to test the algorithms. Different simulators platforms like Gazebo, 

Player/Stage, ARGoS and UberSim are popular for swarm robotics research.

Swarm robotics is a fairly a new research field and although many algo­

rithms have been proposed in this field, it is far from practical applications. 

Lack of benchmark test, wide range of problem definition, less experience in 

working with swarm robotics and simple algorithms have slowed the progress 

in this field. Limited computing and sensing do not fully allow the current

13



swarm robotics system to demonstrate collective behavior. Ongoing research 

aims to enhance mathematical models to take advantage of the swarm po­

tential for everyday applications. Swarm robotics is still confined to research 

field due to the cost involved in manufacturing of the hardware and diffi­

culties in designing an efficient robot with sensors, actuators and electronic 

components to execute the cooperative algorithms. However, new develop­

ments in the electro-mechanical field and the design of efficient cooperative 

algorithms using knowledge of biology and swarm intelligence is encouraging 

the application of swarm intelligence to solve real world problems [2].

2.2 Central Place Foraging

Swarm robotics has many potential applications, however, swarm robotics 

being scalable and robust have never been used to solve real world problems 

due to lack of proper models defining swarm behavior. The current focus of 

research in swarm robotics is acquiring the desired collective behavior and 

understanding the properties of swarm behavior. Researchers test swarm 

robotics algorithms for a particular application on a simplified testbed to 

avoid the complications and problems arising in real world applications. For­

aging is one of the popular testbeds for swarm robotics systems [39, 37].

In foraging tasks, robots will search for “prey” or “food” scattered in 

the environment and bring them back to the “nest” [37]. When the targets 

or “food” objects are transported to a single collection point, it becomes a 

central place foraging task. These foraging tasks can be conceptualized to real
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world complex tasks such as search and rescue tasks. Foraging tasks are also 

studied to understand the effect of interference on swarm of robots caused 

due to the competition of space between the robots [42]. The foraging tasks 

are especially used as testbed for group exploration wherein robots cooperate 

to explore and navigate through an environment, group transport in which 

robots cooperate to transport a heavy object that is heavy for a single robot 

to move and collective decision-making wherein robots interact with each 

other to produce complex behavior [39, 43].

Foraging is a benchmark problem in robotics for the following reasons 

[15]:

1. It integrates generic class of problems like navigation, object manipu­

lation and transportation, object identification and exploration.

2. It is a basic problem for the study of robot-robot interaction and co­

operation.

3. It can be used to solve many real world applications like planetary 

exploration, mining and harvesting.

4. Observing and understanding the efficient foraging behavior in social 

insects can provide inspiration and models for artificial systems.

Finite state machines can be used to model robot behavior using a fixed 

number of states. Each state defines a particular behavior or action of the 

robot and the robot can transition through any of the states based on a

15



trigger of some external or internal event. The robot can be only in one state 

at any given time [15]. Figure 1 referred from [15] shows the four states of 

basic foraging task [15]:

Figure 1: Basic Foraging Finite State Machine

• Searching: The robot moves in the search space to locate targets using 

sensors in this state. The robots can wander at random or move in 

some pattern to search for targets. This is the default state for the 

robots. The robot changes its state to “Grabbing” if it finds the target 

else it remains in the “Searching” state.

• Grabbing: In this state, the robot grabs the target to transport it to the 

“nest” or “home” location. The assumption is that the target is small 

enough to be grabbed by a single robot. Some targets need collective 

transportation by more than one robot. Once the target is grabbed, 

robot changes its state to “Homing” .

• Homing: In this state, the robot moves towards the “nest” or “home” 

location to deposit the collected target. Going to home for the robot
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involves determining the position of the “nest” relative to its current 

position, orientation towards the “nest” and navigating to the “nest” . 

When the robot reaches the “nest” , it changes its state to “Deposit­

ing” . Several methods are used by the robot to reach the “nest” . For 

instances, odometry is used to trace the robots path to the “home” , 

following a marked trail or identifying the “home” location using a 

beacon.

• Depositing: In this state, the robot deposits the collected target to 

“nest” and changes its state to “Searching” to resume the search task. 

The robot can directly resume search on deposition of resource or use 

site fidelity to resume the search operation to find out if there are more 

resources near that location. Site fidelity is remembering the location 

of previously found resource.

The behavioral design of the autonomous robots can be achieved by de­

composing the control system based on task achieving behaviors. The control 

system of autonomous robots performing complex task like trying to reach a 

particular place in minimal time should actively respond to the high priority 

goals like finding the shortest path along with servicing the low level goals 

like processing the input of sensor data and providing output to actuators 

for instance, avoiding a obstacle detected in the robot path by turning in 

random direction [32, 44].

The primary foraging models are stochastic or deterministic. In stochas-
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tic foraging, robots go in a direction for some time and if no resource is 

found, then a new random direction is chosen. This technique is useful in 

dispersing the robots with satisfactory area coverage. However, it takes time 

to search for resources that are far from the “nest” location once the re­

sources closer to the “nest” location are collected. In stochastic models, the 

parameters of the environment like encounter rate (target detection rate) 

may change unpredictably. Time and efforts have to be invested in sam­

pling of the environment. Conversely, deterministic models assume that the 

“forager” has some knowledge about the characteristics of the environment 

in some cases. Deterministic approaches follow a predetermined pattern to 

have maximum area coverage in minimal time and avoid resampling the same 

area [45, 16, 44]. Animals forage their prey according to rules that can be 

best expressed by probability. Thus, stochastic models resemble nature more 

closely than the deterministic models. However, there are many determin­

istic optimal foraging behavior models because they are most of the times 

simpler than the stochastic models and most of them can be converted to 

stochastic models easily by representation of random variable by their mean 

values [45]. The thesis uses a deterministic foraging approach as the DDSA 

which is also a deterministic foraging model is used as baseline for comparing 

the performance of this thesis. Deterministic models offer better comparison 

of the foraging models as they are independent of the hardware or simulator 

in which they are implemented.

Researches have focused on searching techniques by simplifying the re-
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source recognition and gathering process. When sensors on the robot detect 

a resource, they have to carry it to the home location by grasping it using 

a gripper. In some cases, the robot just needs to capture the picture of 

detected resource [44, 15]. Task partition is used in foraging for activities 

related to transportation. It is a division of tasks into sub-tasks. There are 

several advantages of task partitioning such as physical separation of robots 

which reduces robot interference [46, 47] and competition for new resources 

[46]. It also allows the sub-tasks to be allotted to workers that are better 

suited for the task [46, 48]. In foraging, task partitioning is implemented by 

limiting arena size in which every robot operates. Resources are delivered 

to the target location with the help of several robots either by handing over 

the resource or depositing it on the ground [46]. This helps distribute the 

amount of work with slight surprising delivery time as observed in CPFA and 

preventing the error prone worker to hold the resource indefinitely [18, 44].

The task partition approach has two limitations. First, it mostly depends 

on specific setup for which it is designed. For instance, it becomes difficult to 

partition tasks in the case where you need to capture images of the resource. 

Secondly, its scope becomes narrow assuming that interference of robots is the 

only way to partition the task. In the cases where reducing the interference is 

not important, task partitioning can involve overhead costs as it may require 

multiple time picking up of resource using grippers [46]. In few approaches, 

recruitment process is used to notify other workers to pickup the detected 

object if the current worker cannot pickup the object. One of the early
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recruitment procedures using a light beacon to attract workers that can pick 

up the resource to the worker that has found the resource is proposed in 

[49]. Sugawara and Sano [49] demonstrated that their recruitment strategy 

makes the robots perform worse when resources are distributed uniformly 

and performs well in cluster resource distribution. This result is similar to 

the result of CPFA [18, 16, 44] but is reversed in case of DDSA [16].

Foraging is studied as it provides useful framework for probing into de­

sign and implementation issues for multi-robot systems. The foraging task 

introduces concepts of Parallelism and Robustness. Multiple robots working 

together simultaneously may complete the task faster and the performance 

of the group is not affected by failure of a robot. However, team of robots 

working together introduces problems like interference. The robot-robot in­

terference and collision avoidance affect the performance of the group [42]. 

The performance in terms of number of targets collected in given time inter­

val of multi robot foraging system does not increase monotonically with the 

increase in the group size because of collisions between robots [15].

The emphasis of foraging of social insects can be observed on the design 

of controllers for multi-robot systems. The study of foraging task offers many 

advantages for collective robot groups:

1. Distributed control mechanism.

2. Scalability: every robot has the same controller irrespective of its size.

3. Flexibility: robots can be added or removed easily without major design
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change and hampering the performance of system.

4. local sensing: collective behavior can be achieved in multi-robot sys­

tems through local interactions

5. Adaptability: robots through simple learning can operate in uncertain 

and hostile environment [42, 50].

Multi-robot foraging systems are stochastic non-linear dynamic systems [15]. 

Therefore, it is challenging to develop mathematical models confidently stat­

ing the correctness of developed algorithms. Mathematical models help to 

analyze the whole parameter space and optimal parameters. However, ex­

periments of multi-foraging using computer simulation or real-robots without 

any mathematical models limit the analysis of the parameter space, which, 

in turn makes it difficult to prove its correctness in real world applications 

[15]. Additionally, foraging algorithms tend to have performance variations, 

which are dependent on the hardware or simulator on which they are im­

plemented [16]. A key aspect of multi-robot foraging system dynamics is 

also the interference due to over crowding of the robots and competition for 

targets [15].

To apply multi-robot foraging algorithms to real world applications there 

is a strong need of validation for safety and dependability that can be pro­

vided by mathematical modeling [15]. Central place foraging algorithms do 

not have standard guidelines or criteria for comparison and hence, it is dif­

ficult to compare the foraging algorithms across systems and prove their
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effectiveness. The performance of central place foraging algorithms can be 

affected by the means of distribution of resources [16, 18]. Apart from dis­

tribution type, the arrangement of resources also affects the foraging per­

formance. The resource distributions commonly observed in literature are 

uniform, clustered or power law distributions. Usually for foraging algo­

rithms, clustered or partially clustered distributions are used as naturally 

occurring resources are clustered at certain spots [16, 51, 50]. The robots 

are allocated equally to uniform target task, less so for partially clustered 

and least for clustered cases. The unequal allocation reduces performance of 

foraging. However, this performance can be increased by recruiting robots 

to collect targets from clusters. Also, the performance of foraging decreases 

near the clusters as the collision between robots increase. The placement and 

number of targets to collect also affect the foraging performance [16].

The performance of swarm foraging is also affected because of the scarcity 

of resources in the environment with the increase in the swarm size. There­

fore, the foraging swarm performs efficiently for optimal swarm size [16, 18, 

52, 44]. Liu et al [52] used regrowth of resources to replenish the resource 

supply and Pini et al [46] added the resource to same location once it is col­

lected by the robot to improve the performance of foraging under complex 

and varied environmental conditions using effective interactive and emergent 

behavior.

Several aspects of central place foraging such as sharing of information, 

cooperation of robots and division of labor have been highly researched and
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demonstrated. However, to date there has been no forerunner research for 

real-world applications demonstrating the integration of self-organized coop­

erative search, object manipulation and transport in unknown or unstruc­

tured real-world environments for autonomous multi-robot foraging tasks 

[15]. The future direction for foraging would be to continue exploring new 

foraging algorithms which mimic the behavior of social insects and the appli­

cation of these algorithms on foraging robots to tackle real world problems. 

This can be achieved by development of standard design and test procedures 

for analysis and designing of multi-robot foraging systems, standard criteria 

and quantitative benchmarks to evaluate and compare several foraging ap­

proaches and achieving safety, reliability and stability of multi-robot foraging 

systems [15]. DDSA algorithm proposes to be the baseline of comparison for 

all the central place foraging algorithms [16].

2.3 Multi-Robot Coordination

Social insect societies are the best example of distributed systems wherein 

emergent behavior is observed through interactions among individuals [53]. 

Multiple robots need to be moved over specific regions for exploration, meet 

at a certain common point or move in synchronization for many applications. 

These tasks need to be performed with minimal communications among dif­

ferent robots and with limited knowledge of the global state of the system 

[54]. Some of the most researched areas in multiple robot coordination are: 

path planning [53, 55], target tracking [53, 56], traffic control [53, 57] and
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formation generation [53, 58].

Popenoe defined collective behavior as [59]:

“ Behaviour that occurs in response to a common influence or stimulus in 

relatively spontaneous, unpredictable, unstructured and unstable situations

Collective behavior includes two types of behaviors, Cooperative and 

Competitive. Cooperative behavior is observed when robots interact with 

each other to complete a common goal, for instance, in foraging tasks. Com­

petitive behavior is observed when robots compete against each other to fulfill 

their self-interest for example two player games [60]. Cooperation in multi 

robot systems can be achieved through communication amongst the robots. 

Multi robot path and motion planning is a cooperative type of problem. The 

thesis will focus on cooperative behavior.

When multiple robots arrive or want to use the same resource simultane­

ously, resource conflicts arise. There are three types of resource conflicts for 

multi robot systems communication medium, object manipulation, and shar­

ing space. These conflicts can be solved with the help of coordinated robots. 

Communication can help robots to learn information from other robots in 

cooperation tasks. In explicit communication, robots need to have access 

over the communication media to share information with each other. This 

sharing of resource creates a bandwidth limitation conflict. Ye et al. [61] eval­

uated the communication strategies for wireless networked robots performing 

a resource transportation task. The research handled the bandwidth limi­

tation problem by using a network simulator taking into consideration the
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protocol characteristics and propagation conditions [61]. Rybski et al. [62] 

experimented on a surveillance task performed by multiple robots and an­

alyzed how limited communication bandwidth affects the performance and 

accomplishment of task. They built miniature robots called “Scouts” and 

developed a distributed software system with a novel scheduling mechanism 

to control them and maximize the use of limited resources [62, 63].

Resource conflict occurs when multiple robots need to manipulate an ob­

ject together [60]. The most popular topic studied is cooperative“box pushing 

problem” by Mataric et al. in which two six legged autonomous robots need 

to transport a box together by interacting and taking turns to perform the 

task [64]. Kube and Bonabeau [65] demonstrated the formalized model of 

robotic implementation for cooperative transport in ants wherein ants change 

their alignment and position in-order to move a large prey towards the nest.

The third type of conflict is space sharing which is studied in terms of 

motion planning, collision and congestion avoidance [60]. Coordinating the 

independently planned paths for multiple robots to avoid congestions and 

deadlock conditions is presented in [66]. Whenever the distance between 

robots falls below a certain threshold, the robots monitor their trajectories by 

interacting with each other and may add a delay interval or plan an alternate 

trajectory to avoid collision. Similarly, [67] describes how robots traveling in 

opposite directions can avoid congestion by cooperating with each other and 

alerting the other members of the team about congestion risk. This thesis 

presents cooperative motion planning in foraging task for a robot swarm.
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Coordination can be of two types [38, 68]:

1. Static: Usage of some kind of pre-defined protocol for performing the 

task. It is also known as offline or deliberative coordination. It can 

handle complex tasks but the real time handling of the task can be 

poor. For example, keeping sufficient space between robots, traffic 

control problems rules such as “stop at intersection” and “keep right” .

2. Dynamic: Coordination accomplished during the task using analysis 

and information through communication. It is also known as reactive 

or online coordination. Dynamic coordination can have difficulty in 

handling complex tasks however, it meets real time handling. For ex­

ample, the robot encountering an obstacle will try to avoid the obstacle 

without affecting the behavior of other team members.

Coordination of multi-robot systems use communication to share their po­

sition, environment state and sensor data with each other. Farinelli et al. 

[69] classified communication into direct and indirect communication. In di­

rect communication, robots use some kind of hardware device to signal other 

robot team members. In indirect communication, robots use stigmergy for 

communication [69]. Cao et al. [37] classified communication into three 

types (i) Interaction via Environment: The environment itself is the commu­

nication medium, (ii)Interaction via Sensing: It refers to local interactions 

between robots as a result of sensing one another. It is often emulated using 

infrared or radio and, (iii) Explicit communication: It occurs either by direct
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or broadcast message usually by ethernet, wireless or other forms.

Decision-making in multi-robot coordinated systems requires an intellec­

tive process for selection of alternative scenarios for task accomplishment. 

Decision making can be centralized or decentralized. In centralized ap­

proaches, one robot acts as a coordinator and the accomplishment of the 

task is centered around that robot [53]. The central coordinator has the 

information about the environment and shares it with other robots through 

a communication medium. Centralized approaches are effective for smaller 

groups of robots and the performance is affected with uncertainties of dy­

namic environment or communication failures. If the central coordinator 

fails, then there must be another robot that can replace the coordinator to 

avoid failure of the whole system [60]. In decentralized approaches, there 

is no single coordinator. Each robot coordinates its own movements and 

plans to avoid collisions [53]. Decentralized approaches respond compara­

tively better to dynamic environments and are robust, flexible and scalable. 

However, this flexibility can result in suboptimal performance of the decen­

tralized systems.Decentralized approaches can be divided into two types (i) 

Distributed: In this approach, each robot coordinates its own movements, (ii) 

Hierarchical: It is a hybrid between centralized and decentralized approach. 

It has one or more local coordinators which coordinates robots into clusters 

[60]. GOFER [70] is an example of centralized multi-robot system wherein 

there is a central scheduling task that has global knowledge of the tasks to 

be performed and the availability of the robots to perform the task [70, 60].
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Similarly, in [71] for the task of object manipulation and transportation, the 

global motion planner decides when and where to manipulate the object. 

Luna and Bekris [72] provided an efficient centralized sequential “Push and 

Swap” path planning method for multiple robots operating on a discrete 

roadmap. An example of distributed path planning is described in [19]. This 

paper describes an approach using distributed prioritized planning wherein 

every robot plans its own path at the same time and then checks for collisions 

between paths. If collisions are observed, lower priority robots must replan 

their paths. Another example of decentralized planning is presented in [66] 

where each robot plans its path independently and then coordinate to avoid 

collision by altering their paths by communicating with their neighbors.

Motion planning involves producing a continuous obstacle-free path for 

a robot from start configuration to goal in a configuration space. It is an 

important topic in robotics research as robots accomplish tasks by moving 

in real world. Motion planning should consider the obstacles in environment 

along with inter-robot collisions while planning [73]. In environments with 

stationary obstacles and moving obstacles, path planning based on geometric 

configuration of environment returns an optimal path in polynomial time if it 

exists. However, motion planning with moving obstacles is NP-hard problem 

and non-solvable for two dimensions [1]. This makes motion planning a 

very difficult problem. The three major families of motion planning are 

summarized in Figure 2 [1].

The cell decomposition method decomposes a configuration space into
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Figure 2: A Comparison of Classic Multi-robot Motion Planning Approaches 
[1]

contiguous areas called cells. This method is usually used in multi-robot area 

coverage problems. The goal is to provide an obstacle free path (sequence 

of obstacle free cells) from the starting point to the goal point [74, 60]. Guo 

et al. [1] proposed a D* decentralized path planning algorithm. Another 

example of a cell decomposition method is presented by Bennewitz et al. 

[75, 76]. They presented a path planning strategy based on the A* algorithm 

[77]. This approach is randomized and reorders robots to replan their paths 

till they have minimum path length.

The Potential Field (PF) approach generates a path by combining attrac­

tion towards goal with repulsion from obstacles [74, 60]. This approach is 

used for multi-robot control formation. The research in [78] provides an ob­

stacle avoidance approach using “artificial potential field” for mobile robots
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and manipulators. In this approach the problem of collision avoidance that 

is generally considered to be a high-level planning problem is applied to dif­

ferent control level of manipulators. Another example of a potential field 

based approach is presented in [79]. The approach presents a potential nav­

igation function that coordinates multiple agents in a particular formation 

(shape and orientation) avoiding collisions between them. The weakness of 

PF approaches is that it gets caught in local minima convergence or aimless 

oscillations in the case where obstacles are very close to each other [74, 80].

In roadmap approaches, motion planning is done through a roadmap 

which is set of collision- free paths (road network) from the start point to 

the end point [80]. Voronoi diagram is a roadmap approach which specifies 

all points equally spaced from the closest obstacle. In other words, Voroni 

diagram designs roads in a way to be as far as possible from obstacles [80, 60]. 

Voronoi diagram may not find the shortest path but it gives maximum clear­

ance from obstacles. Bhattacharya et al. [81] proposed an approach using 

Voronoi diagram to obtain a path that is a close estimation of the shortest 

path fulfilling the threshold values specified by the user. Another research 

using Voronoi diagram is presented in [82] where a team of exploring robots is 

coordinated by using Voronoi diagram by segmentation of the environmental 

map to minimize the overall exploration time. Another roadmap approach 

is the probabilistic roadmap (PRM), where motion planning is achieved by 

randomly generating the collision free configurations and connecting some 

of them. This approach is widely used for robot arms in manufacturing
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and engineering fields [60]. A two phase path planning involving a learning 

and a query phase is presented in [83, 74]. This method based on PRM 

is used for static workspaces and high dimensional configuration spaces. A 

probabilistic roadmap is constructed and stored as a graph in learning phase 

wherein edges correspond to paths and nodes correspond to collision free 

configurations. In the query phase, start and goal configurations are con­

nected to any two nodes of the generated roadmap and a path joining them 

is searched. Another roadmap approach is rapidly exploring random tree 

(RRT) which does motion planning as a tree search problem by constructing 

an incremental tree of configurations by adding a free space random config­

uration that is closely connected to already present configuration in the tree 

[60]. Single query path planning method for high dimensional configuration 

space is proposed in [84]. The method incrementally builds two randomly 

exploring trees rooted at start and goal configuration. Each trees explore the 

space around them and proceed towards each other using greedy heuristic 

approaches [84, 74].

Both RRT and PRM are sample based methods and are the new age mo­

tion planning methods for high dimensional or geometrically complex config­

urations. The main reason for this is because unlike cell decomposition and 

potential field methods, the running time of these methods does not grow in 

proportion with the dimension of the configurations and are easier to imple­

ment. Also, sampling methods sometimes fail to find a solution even if one 

exists [60].
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The classical motion planning methods which were widely used in early 

research now have been replaced by heuristic approaches like genetic algo­

rithm, fuzzy logic, artificial neural networks and wavelets [74, 80]. The reason 

being that heuristics are useful for dynamic environments and are close to the 

human way of behavior learning [74]. The existing motion planning that use 

both heuristic and classical methods have their pros and cons and combin­

ing multiple methods together may solve the complex requirements of multi 

robot systems like flexibility, scalability and reliability [60].

This thesis focuses on developing a collision-free path for robots avoiding 

the inter-robot collisions. These collisions can be described in terms of in­

tersection points or collinear points. The aim of this thesis is to formulate 

an alternate path or stop a robot to avoid these intersections. This thesis 

proposes a decentralized collision avoidance method for multiple robots with 

coincident or intersecting paths.

2.4 Related Work

The swarm robotics problem domain and the solutions in this research field 

are inspired from nature. Many swarm robotics applications require multiple 

robots to detect and collect targets. Spiral search patterns for foraging are 

studied extensively and have been found to provide desirable performance 

[17, 16, 85]. They guarantee collection of nearest targets first and they have 

complete coverage of the area with minimum sampling [16]. This thesis in­

corporates the Distributed Deterministic Spiral Algorithm (DDSA) [16] for
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searching the space. We are using DDSA as the base and integrating our 

path planning and collision avoidance approach to better avoid the inter­

robot collisions. The performance of this thesis is compared to the DDSA. 

The DDSA generalizes single robot square spiral to any number of robots. 

DDSA is a type of central place foraging algorithm used to test how the forag­

ing performance scales with number of robots. Ryan and Hedrick proposed 

a square search pattern for fixed-wing unmanned aerial vehicle (UAV) for 

searching water targets which is similar to DDSA [86]. Similar approaches to 

the DDSA algorithm are defined in (i) Approach using parallel searching in 

the plane with fixed number of robots that are independent of the dimension 

of the plane [87], (ii) Distributed spiral search algorithm for odor localization 

problem as observed in ants [88, 89], (iii) Search pattern consisting of system 

of loops of ever increasing size centered about the origin with path integration 

as observed in Cataglyphis ants [90], (iv) Searching spiral by equally parti­

tioning the environment among multiple robots [91], (v) “proof of concept” 

for circular distributed spiral search for multiple robots whose movements 

are coordinated using shared data structure [92] and, (vi) deterministic in­

terlocking spiral starting from common point for multiple agents searching 

targets in coordination [93].

While designing distributed foraging algorithms for multiple robot sys­

tems, interference can be considered a pragmatic tool for evaluating the per­

formance of these algorithms. Interference can be physical or non-physical. 

Physical interference is when robots compete for space while non-physical
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interference is when robots compete for sensory resources like sharing radio 

bandwidth [94]. This thesis concentrates on handling physical interference 

by using collision avoiding and path planning techniques.

Goldberg and Mataric [94] have evaluated the performance for multi robot 

systems using interference. They focus on calibrating the arbitrary behavior 

schemes and controllers based on inter-robot interference. They have pre­

sented three cases (i) Homogeneous implementation: multiple robots have 

similar behavior, are independent and act in parallel. In this case, multiple 

robots try to drop off the collected resources at the “home” region simulta­

neously which results in high amount of interference, (ii) Pack arbitration 

implementation: all robots have similar behavior but don’t act indepen­

dently and in parallel. There is some form of hierarchy implemented such 

that the robot with higher dominance drops off the resource first and then 

exits the nest and other lower dominant robots are not allowed to go towards 

the “home” region till the higher robot leaves the “boundary” region. This 

makes only one robot to act at a time. Some form of communication is used 

to decide the dominance among the robots and, (iii) Case Arbitration imple­

mentation: not all robots have similar behavior and this differentiates robots 

into groups and divides the tasks among robots. Each of these groups work 

independently and in parallel. The goal is to reduce inter-robot interfer­

ence by properly assigning tasks to robots. It is observed that homogeneous 

implementation has maximum interference near the “home” region, caste 

arbitration has distributed but substantial interference and pack arbitration
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has the least amount of interference. However, homogeneous task completion 

time is shortest, then caste arbitration and then pack arbitration implemen­

tation. Thus, it depends on the task that decides what should be the priority: 

time or interference reduction. It was observed that caste arbitration is not 

the satisfactory implementation in either of the case [94].

The mathematical formulation for multi-robot task allocation with dead­

lines considering the effect of interference is formulated in [95]. The research 

models interference as linear function and studies how interference affects the 

performance of task allocation in multiple robots. The optimal solution is 

obtained by solving the linear integration function. Similarly, [42] presents 

a mathematical model of homogeneous foraging robots with the goal of un­

derstanding the effects of inter-robot collision on their performance. The 

paper studies two foraging cases: The first case, where homogeneous robots 

only collect objects and second case where the homogeneous robots find and 

deposit the object at a predefined “home” location. It is observed that in 

the first case, the foraging performance improves with the swarm size. How­

ever, the performance is sub-linear and interference causes the performance 

of individual robot to decrease. In the second case, it is found that the per­

formance is maximized for an optimal swarm size but it decreases again with 

the increase above the optimal swarm size. Again, inter-robot collision causes 

the individual robot's performance to be monotonically decreasing function 

of swarm size. The experimental parameters decide the optimal swarm size. 

This optimal swarm size value is smaller if the robots have a longer maneuver
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time to avoid the obstacles [42].

Path planning and collision avoidance methods need to be developed such 

that multi-robot system avoid obstacles and effectively perform the task. 

Typically, path planning is divided into global planning for searching the 

configuration space from the start location to the goal location and local 

planning to avoid static and dynamic obstacles. The paper [96] provides a 

decentralized navigation algorithm for a workspace shared by humans and 

robots. The algorithm is based on a velocity obstacle paradigm which is a 

geometric representation of all the velocities that will result in a collision. 

This paper uses different cost maps and sampling with different cost factors 

accounting for humans and robots sharing the same workspace. Proper ve­

locity is selected to avoid collision of a robot with other robots and humans. 

The paper [97] presents a “step forward approach” for avoiding obstacles 

using the omni-directional vision systems, automatic control and dynamic 

programming. The algorithm uses priority to avoid collision such that the 

lower priority robot reduces velocity or stops to allow the higher priority 

robot to pass. Motion of robots is predicted using prediction module before 

making the decision.

To improve the performance of foraging algorithms that are limited by 

physical interference of robots in multi robot systems, [98] proposes a “bucket 

brigading” strategy, which needs every robot to focus on specific region of 

the arena. The robot detecting a resource in the region will transport it to 

the neighboring sub-region in the direction of “home” location. This reduces

36



overcrowding and physical interference.

Distributed prioritized path planning is used in order to avoid collision of 

intersecting robots. The robots in a team are assigned priorities based on the 

obstacle map and robots decide their own static priority as a function of initial 

path estimation and local information. The robots sequentially compute their 

path based on the priorities and assign their path to the obstacle map so that 

the next robot can plan its path around that map. For a robot team of n 

robots, the path planning of collision free paths is complete [99].

The approach in [19] uses the prioritized planning mentioned above to 

plan the paths and additionally uses a coordination module based on Artifi­

cial Bee Colony (ABC) algorithm to find a collision free path by generating 

consistent velocity profiles by considering higher priority robots as dynamic 

obstacles. Each robot predicts the position of other robots based on the in­

formation sent in the previous iteration. If the path is collision free then the 

robot keeps the profile, else generates a new consistent profile and sends it to 

lower priority robots. The paper demonstrates this method on the “corridor 

problem” scenario where 3 robots have intersecting paths to reach their goal. 

The higher priority robots traverses the path without any waiting time, the 

next higher priority robot updates its path to be consistent with the higher 

priority robot and the lowest priority robot updates its profile and waits for 

other two higher priority robots to cross the corridor. The above mentioned 

solutions don’t consider overlapping paths. In [100], the authors propose a 

collision avoidance technique for coincident and intersecting paths through
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fictitious points. The introduction of fictitious points ensures that the robots 

don’t pass over the common stretch of the path simultaneously. The nonlin­

ear formulation helps speed restrictions and maintain proper time difference 

so that the robots don’t collide on common paths.

The most similar approach to the work presented in this thesis is in [101]. 

The work uses “holding pattern” for depositing the detected target to the 

“nest” location. This is similar to the idea used at the airports to avoid 

congestion and collision of the airplanes. If the robots collect the resource 

from the same cluster and are close to each other, they take turns to go to the 

“home” location instead of all going together. The robots pick up a closest 

of four points around the “home” location forming larger triangular paths 

resulting in lesser collisions.

This thesis focuses on physical interference avoidance of the foraging 

robots. When two robots are likely to collide on intersecting paths, the 

robot farther from the colliding point is stopped by adding time delay. When 

multiple robots have collinear paths, a spatial delay is added to every robot 

depositing the resource at the “nest” . Each robot traverses a longer alternate 

path forming a triangle to avoid the collision on coincident paths. This ap­

proach helps to reduce the interference caused at the “home” location when 

multiple robots simultaneously deposit the resources collected from the clus­

ter.
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3 Path Planning And Collision Avoidance for 

Clustered Central Place Foraging: PPC A- 

CCPFA

3.1 Problem Statement

The central place foraging task consists of multiple agents searching for de­

sired targets in an unexplored environment and depositing the found targets 

at a central “home” location. The characteristics of the environment, swarm 

and resource distributions can be specified by the researcher in order to 

properly observe particular intended behavior of the foraging research topic. 

The foraging task requires integration of aspects like object manipulation, 

communication, localization, path planning and collision avoidance. Any 

constraint or problem observed in one of these aspects greatly affects the 

performance of the foraging task. Analysis, understanding and evaluation of 

foraging tasks can be efficiently carried out by focusing on a single behavior 

or combination of behaviors. The motivation of this thesis work is to focus 

on path planning and collision avoidance for the multi-robot central place 

foraging task. The specifications of the environment in terms of arena shape 

and size, swarm size and resource distribution will help in developing and 

evaluating the objective of the thesis work.

Resources are distributed spatially and temporally [102]. Resource distri-
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bution can be uniform, clustered or partially clustered. Usually the resources 

found are clumped in varying sizes. The distribution of the resources affect 

the performance of multi-robot central place foraging tasks. When the re­

sources are uniformly distributed all the robots benefit. However, if the 

resources are distributed in clumped patches, robots spend great amount of 

time avoiding physical interference near the central “home” location and the 

clumped resource. The effect of interference is proportional to the swarm 

size. Thus, there is a need of path planning and collision avoidance tech­

nique to reduce the inter-robot collision and lower the time expense on the 

collision avoidance. This thesis focuses on developing a path planning and 

collision avoidance method for a robot swarm collecting resources from a 

cluster and depositing them at the central depot as resources are usually 

found in clumps.

The multi-robot path planning problem is defined as: given n robots 

with known initial point and goal point and working in the same space, 

finding path for each robots that is free of obstacles. Consider a workspace 

W € R2. The robot position is given by C(x, y)  where x and y are the 

coordinates and the orientation is given by Q. The state space X is the 

cartesian product of all the robot configurations. A pair of robots i with 

orientation Qi and j  with orientation Qj in collision is defined as X0bs such 

that X0jbs =  C(Xi,yi) n C(Xj,yj) =  0 . Obstacle free state space is given 

by Xfree =  X  \  Xobs. The goal of path planning is to find a sequence 

of motion from start position S(x, y)  to goal position G(x,y)  free of inter­
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robot collision. The sequence of motion consists of rotation and linear motion 

of the differential drive robot. The linear velocity is given by v and rotational 

velocity is given by U.

Figure 3: Inter robot collision cases

Given a swarm size n, the robots have to search the space for resources 

and deposit the collected resources at a central depot. There are chances 

of collisions when more than one robot travels from the nest location to 

the search position or vice versa. The colliding robots can be in the same, 

different or opposite direction. The collisions can be avoided by adjusting 

the robot speeds, adding a time delay or choosing an alternate path. The 

possibility of collision exists when: i) robot paths intersect at a particular 

point called intersection point; ii) robot paths are coincident and there are
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multiple points of collision. Figure 3 depicts the above mentioned cases.

There can be more than two robots having coincident paths (robot paths 

very close to each other or overlapping) when they simultaneously collect the 

resources from cluster and also when they return to their respective search 

positions from the “nest” . In case(a) of Figure 3, collision is avoided by 

adding spatial delay so that there is a free passage for robots to travel. In 

case(b) of Figure 3, the path of the robot searching and the robot going to 

or coming from the “nest” may intersect at a particular point. The collision 

in this case is avoided by adding time delay.

3.2 DDSA algorithm

The central place foraging algorithm used in the thesis is distributed deter­

ministic spiral algorithm (DDSA) [16]. Path planning and collision avoidance 

is integrated with the DDSA. The DDSA broadens a square spiral from one 

robot to any number of robots. The generated spiral path of the robot 

preserves the determinism and guarantees optimality [16]. There is no stan­

dard formulation for comparison of central place foraging algorithms. This 

makes evaluation of algorithms difficult. The DDSA is proposed as a point 

of comparison to solve this problem. The performance of systematic search 

strategies such as the DDSA reduces with the presence of error and with the 

increase in the size of swarm. The performance of the approach developed 

in this thesis is compared to the DDSA for a swarm size of 3 to 15 robots.

Figure 4 shows the spiral pattern of DDSA in the ARGoS simulator [16,
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Figure 4: DDSA overhead view

103]. The Figure 4 is referred from [16]. The spiral patterns are the paths 

that robots traverse while searching the workspace for resources. The robots 

are shown with blue or green dots. Green robots are carrying the collected 

targets to nest while blue robots are searching the space for resources. The 

black dots represent the targets. The target distribution shown is a partially 

clustered distribution. The spiral pattern starts from the central collection
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point. The robots’ path from the nest to the search position and vice versa 

are not displayed. The additional details of spiral generation and DDSA can 

be found in [16].

3.3 Proposed Path planning and Collision avoidance 

approach

In the case where the robot paths are coincident, the robots may collide along 

the path. When multiple robots collect resources from the cluster and travel 

towards the “nest” location a reactive collision method is used to avoid the 

collision. However, the reactive collision method is not effective and spends 

lot of time when the robots are traveling in opposite directions. When one 

robot deposits the resource and tries to return to the search position, its path 

is coincident or closer with other robots who have collected the resources from 

the cluster. In this case, a “waypoint” at a certain angle and distance from 

the nest is added in order to add space between the paths of robots and avoid 

the collisions near the “nest” . Similarly, there is a chance of intersection of 

robot paths when one robot is searching for resources and another robot is 

traveling to the “nest” to deposit a resource or vice versa. In this case, the 

robot that is farther form the collision point is stopped such that it allows 

another robot to pass without collision.

The efficiency of the added “waypoint” is dependent on the angle be­

tween the two vectors i) path from the search position to the nest position;
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ii) path from the nest position to the new “waypoint” . Also the spatial dis­

tance added affects the efficiency of the added “waypoint” . The “waypoint” 

added forms a triangular path along which the robot travels and helps add 

safety margin between the incoming robots to the “nest” and outgoing robots 

from the “nest” . To select optimal angle and distance parameters of the new 

waypoint, the performance of the proposed algorithm is checked on different 

value combinations of waypoint angle and waypoint distance. These combi­

nations are called different waypoint sets. For intersecting robot paths, the 

time delay interval is calculated using the time, displacement and velocity 

kinematics.

This thesis is tested on only one cluster of size 8 x 8  and can work for 

any single cluster scenario in the workspace. Any central place foraging 

approach can be used for searching the cluster. This thesis uses DDSA [16] as 

central place foraging algorithm. The path planning and collision avoidance 

approach is integrated with the DDSA to solve the congestion problem at 

the “nest” location.

Figure 5(a) displays the reactive collision avoidance approach for coin­

cident paths in DDSA. Figure 5(b) shows the coincident case for PPCA- 

CCPFA. The robot travels a triangular path before returning back to its 

search position. The spiral search paths are not shown in the figure. The 

formulation of the collision avoidance and path planning can be described as 

follows:

• Coincident paths: The robots search the space for resources in spi-
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Figure 5: Comparison of Coincident Case in PPCA-CCPFA and DDSA

ral. If the robot encounters a cluster resource, it goes towards the 

central depot to deposit the resource. While going back to the search 

position, the robot goes to a “waypoint” calculated at a certain angle 

and distance from the position of the robot at the central location. The 

“waypoint” is always to the left of the path of the robot from its “nest” 

position to the search position. Adding the waypoint to left makes sure 

that robot does not get in the way of other robots collecting resources 

from the same cluster. Let S (X si, y si) be the search (start) position 

and G (x gi, y gi) be the goal position of the robot i. Let the distance 

of the waypoint from the nest be d and the angle of rotation be given 

by Q, The rotation angle is calculated with respect to the angle of 

vector (Xgi — X si, y g i—y si). The center of the nest is given by
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the origin. The waypoint coordinates to be calculated W (xwi, y wi) is

given by:

x m =  d c o s  Qt (1)

ywi =  d sin di (2)

• Intersecting paths: The intersection of paths is possible for a robot 

searching in spiral path and another robot going to “nest” to deposit 

the collected resources or vice versa. The robot farther from the inter­

section or collision point is stopped. Let S(xsi, y si) be the start and 

G (x gi, y gi) be the goal position of robot i. Let S(xsj, y sj) be the start 

and G(xgj, y gj) be the goal position of robot j . Let di be the distance 

of the robot j  from the start point to the intersection point and simi­

larly, let dj be the distance of the robot j  from the start point to the 

intersection point. The time to reach the collision points of respective 

robots can be easily calculated with the knowledge of robot linear and 

rotation velocities. Suppose ti and tj be the times to reach intersection 

points for the robots i and j

The robot farther from the collision point can be found out by:

dfarther =  m ax (d i,d j ) (3)

The time interval At added to stop the robot farther from the collision
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point is given by:

At =  min ( tu t,) (4)

Algorithm 1 PPCA-CCPFA
>  Distributed across robots 

1: for all Robots i ^  0 to R do
2: if Path Planning and Collision Avoidance Activated then
3: if Target Collected or Target Deposited then
4: FindNeighbors() ^  N
5: M ^  ComputeCollisionMatrix( );
6: for all Robots i ^  0 to N do
7: for all Robots j  ^  (i + 1 ) to (N — 1 ) do
8: if M ,  = =  COINCIDENT then
9: SetWayPoint() ^  W

1 0 : W ^  CalculateWayPoint();
11: if Robot going away from the nest then
12: Go to waypoint W
13: end if
14: else if Mi,j = =  INTERSECTING then
15: if Robot is farther from Collision Point then
1 6 : A t ^  CalculateStopTime();
17: StopRobot();
18: end if
19: end if
20: end for
21: end for
22: end if
23: end if
24: end for

The PPCA-CCPFA approach is presented in Algorithm 1. For a robot 

swarm of size R, every robot that collects or deposits the target, finds its 

neighbors N within certain radius. Then, the robot computes an adjacency 

matrix for its neighbors indicating the values of No collision or Intersecting
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Paths or Coincident Paths. Then, every element of the matrix is checked for 

the values. If the value is Coincident Paths and the robot is going to the nest, 

waypoint for robot is calculated based on the parameters of waypoint distance 

and waypoint angle. The waypoint is added only when the robot deposits 

the collected target. If the matrix element value is Intersecting paths, then a 

delay time is calculated based on the speed, distance and time to reach the 

intersection point. If the robot is farther from the intersection point than its 

neighbor, then a delay is added to the robot to avoid the collision.

The base algorithm for 1 is the DDSA described in [16]. Path planning 

and collision avoidance is checked every time the robot collects or deposits 

a resource. PPCA-CCPFA is independently distributed across every robot 

in the swarm. The robot that collects or deposits the resource first finds 

its neighbors within its specific radius. The scope of the thesis does not 

include methods of communication for finding the neighbors. A collision 

matrix is calculated for the robot which defines the type of collision of the 

robot with its neighbors No collision, Intersecting paths or Coincident paths. 

Depending on the type of collision, the path planning and collision avoidance 

technique is implemented. The approach in this thesis is integrated with the 

DDSA [16] and hence, the path planning and collision avoidance approach is 

activated once every robot in the swarm completes its one spiral of searching 

the workspace. This allows the proposed approach to function properly and 

efficiently.

The integration of PPCA-CCPFA with DDSA is shown in the Algorithm
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Algorithm 2 Integration of PPCA-CCPFA with DDSA
>  Distributed across robots

1: for all Robots i ^  0 to R do
>  Create a spiral pattern to follow and store it

2 : for c ^  0 to N Circuits do
3: Q.enqueue
4: Q.enqueue
5: Q.enqueue
6: Q.enqueue ( (—gDw( i, C, R) , 0 ))
7: end for

>  Start at collection point and perform spiral
8: while —Q.empty()  do
9: if Check if First circuit completed then

10: Activate PPCA-CCPFA
11: end if
1 2 : w  ^  s  + Q.dequeue()
13: Move toward w
14: if target found at current location s then
15: if PPCA-CCPFA Activated then
16: PPCA-CCPFA Check
17: end if
18: Return to collection point with target
19: if at collection point then
20: Deposit target
21: if PPCA-CCPFA Activated then
22: PPCA-CCPFA Check
23: end if
24: Return to location s
25: end if
26: end if
27: end while
28: end for
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2. The base algorithm for the DDSA is referred from [16]. The blue pseudo­

code is the part of PPCA-CCPFA . The black pseudo code is part of DDSA 

and the details can be found in [16].

Reactive obstacle collision avoidance is achieved through proximity sen­

sors. The robots turn either right or left depending on the direction in which 

other robot is detected. In the Coincident path case of PPCA-CCPFA, when 

multiple robots collect targets or deposit targets simultaneously, the robot 

that is farther from the central “home” location is stopped to insert a small 

delay. Readings of the proximity sensor can be used to check if the current 

obstacle detected is in the direction of the robot. Depending on the direc­

tion, a small delay is inserted. This delay helps maintain some safe distance 

between robots and avoids congestion.
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4 Simulation Results

4 .1  S e t u p

The problem domain of the central place foraging task should work efficiently 

over different resource distributions in the workspace. In this thesis, the focus 

is on clustered resource distribution inspired by the way resources are found 

in the real world. Also the collisions around the “nest” are more as multiple 

robots collect resources from the cluster simultaneously. To evaluate the 

proposed PPCA-CCPFA approach, a cluster distribution with single cluster 

of size 8 x 8 .  is used The performance of this approach is evaluated by 

measuring the target collection rate and average collision rate for multiple 

random locations of the cluster in the workspace.

The simulator used for this thesis is the ARGoS simulator [103]. AR­

GoS simulator is a multi physics robot simulator. The simulator provides 

high accuracy (close similarity to real environments), high flexibility (sup­

ports heterogeneous robots) and high efficiency (optimized computational 

resources to provide shortest simulation run time possible). ARGoS can 

simulate complex environments with a large heterogeneous robot swarm.

In the experiments, 64 resources in the form of single 8 x 8  cluster are 

randomly placed in the square arena space of 100  m 2. All experiments run 

for 30 minutes. The performance of DDSA [16] and the proposed approach 

are compared on 10 random locations of clusters in the arena. Update cycle

52



Figure 6: Initial ARGoS configuration of PPCA-CCPFA and DDSA

of 480 per second for 2D physics solver in ARGoS simulator is used for the 

experiments. The robots simulated have parameters similar to the physical 

iAnt robots [16, 18]. The simulation setup is similar to the DDSA [16] so 

that it is easier to compare its performance with that of the thesis. To 

simulate the robot hardware, the robot has 8 cm radius with a camera 

facing downward to detect the resources. The resources have a radius of 

5 cm. The gap between the spirals is 13 cm [16]. The robot has a forward 

speed of 8 cms- 1 and a rotation rate of 10 cms- 1 approximately equal to 

1 .25  rads- 1. The “nest” radius is 4 cm and it is assumed that the “nest” 

is represented by a beacon [16, 18] . The robots move 8 cms- 1 towards
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their goal between reorientations [16, 104]. There are no static obstacles in 

the arena. The parameters for the PPCA-CCPFA approach: location of the 

cluster, the distance of “waypoint” and angle of the “waypoint” along with 

the environment and robot parameters mentioned above can be configured 

in the ARGoS simulator. Figure 6 shows the initial configuration with 3 

robots and one 8 x 8  cluster placed at a location. The elements in the 

Figure 6consists of central gray area represents the nest, single 8 x 8  cluster 

of resources represented by black dots, white space is the arena with green 

walls and the three blue dots represent the robots. The performance of each 

approach is evaluated at 10 different locations of the cluster for swarm size 

of 3 to 15 robots.

4.2 Results

The performance evaluation is measured using target collection rate and 

average collision rate for the swarm size of 3 to 15 robots. The performance 

is also measured in terms of target collection rate and average collision rate 

per robot for a particular swarm size. The experiments are performed for 16 

combinations of “waypoint” distance and “waypoint” angle. The consistent 

performing values of “waypoint” distance and “waypoint” angle are compared 

with the performance of DDSA. The table 2 specifies the combination values. 

The combination values depend on the robot radius and a gap distance that 

need to be between consecutive robots.
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Serial No. Distance Angle

Set 1 0.2 m 30 degree

Set 2 0.3 m 30 degree

Set 3 0.5 m 30 degree

Set 4 0.6 m 30 degree

Set 5 0.2 m 40 degree

Set 6 0.3 m 40 degree

Set 7 0.5 m 40 degree

Set 8 0.6 m 40 degree

Set 9 0.2 m 70 degree

Set 10 0.3 m 70 degree

Set 11 0.5 m 70 degree

Set 12 0.6 m 70 degree

Set 13 0.2 m 80 degree

Set 14 0.3 m 80 degree

Set 15 0.5 m 80 degree

Set 16 0.6 m 80 degree

Table 2: “Waypoint” Distance and “Waypoint” Angle for PPCA-CCPFA
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The performance of PPCA-CCPFA is evaluated based on the distance 

and angle of the “waypoint” . The best performing set is chosen by analyzing 

the graphs and selecting the most consistent performing set with respect to 

the DDSA. For each angle, the best performing distance is selected. Later 

the four sets of angle and distance are compared to simplify the consistent 

performing set. Two parameters considered for performance evaluation: rate 

of target collection and rate of average collision. The rate of target collec­

tion specifies the number of targets collected in 30 minutes for each swarm 

size. The rate of average collision specifies the average number of collisions 

encountered by all the robots in 30 minutes altogether for a swarm size.

Figure 7 shows the comparison of DDSA and PPCA-CCPFA with Set 

values of: Set 1 to Set 8 for Target Collection Rate. Similarly, Figure 8 

shows the comparison of DDSA and PPCA-CCPFA with Set values of: Set 

9 to Set 16 for Target Collection Rate. The mean values of rate of target 

collection over 10 cluster locations are plotted in the Figures 7 and 8. The X- 

axis represents the swarm size and the Y-axis represents the average number 

of targets collected by the swarm per second.

Figure 9 shows the comparison of DDSA and PPCA-CCPFA with Set val­

ues of: Set 1 to Set 8 for Average Collision Rate. Similarly, Figure 10 shows 

the comparison of DDSA and PPCA-CCPFA with Set values of: Set 9 to Set 

16 for Average Collision Rate. The mean values of rate of average collision 

rate over 10 cluster locations are plotted in the Figures 9 and 10. The X-axis
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Figure 7: PPCA-CCPFA vs DDSA: Set 1 to Set 8 for Rate of Target Collec­
tion

Figure 8: PPCA-CCPFA vs DDSA: Set 8 to Set 16 for Rate of Target Col­
lection
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represents the number of robots in the swarm for a particular experiment 

and the Y-axis represents the average number of collisions encountered by 

the swarm per second.

Figure 9: PPCA-CCPFA vs DDSA: Set 1 to Set 8 for Average Collision Rate

Figure 10: PPCA-CCPFA vs DDSA: Set 8 to Set 16 for Average Collision 
Rate
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The higher the value of the Y-axis, the better is the target collection rate 

for the swarm in Figure 7 and 8. Lower values of average collision rate mean 

lesser collisions encountered by the swarm. The algorithm that defines these 

two characteristics demonstrates better performance. Thus, from the Figures 

7, 8, 9 and 10 it can be said that the 4 sets that show a combination of higher 

target collection rate and lower collision rate are: Set 4, Set 7, Set 11 and 

Set 16.

The consistent performing sets are selected and compared to the DDSA. 

Figures 11 and 12 show the comparison of consistent performing sets of 

PPCA-CCPFA. The selected sets have better target collection rate as well 

as lower average collision rate than the DDSA for swarm size of 3 to 10.
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Figure 11: PPCA-CCPFA vs DDSA: Consistent performing sets for Rate of 
Target Collection
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Figure 12: PPCA-CCPFA vs DDSA: Consistent performing sets for Average 
Collision Rate

The target collection rate with confidence interval of 9 5 %  and average 

collision rate with 9 5 %  confidence interval indicating the range of values 

that are observed 95% of the time when experiments are performed are 

shown in Figure 13 and Figure 14, respectively. From the figures, it can 

be observed that PPCA-CCPFA algorithm with parameters “waypoint” dis­

tance =  0 .5  m and waypoint angle =  40  degrees  perform better than the
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DDSA for swarm size range of 3 to 10. The performance of PPCA-CCPFA 

algorithm however, decreases with the increase in the swarm size.

Figure 13: PPCA-CCPFA vs DDSA: d =  40  deg and d =  0 .5  m set for
Rate of Target Collection
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DDSA vs PPCA-CCPFA: Average Collision Rate

Figure 14: PPCA-CCPFA vs DDSA: Q =  40 deg and d =  0.5 m set for 
Average Collision Rate
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Figure 15: PPCA-CCPFA vs DDSA: Q =  40 deg and d =  0 .5  m set for 
Rate of Target Collection per robot
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Figure 16: PPCA-CCPFA vs DDSA: d =  40  deg and d =  0 .5  m set for 
Average Collision Rate per robot

The target collection rate per robot and average collision rate per robot 

with 9 5 %  confidence interval is shown in the Figure 15 and Figure 16 re­

spectively.

4 .3  A n a ly s is

The main area of investigation in the thesis is the interference observed in 

robots for the clustered resource distributions. The number of collisions ob-
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served near the cluster and central “home” location increase with the cluster 

distribution affecting the performance of central place foraging algorithms. In 

the DDSA and the CPFA algorithms, targets are collected faster in the uni­

form resource distribution than in the clustered resource distribution. This 

can be due to the unequal allocation of targets to the robots and increased 

collisions between the robots [16, 18, 51]. This inspires the focus of this thesis 

on collision avoidance for clustered resource distributions.

Figure 13 shows the performance comparison for the DDSA and PPCA- 

CCPFA for the rate of target collection. The thesis approach aims at reducing 

the number of collisions and improving the resource collection rate. It can be 

seen from the Figure 13 that the PPCA-CCPFA approach performs slightly 

better than the DDSA for the swarm size in the range of 6 to 10. The average 

target collection rate is improved by approximately 3%  for the swarm size 

of 3 to 10. The best performing swarm size of 10 followed by 9 is observed 

in terms of target collection for PPCA-CCPFA. Whereas, DDSA has best 

performing swarm size of 11 in terms of target collection rate.

Figure 14 shows the average collision rate for the swarm for DDSA and 

PPCA-CCPFA. The average reduction in average collision rate for the swarm 

size 3 to 15 is approximately 33%  for the PPCA-CCPFA approach in com­

parison to the DDSA. The best performing swarm size in terms of average 

collision rate for the proposed approach is 6 followed by 10 and then 9. Thus, 

analyzing the graphs in figures 13 and 14, it can be observed that the PPCA- 

CCPFA performs best for swarm size 9. The swarm size 9 has both good
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target collection rate and lower average collision rate. Thus, optimal swarm 

size is 9 for the PPCA-CCPFA and the performance starts decreasing beyond 

this size.

Figure 15 shows the average target collection rate per robot for a par­

ticular swarm size for both the DDSA and PPCA-CCPFA. It is observed in 

foraging tasks that an increase in the swarm size reduces the performance of 

each robot in the swarm due to interference between the robots and competi­

tion for finite resources. It can be observed that the reduction of inter-robot 

collisions in the PPCA-CCPFA approach helps the per robot target collec­

tion rate by approximately 3%  for swarm size 3 to 10. Similarly, figure 16 

shows the average collisions observed in the swarm per robot reduced by 

2 9 %  for swarm size of 3 to 15. These figures help to understand the ex­

ploitation vs exploration problem for the central place foraging tasks. It can 

be observed that collision avoidance and path planning tasks help improve 

the exploitation of resources per robot in the swarm. Though, the PPCA- 

CCPFA approach does not fully help target collection efficiency per robot, it 

helps reduce the average collisions encountered per robot. The approach may 

help improve the target collection if combined with integration of recruitment 

and techniques with more intelligent understanding of the environment and 

communication between the robots [105, 44].

The main reason for low target collection rate improvement can be at­

tributed to the spatial delay that PPCA-CCPFA approach adds to avoid the 

collisions.This method reduces the number of average collisions but increases
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the trip time for the robots to reach their search position. The “waypoint” 

distance in some cases affects the target collection rate. In some cases, in­

terference near the added waypoint is observed if the cluster is located closer 

to the “nest” . Additional computation of waypoint distance with respect 

to cluster location may help reduce the current observed interference. The 

PPCA-CCPFA algorithm is activated once every robot completes its one spi­

ral search. Thus, for the swarm size of more than 10, the activation of the 

algorithm takes place pretty late and this in turn does not help in avoiding 

earlier collisions as well as adds additional time for target collection for the 

spatial delay added. The application of the PPCA-CCPFA on real robots 

may show better target collection rate as compared to the simulator. This 

is because the reactive collision avoidance on real robots take more time as 

compared to what is observed in simulators. The reduction in number of col­

lisions in the PPCA-CCPFA may reduce this time and help in better target 

collection rate for the clustered distributions. Recruitment and allocation of 

the proper number of robots for clustered resources may help improve the 

performance of per robot and help in the design of a scale invariant foraging 

robot system.
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5 Conclusion and future work

The focus of the thesis was to pursue performance improvements in the DDSA 

[16] using path planning and collision avoidance methods for the clustered 

resource distributions. This thesis presented adding spatial delay for coin­

cident paths and time delay for intersecting paths for the robots collecting 

resources from the cluster. The robots having coincident paths travel a tri­

angular path by going to a “waypoint” calculated based on parameters: dis­

tance and angle. Different combinations of “waypoint” distance and angle 

were used to observe the performance of the proposed approach. The time 

delay was calculated based on motion kinematics for the intersecting robots. 

The concentration was to avoid the congestion observed near the cluster and 

central depot location when multiple robots collect resources affecting overall 

performance of the central place foraging algorithm. The proposed approach 

then was compared to the popular DDSA [16] for performance evaluation 

with a single 8 x 8  cluster, swarm sizes of 3 to15 and ten random cluster 

locations.

The results showed that there was reduction of average number of colli­

sions among the robots and increment of target collection rate for the swarm 

size from 3 to 10. However, the target collection rate decreased with the 

increase in the swarm size. This is be due to the spatial delay that may 

have increased the trip time for the robots. It was also observed that the 

average number of collisions are reduced significantly and are lower than
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that observed for the DDSA [16] even when the swarm size increases. The 

“waypoint” used to avoid the congestion was calculated using different com­

binations of the distance from the nest and angle from the current path of the 

robot. Trial and error method for these combinations was tested and evalu­

ated. It was found that the distance of 0 .5  m from the center of the nest and 

angle of 40  degrees  performed better. The experiments were performed 

for 30 minutes and the performance of resource collection per unit time and 

collisions encountered per unit time were used to check the performance of 

the proposed approach.

Though, the approach reduced the number of collisions for the swarm, 

the target collection rate didn’t improve significantly due to the spatial de­

lay trial and error method. The performance can be improved by computing 

the angle and distance of the “waypoint” based on the cluster location in 

the environment. Also, the effect of time cost reduction due to the reduction 

in average collision can be observed properly on physical robots better than 

in a simulator. In real robots, the reactive collision avoidance methods con­

sume more time than what it takes in a simulator. To better evaluate the 

performance of the proposed algorithm, it is activated once every robot of 

the swarm completes its one search spiral. This is because the robots cause 

lot of congestion at the central depot location as every robot starts its spi­

ral from the “nest” . Thus, the algorithm gets activated comparatively late 

as compared to smaller swarm sizes in cases of larger swarm sizes and this 

hampers its performance. Random distribution of robots in the workspace
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at the start of the experiment may help in this case.

The thesis is a pilot project for using path planning techniques with cen­

tral place foraging algorithm to improve multi-robot foraging performance. 

The thesis can be improved by inclusion of proper recruitment and allocation 

of robots for exploration. By separating the search and collection phase, the 

recruitment and allocation can be achieved efficiently [105, 44]. This would 

result in initial searching cost time. However, it would efficiently help in de­

signing of scale invariant swarm foraging algorithm reducing the interference 

among the robots and increasing the target collection. It is highly worth in­

vestigating the causes for performance degradation when swarm size increases 

above 10. Also, it is worth investigating the performance of the proposed ap­

proach on different resource distributions and exploiting the clusters using 

optimal number of robots which would in turn simplify the path planning 

techniques.
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