
Channel Islands
C A L I F O R N I A S T A T E U N I V E R S I T Y

W h i r l p o o l : A microservice style scalable continuous topical web

crawler

A Thesis Presented to

The Faculty of the Computer Science Department

In (Partial) Fulfillment

of the Requirements for the Degree

Masters of Science in Computer Science

by

Report Compiled by: Rihan Stephen Pereira

Advisor: Dr. Michael Soltys

MSCS Graduate 2018-2019

December, 2019

© 2019

Rihan Stephen Pereira

ALL RIGHTS RESERVED

1

APPROVED FOR MS IN COMPUTER SCIENCE

Advisor: Dr. Michael Soltys

J a n 2 1 , 2 0 2 0

Date

Dr. Brian Thoms Date

Dr. Jason Issacs

Ja n .22, 2020

Date

APPROVED FOR THE UN IVERSITY

Dr. Osman Ozturgut Date

In order for California State University Channel Islands (CSUCI) to reproduce, translate and
distribute your subm ission worldw ide through the CSUCI Institutional Repository, your agreem ent to
the follow ing terms is necessary. The author(s) retain any copyright currently on the item as well as
the ability to submit the item to publishers or other repositories.

By signing and subm itting this license, you (the author(s) or copyright owner) grants to CSUCI the
nonexclusive right to reproduce, translate (as defined below), and/or distribute your submission
(including the abstract) worldw ide in print and electronic form at and in any medium, including but not
lim ited to audio or video.

You agree that CSUCI may, w ithout changing the content, translate the submission to any medium
or form at for the purpose of preservation.

You also agree that CSUCI may keep more than one copy of th is subm ission for purposes of
security, backup and preservation.

You represent that the subm ission is your original work, and that you have the right to grant the
rights contained in this license. You also represent that your submission does not, to the best of
your knowledge, infringe upon anyone's copyright. You also represent and warrant that the
subm ission contains no libelous or other unlawful matter and makes no improper invasion of the
privacy of any other person.

If the subm ission contains material fo r which you do not hold copyright, you represent that you have
obtained the unrestricted perm ission of the copyright owner to grant CSUCI the rights required by
this license, and that such third party owned material is clearly identified and acknowledged within
the text or content of the submission. You take full responsibility to obtain perm ission to use any
material that is not your own. This perm ission must be granted to you before you sign this form.

IF THE SUBMISSION IS BASED UPON W ORK THAT HAS BEEN SPONSORED OR SUPPORTED
BY AN AGENCY OR ORGANIZATION OTHER THAN CSUCI, YOU REPRESENT THAT YOU
HAVE FULFILLED ANY RIGHT OF REVIEW OR OTHER OBLIGATIONS REQUIRED BY SUCH
CONTRACT OR AGREEMENT.

The CSUCI Institutional Repository will clearly identify your name(s) as the author(s) or owner(s) of
the submission, and will not make any alteration, other than as allowed by th is license, to your
submission.

N o n -E xc lus ive D is tr ib u tio n L ice n se

T i t l e o f i t e m : W h i r p o o l : A M i c r o s e r v i c e S t y l e S c a l a b l e

Continuous

T o p i c a l W e b C r a w l e r 3 t o 5 k e y w o r d s o r p h r a s e s

to d e s c r ib e th e ite m : D is tr ib u te d s y s te m s ,

m e s s a g e q u e u e s (H Q) , d e d u p l i c a t i o n , a m a z o n w e b s e r v i c e s ,

docker Author(s) Name

(P r i n t) : R i h a n S t e p h e n P e r e i r a D a t e : 1 / 2 0 / 2 0 2 0

This is a permitted, modified version of the Non-exclusive Distribution
License from MIT Libraries and the University of Kansas.

Abstract

Historically, web crawlers/bots/spiders have been well known for indexing, ranking
websites on the internet. This thesis augments the crawling activity but approaches
the problem through the lens of a data engineer. Whirlpool as a continuous, topi­
cal web crawling tool is also a data ingestion pipeline implemented from bottom-up
using RabbitMQ which is a high performance messaging buffer to organize the data
flow within its network. It is based on a open, standard blueprint design of mercator.
This paper discusses the high and low level design of this complex program covering
auxiliary data structures, object-oriented design, addressing scalability concerns, and
deployment on AWS. The project name Whirlpool is used as an analogy referring to the
naturally occurring phenomenon where opposing water currents in sea cause water to
spin round and round drawing various objects into it.

3

Contents

1 Introduction 1

1.1 Contributions... 2

1.2 Motivation(the big ideas) .. 3

2 Background 7

2.1 Basic Crawling A lgorithm .. 7

2.2 Features of a C raw ler... 9

2.3 Crawl Ordering Problem ... 10

2.4 Related W orks... 13

2.5 Mercator Architecture .. 16

2.5.1 Fetcher, Parser, and D N S.. 18

2.5.2 Handling De-duplication... 18

2.5.3 URL Filtering ... 20

2.5.4 Duplicate URL Eliminator (DUE) .. 21

2.5.5 URL Frontier ... 23

2.5.6 Distributing Web Crawl .. 30

2.6 Software Design Principles.. 32

2.6.1 Open-Close Principle.. 32

2.6.2 Dependency In jection ... 34

2.6.3 Dependency Inversion... 35

2.6.4 Principles for designing scalable sy stem s...................................... 36

2.6.5 Managing State .. 38

I

2.7 Event-Driven Architecture.. 40

2.7.1 Message Queues (MQ) .. 40

2.7.2 RabbitMQ as a Message Broker.. 41

2.8 Amazon Web Services(AW S)... 43

2.8.1 AWS Cloudformation ... 45

2.9 Docker Containers .. 47

2.9.1 DockerFile... 47

2.9.2 Docker Compose ... 49

3 Implementating Whirlpool 50

3.1 RabbitMQ as a Central Message Bus ... 51

3.2 Shared Services with Docker .. 53

3.3 Developing code with Docker ... 55

3.4 Policy of assigning priorities & picking q u eu es... 59

3.5 SeenTest - Deduplication... 60

3.6 URL Frontier.. 62

3.7 Distributed crawling(splitting by key range vs. hash of k e y) 63

4 Whirlpool Operations 68

4.1 Infrastructure from 10,000 feet... 68

4.2 Infrastructure from 5,000 f e e t ... 72

4.3 Bastion H o st .. 75

4.4 Monitoring services with SSH Tunnels.. 77

4.5 IAM and roles ... 80

4.6 AWS Services Hardware Specfication & Cost Estimation........................... 84

4.7 Boot Process .. 87

5 Experiment Results & Justification 93

5.1 HTTP Fetch U R L ... 93

5.2 RabbitMQ Dashboard .. 94

5.3 Content SeenTest: Near Duplicate Detection... 98

II

5.4 Hash based rebalancing..100

5.5 MongoDB documents ... 101

5.6 Whirlpool as a Microservice Architecture.. 102

6 Conclusion & Future Work 104

References 106

III

List of Figures

1.1 Solid foundation for your data before being effective with AI & machine

learning. Source: Monica Rogati's "The AI hierarchy of Needs"[3o] . . . 3

2.1 Crawl ordering based on Coverage vs. Freshness...................................... 10

2.2 High-level organization of Mercator [12] ... 16

2.3 RobotsExclusionPolicysetbydice.com... 20

2.4 URL Frontier Scheme(based on Mercator) [1 2] ... 23

2.5 Frontier Front Queue [1 2] .. 27

2.6 Frontier Back Queue [12] ... 28

2.7 Host Partitioning [12] ... 30

2.8 A example JukeBox program using Open/Close Principle [2 1] 32

2.9 CD Player using Dependency Injection [2 1] ... 34

2.10 Functional Partitioning in Netflix as an example 36

2.11 redundant copes of same cached object [36]... 38

2.12 local locks preventing HS [36]... 38

2.13 clones using shared locking mechanism [3 6] .. 39

2.14 Message Queue with Producers and Consumers [3 4] 40

2.15 RabbitMQ broker terminology [34].. 41

3.1 Whirlpool seed set & its crawl ordering policy ... 50

3.2 Message Distribution using RabbitMQ Direct Exchange 51

3.3 Single-node Whirlpool Subsystem Isolation using Docker 53

3.4 Whirlpool Parser subsystem using Dependency Injection 59

IV

3.5 document fingerprinting only avoids exact duplicates............................. 60

3.6 near-duplicate detection using shingling[20].. 60

3.7 partitioning by hash of k e y .. 64

3.8 Rebalancing physical nodes by mod N .. 64

3.9 data movement when using modulo N .. 65

3.10 virtual nodes to reduce shifts in data movements between nodes............ 65

3.11 Rebalancing physical nodes with virtual n o d e s... 66

3.12 zookeeper used to maintain up-to-date information on which vnodes

are assigned to pnodes .. 66

3.13 zookeeper table .. 67

4.1 Whirlpool Infrastructure using VPC, AZ, and Subnet S iz in g 70

4.2 Whirlpool infrastructure with Route tables, N A T 72

4.3 simple tunnel [35] ... 77

4.4 poor man's VPN [3 5] ... 78

4.5 Existing accounts and service role... 80

4.6 Whirlpool Hardware Specification on A W S ... 84

4.7 Whirlpool Hardware Cost Estimation on A W S ... 86

4.8 docker pull, extract, start containers ... 92

5.1 HTTP request latencies for a sample of N request across s e e d s 93

5.2 Queued m essages... 94

5.3 Message R ates... 94

5.4 RMQ n o d e ... 96

5.5 File and Socket descriptors.. 96

5.6 RMQ Connections... 97

5.7 churn rate ... 97

5.8 RMQ Channels .. 98

5.9 adding new node to existing cluster of nodes .. 100

5.10 screenshot of collected data through crawler .. 101

V

1 | Introduction

A web crawler is a long running program that collects pages from the web and stores

them to the disk either in raw format or after extracting contents. Sometimes they are

also referred as random walker, worm, spiders, robot. Crawlers serve variety of purposes.

Web search engines are very well-known systems powered internally through crawlers.

Other uses are web data mining for performing analytics, archiving portions of the web

- a relevant active project is the Wayback Machine from The Internet A rch ive^] oper­

ating since 2000. Most recently, there is an ongoing attempt from Software Heritage^]

continuously crawl & archive publicly available source code repositories on the web.

This thesis is an attempt to implement a small-scale, special purpose crawler for collect­

ing data about various job postings from a chosen set of job portals active on the web.

As far as the scope of this thesis is concerned, the work done here does not dive into

cleaning & analyzing the data set but instead focuses on its system design, implemen­

tation, and deployment. The crawler architecture builds on a open blueprint design of

Mercator[12] which describes the design in enough detail but leaves out implementa­

tion specifics to developers.

1

1.1 Contributions

• Use of Message Broker: In one case, the papers [12] [11] [4] [19] don't pro­

vide information on how the subsystems that make up a crawler are connected

together. This thesis makes use of message broker to facilitate collaboration be­

tween components thus providing asynchronous, event-driven style of commu­

nication and also highlights its strengths & weakness.

• Crawl Ordering Problem: Defines the scope of crawling activity without which

the problem of crawling becomes endless, infinite crawling.

• Distributing the crawl: Furthermore, this thesis shows the shortcomings of lin­

ear hashing used for partitioning hosts to distribute the crawl and instead em­

ploys a consistent hashing[16] algorithm and discuss its merits over it.

• Development strategy: Given this complex program at hand, it becomes obvious

to separate the concerns by developing each component in isolated pieces. This

thesis leverages docker containers to build the project in stages. It allows one to

split the development and production environment by building images for the

target platform to run the component.

• AWS Services: For running the crawler activity, this thesis combines together off

the shelf tools and sketches an infrastructure to setup, deploy and demonstrate

the program.

• Microservices: Lastly, this thesis explains the philosophy and principles behind

microservices [24] by relating it to work done in this thesis.

2

1 . 2 Motivation(the big ideas)

A long term goal of this project is to build the infrastructure to run basic data science

algorithms on the collected data and to tune the program characteristics to balance

coverage & freshness. A web crawler has its place at the very bottom of the pyramid

figure 1.1 doing instrumentation and logging.

f AI, \
DEEP

LEARNING

/ A /B TESTING. \
EXPERIMENTATION,

SIMPLE ML ALGORITHMS

ANALYTICS, METRICS,
SEGMENTS, AGGREGATES,
FEATURES, TRAINING DATA

CLEANING, ANOMALY DETECTION, PREP

RELIABLE DATA FLOW, INFRASTRUCTURE
PIPELINES, ETL, STRUCTURED AND
UNSTRUCTURED DATA STORAGE

INSTRUMENTATION, LOGGING, SENSORS,
EXTERNAL DATA, USER GENERATED CONTENT Brnrogati

THE DATA SCIENCE
HIERARCHY OF NEEDS

LEARN/OPTIMIZE

AGGREGATE/LABEL

EXPLORE/TRANSFORM

MOVE/STORE

COLLECT

Figure 1.1: Solid foundation for your data before being effective with AI & machine
learning. Source: Monica Rogati's "The AI hierarchy of Needs"[30]

Data science is used to build data products, optimize business activity, and also to gain

insights into consumer behavior. Lots of companies are eager to adopt it but all these

things can only be achieved correctly by building the layers of foundational work first.

According to Monica Rogati,

"Think of Artificial Intelligence as the top of a pyramid of needs. Yes, self-actualization

(AI) is great, but you first need food, water, and shelter (data literacy, collection, and

infrastructure)."

3

The skill and experience for building such data-intensive applications fall under the

discipline of data engineering^]. It is a superset of data warehousing, specializing around

the operation of distributed systems, stream processing, and handling computation at

scale.

4

A web crawler can be seen as a very attractive project and its complexity can easily be

overlooked. Given the apparent simplicity of basic crawling algorithm, it posses nu­

merous challenges. First of all, crawling the whole web is simply unrealistic even for

the world's most advanced crawlers. Considering the current scale of web and while its

still evolving, it is important to think thoroughly about characteristics of a crawler. A

choice to either seek broad coverage over fresh content or maintain a balance between

the two. Even a small scale version of a crawler can be built to be sophisticated and

scalable. Moreover, building a crawler sets a playground to address problems such

as concurrency, throughput, and load balancing. It is a program quite different from

traditional, client-server paradigm that can fanout from single source file to modular,

independent services that interact with each other through endpoints.

When discussing a system like a crawler, people often critic saying that

"Stop worrying about scale. You're not Google/Amazon. Just use a relational database."

- Critics

Well, that is true; building for scale without enough evidence from the metrics such

as logging, locks you into an inflexible design. It is also a form of premature optimiza­

tion. Along the same lines, there is also an urge felt to overengineer and loose focus

on simplicity. Engineers loves to solve puzzles and the challenge of building complex

software. Overengineering is basically building a solution that is much more complex

than is really necessary. This occurs when developer at a job tries to predict every pos­

sible use case and every edge case, eventually losing focus on the most common use

cases.

However, the author of this thesis believes that it important to survey different tech­

nologies as each have their own strengths and weaknesses and choose the right tool

for the job. The inclusion of message broker, docker, and AWS services to build the

5

crawler are introduced with a mindset of promoting good design which will allow one

to add more details and features later on. The design begins with a reasonable level of

abstraction and with multiple iterations will gives better results.

6

2 | Background

This chapter primarily attempts to familiarize the reader with enough groundwork

related to web crawlers. It also elaborates on the miscellaneous resources that are in­

tegrated to support the objective of this thesis. It begins by explaining the basic steps

taken by a crawler, followed by describing key features that underpin its system de­

sign. Properties of a crawler are discussed in the following section. A chronological

walk through of highly established crawlers and key differences are noted later in the

section. A section is dedicated to explaining the role of Message Queues. The remain­

der of this chapter covers different AWS services and docker used to interweave an

environment for executing a complex program.

2.1 Basic Crawling Algorithm

The basic operation of any HTTP based crawler goes like this:

1: Let I — 11,2,3,4,5} such that seed set S = {U ̂i G I}
2: Uf — S; where Uf is a Frontier queue
3: procedure S p i d e r (Uf)
4: while Uf = 0 do
5: u — deque(Uf)
6: p — fetch(u)
7: T — {extract(p, t) 11 is a text}
8: L — {extract(p, l) | l is a link }
9: Uf —— Uf U L

10: delete (Uf ,u) | u is a already fetched URL
11: end

The first run of a typical crawler program visits the links Ui from a finite seed set S,

shown above. The set S is copied to frontier queue Uf which handles the logic to output

7

the most appropriate url L to be visited. In a simple setting, the frontier queue Uf can be

imagined as a classical FIFO queue, however, it is much complex assembly of queues in

real-world crawlers. While queue Uf is not empty, url u is pulled out from the frontier.

The fetch function yields HTML page p after visiting u. Next step, page p is scrapped

to obtain textual data T and list of new links L. Finally, list of links are merged into Uf.

care is taken to disregard l that is already queued in Uf.

8

2.2 Features of a Crawler

The web is not a centrally hosted data warehouse but instead is comprised of billions

of independent web hosts, operating within its limits. Taking this into consideration,

a web crawler exhibits most of the following traits:

• Being polite to web hosts: A crawler shouldn't induce too much burden on target

host at the time when they crawl. By not regulating this behavior, it is blocking the

web site from pursuing its purpose or business and eventually there is a higher

possibility of have ramifications on the operator running the crawler.

• Resilent to spider traps a.k.a infinite loops: Some hosts mislead crawlers into

fetching page after page that never reach an end. Thus, a crawler should be robust

to such pitfalls.

• Distributing load: A crawler can make itself capable by distributing the load

across multiple machines. Distributing the load across multiple machines is also

a shared nothing architecture. It can make the crawler download web pages based

on geographical proximity reducing request-response latency.

• Scaling: Scaling and Distributed may sound similar but subtle difference is a scal­

able crawler's sole purpose is to cope up with load as it comes, in this case, pacing

the crawl rate as well as enhancing the crawl rate. With scalability in mind, the

architecture needs to be rethought on every order of magnitude of load increase.

• Page quality: A crawler should seek broad coverage by being an explorer but at

the same time it should be biased towards first selecting websites it is intended

to crawl.

• Extensible: Like any complex program, a crawler system design should be flexi­

ble and extensible on top of its core modules.

9

2.3 Crawl Ordering Problem

The purpose of a web crawler can be viewed as traversing the web graph. The crawling

order appears naturally to be breath-first problem (download pages following the links

as they appear). But since the web is so massive and still expanding such a crawling

activity is considered infinite and the crawler itself can be said to be random walker

with no purpose. Most of the commercial or even open source crawlers have some

sort of crawling order policy built into their system. It is a must for small-scale, special

purpose crawler to order the extracted URLs because the act of acquiring content is

restricted by various factors.

Coverage: Focus is on fetching pages that the crawler deems required.

Freshness: Here the focus is on revisting, redownloading already visited pages. Since

web 2.0, pages are capable of dynamically changing content and popularity of Single

Page Applications(SPA) has enabled rendering data through view logic controlled by

javascript.

10

As shown in the figure 2.1, Comprehensive Crawling[25] focuses on maximizing cov­

erage by reaching out to content of all types. A particular page p is weighted important

by counting external links outside current site's perimeter. Crawl order policies like

Breath-first Search, PageRank, and other variations are applied. Such activity is car­

ried out by Commericial Search Engines.

On the other hand, Scoped Crawling[25] narrows its crawling activity to certain por­

tion of the web i.e only crawl a specific category (e.g everything about Stock Market).

The crawling order is determined based on a degree to which a page p falls under its

umbrella. In constrast to Comprehensive, a Scoped crawler is suitable for data-mining

tasks by performing data collection on topics of interest.Topical Crawling[25] is a form

of Scoped Crawling in which page relevance is determined by - given a page p links to

another page p' and is in-scope(within bounds) either directly or through a series of

subsequent links. There are 3 techniques to order URLs to crawl.

1. Fish Search (Binary classification). Here, the relevance is measured by treating

links within visited page either relevant/irrelevant a certain height.

2. The relevance is estimated by doing textual analysis on text surrounding a link

in a visited page p that points to yet-to-be visited page q.

3. Train and query a Machine Learning classifier to get the score of a set of topics of

interest to crawl.

This crawler has to balance its greediness level by considering page relevance. It is pos­

sible that an already relevant page p may not always yield a new relevant page but it

might after going through several links of irrelevant pages. If the crawler is designed

to be too greedy then it will have zero coverage which in turn means it won't discover

new pages in its journey. A decay factor can be used to allow irrelevant fetches with

an ultimate intention of finding relevant page of interest.

11

Finally, freshness is the attribute that makes the design of crawler being either con­

tinuous or non-continuous. The question of balancing content coverage and freshness

in a crawler is solely a decision of entity behind it. A batch crawling [25] design requires

restarting of a crawler at periodic interval to download revised content of previously

crawled pages. A continuous or incremental crawling[25] design would be technically a

program that never terminates to revisit previously crawled pages.

12

2.4 Related Works

Web crawling is well studied topic, several crawlers emerged and vanished, some de­

signs weren't open while some were not documented. This section briefly talks about

history of web crawlers that have existed.

Wanderer [31] was the first crawler that was written in Perl in 1993. It ran on a single

machine. It was used for collecting statistics and later used to power first search engine.

MOMSpider [31] came into existence in 1994. It rate-limited requests to the web

servers by introducing Robot Exclusion Policy. It allowed crawler operator to exclude

sites, no focus on scalability, used DBMS to store URL's and state of crawls.

Internet Archive [15] crawler addresses the challenges of growing web. It was de­

signed to crawl 100 million URL's. Used disk-based queue to store URL's to-be crawled,

made use of bloom-filter to determine whether a page was previously crawled and if so,

that page was not visited again. It also addressed politeness concerns and optimized

Robot Exclusion Policy lookups. Apache Hendrix is a open-source out-of-box crawler

used by the Internet Archive project entirely written in Java.

Mercator [12] came out in 1999. The paper discusses the blueprint design of its crawler.

Initially it was non-distributed. It addressed social aspects of crawling through its fron­

tier scheme. The announcement of a 2nd paper incorporated a host splitting compo­

nent that made the crawler execution model distributed. It was extensively used in

web mining projects. It ran on 4 machines for 17-days crawling over 891 billion pages.

The program was designed with extensibility in mind and implemented fully in Java.

The blueprint design is discussed in much detail in section 2.5 as it forms the basis of

crawler designed for this thesis.

13

The Polybot[32] web crawler also had a distributed design. It had a crawler manager

handling multiple downloading process. It ran on 4 machines for 18 days and crawled

over 120 million pages.

IBM Webfountain[10] crawler was distributed, featured multi-threaded crawling pro­

cess called 'ants'. It was polite and can be configured to change politeness policies on

the fly. Re-downloading of pages a.k.a freshness was based on historical change rate

of pages. Webfountain was written in C ++ & used Messaging Passing Interface(MPI)

to allow collaboration between processes. It was deployed on 48 nodes.

Ubicrawler[4], 2004, was yet another scalable distributed web crawler. It employed

a consistent hashing algorithm to cope up with the addition/removal of nodes desig­

nated for carrying out crawling task. The consistent hashing is explained in detailed

in chapter 3 section 3.7. By using this technique it demonstrated graceful performance

degradation in the event of failure. It was deployed on 5 nodes and downloaded 10

million pages a day. This program was written entirely in Java.

14

Multicrawler [11], 2006, focused less on performance and crawl rate but more on de­

tecting, transforming multiple formats of semantic web data.

IRLbot [19], 2009, is the most recent comprehensive crawler studied and implemented

for over 3 years. It discusses its own implementation to address the increasing com­

plexity of verifying unique URLs accumulated over time. Most notably it provides a

solution to mitigate spider traps created by web sites. IRLbot was able to successfully

crawled 6.3 billion valid HTML pages on a single machine.

Apart from this, there exist open source web crawlers written in various languages

notable ones are Apache Nutch(Java), Scrappy(Python).

15

2.5 Mercator Architecture

This section proceeds into a detailed description of Mercator[i2] web crawler surveyed

in section 2.4. Figure 2.2 is a high-level composition of the same. As seen, Mercator

specializes different steps defined in the basic crawling algorithm covered in section

2.1 and adds several other steps to address the social and scalability challenges of a

web crawler. Its blueprint design offers distributed load sharing and therefore if im­

plemented can run on more than one node. Each part that contributes to mercator

crawler can also be referred to as a component, module, subsystem, etc. They can be

used interchangeably from this point onward.

Each work cycle begins and ends at the URL Frontier. Depending on what needs to

be achieved, the entire crawler can run as a single process or can be partitioned into

multiple processes - treating each subsystem as a process. Given a single URL, it goes

through the cycle of being fetched followed by passing through various checks, filters

and eliminations, then finally returned to the Frontier (for incremental crawling).

At the beginning of each logical loop cycle, a worker thread pops a URL from the Fron­

tier data structure adhering to the priority and politeness policy. The output URL is

then fetched by HTTP fetcher subsystem - which like any other web client contacts DNS

16

module to get IP address of the corresponding web server. The web page is then re­

trieved and stored at a temporary location which is then picked up by parser subsystem

which forwards the path to the page and extracted links to content seen and URL filter,

respectively. The batch of URLs undergoes a fixed set of pre-processing steps at the

URL filter subsystem before being passed over to Duplicate URL eliminator (DUE).

The DUE module tests each URL to determine whether the link should be added to

the URL frontier. It maintains a historical database of checksums corresponding to the

URLs.

*7

2.5.1 Fetcher, Parser, and D N S

It occurred to designers of Mercator that the task of fetching each URL from seed set

or newly discovered links is complex. First, the request made to the web server at a

given URL endpoint will have several outcomes as a response. Therefore, it becomes a

bottleneck to the implemented fetcher as only single threaded, blocking synchronous

module. Instead it should be written as a multi-threaded, synchronous I/O or non­

block, asychronous I/O to speedup the operation. Moreover, it is also inefficient to

have DNS resolve a given URL's IP address each time a fetch request is made to the

same web server. This can be fixed by having a cache of lookup pair for each web

host in the frontier. According to Mercator designers, another difficulty is that the

lookup implementation itself of DNS entries is blocking; meaning that at a time only

one request is considered and completed and all other requests queue up. The solution

for this is yet again a multi-threaded approach or a asynchronous I/O wrapper.

2.5.2 Handling De-duplication

Any professional or sophisticated crawler has the capability to minimize De-duplication.

De-duplication simply tests whether a web page with the same content has already

been seen at another URL. As per figure 2.2, the content seen subsystem takes care of

the same. There exist three established methods to solve this problem.

Document Fingerprinting(checksums)

A digital fingerprint uniquely identifies a file by mapping large data inside a file

to a shorter string. This method is straight forward way to control data duplica­

tion. Widely deployed fingerprinting functions are one-way cryptographic hash

functions such as MD5, SHA, and bcrypt. However, this simplistic approach fails

to detect near duplicates which is much needed for tools like crawlers

Bloom Filter

This is a data structure which gives a probability of same document being al­

18

ready present in the data store. One downside is sometimes it also gives false

positives, meaning, the filter outputs saying 'the document already exist but in

fact it doesn't'. This can be used for avoiding near duplicates but at the cost of

missing unseen files due to false positives. This can be tackled by resizing the bit

vector to uniformly distributed the hashes. strategy.

Shingling

In many cases, the contents of one web page is similar to other differing only

by few keywords, for example - the published date and time. This technique

does textual analytics to detect near duplicates. Shingles[2o] improve over bag

of words technique because it ignores the context of words. Shingling overlaps

phrases of neighboring few words at a time much like shingles on a roof. Minhash

[20] and Simhashing [6] are best known non-trival implementations for near­

duplicate detection.

19

The URL Filter[i2] component takes input a batch of extracted URLs, applies a se­

ries of tests, modifiers on each URL, composes a newer batch of URL which fall in

its criteria and forwards it to the next subsystem. For instance, assume a set of links

[U\, U2, U3,U4, U i] extracted from pagep, there is a possibility that some U's link are

relative to the page p, in such cases, this component normalizes such U's turning them

into absolute URLs. Also, the crawler can enforce a rule to exclude out of bound URls

- those that don't fall within a given list of domains.

2.5.3 URL Filtering

U ser-agen t: *
D is a llo w : /adm in
D is a llo w : /jobman
D is a llo w : / r e p o r ts
D is a llo w : / ta le n tm a tc h
D is a llo w : /profm an
D is a llo w : /regman
D is a llo w : /ows
D is a llo w : /c o n f ig
D is a llo w : /m2
D is a llo w : / jo b s e a rc h /
D is a llo w : / jo b
D is a llo w : / fe e d /
D is a llo w : /resum epost
D is a llo w : / p r o f i l e /
D is a llo w : / r s s /
D is a llo w : / s a la r y - c a lc u la t o r ? t i t le *
D is a llo w : / jo b s ? q *
D is a llo w : / jo b s /? q *
D is a llo w : /c a n y o u h a c k it/
D is a llo w : / c a r e e r - p a th s ? t i t le
D is a llo w : / s a la r y - c a lc u la t o r - f o r - t e c h - h i r in g
D is a llo w : / d a f / s e r v le t /
D is a llo w : / jo b s /d c - *
D is a llo w : / j o b s / d j t - *
D is a llo w : /p ro d u c ts /?
D is a llo w : *?CW>ID*
D is a llo w : * / jo b s .h tm l
A llo w : / jo b s
A llo w : / r e g is t e r
A llo w : /m o b ile

U ser-agen t: Googlebot-News
D is a llo w : /

Figure 2.3: Robots Exclusion Policy set by dice.com

Apart from these, many hosts regulate whats allowed/not-allowed for downloading by

placing a robots.txt file under root directory of a hosted web site. The standard is known

as Robot Exclusion Protocol. Figure 2.3 shows a robots.txt of dice.com. Its interpreta­

tion beginning at line one goes like no crawler should visit /admin, /jobman pages, but

it can visit /jobs, /register, and so on. A user-agent containing string Googlebot-news

20

is not legally allowed to crawl any of its pages. For each domain, the crawler fetches

robots.txt to test whether the URL under consideration passes the robot restrictions

and only then it is added to its Frontier data structure. Given a high locality that many

of the extracted links fall within the domain, it is efficient to cache robots.txt rule into

an in-memory data store. The cache expires and redownloads robots.txt for each do­

main several times a day to stay in sync with the rule changes.

It should be noted that it is always safer and courteous to include a note in request

header of the crawler indicating intentions to download the data, and also provide

your email address where the webmaster can contact you in case of any issues. Also,

it is a good practice to enforce strict compliance with domain's robots.txt rules.

2.5.4 Duplicate URL Eliminator (DUE)

A batch of URLs qualified from URL filtering subsystem arrives at DUE[12]. Some­

times it s also referred to URL-seen test. DUE guards the URL Frontier by eliminating

multiple instances of the same URL from adding to the Frontier. It also keeps history of

set of URLs that were previously added to the URL Frontier and those that are currently

in it. The fire-and-forget, one-time crawl URLs are only crawled once. In continuous

crawling Frontier scheme, some URLs are revisited periodically for new information,

in such cases, the DUE has to delete its traces from its state.

Understanding the behavior of DUE explained in above paragraph, the size of URL

set stored in relational database on disk will grow linearly as the size of web corpus

grows irrespective of whether the crawler is continuous/non-continuous. Since the

DUE has to make sure that it isn't adding duplicate URL to the Frontier, it will check

against each entry in the URL set table. This will hamper DUE throughput and increase

disk seek latency over time i.e the time taken to check and respond for existing entry

increases. Each insertion in the URL set table is a fixed size checksum of textual URL

along with the mapping to URL itself. The checksum algorithm should be such that it

21

has exponentially small probabilistic bounds on the likelihood of collision in the URL

set.

To reduce the number of operations required to DUE each URL in a batch, several

optimizations can be combined. First, keeping an in-memory cache objects of popu­

lar URLs. The intuition for this is continuous crawling URLs endpoint will be revis­

ited. But again with this, the cache hit rate is low as ratio of continuous to one-time

crawls can be 20:1. Also as the computed checksums of the URLs are highly unique,

it has lower locality, so the checksums that miss the cache will require disk access and

disk seek. Secondly, taking advantage of high locality of checksum hostname(domain

name) concatenating with checksum of absolute URL for that domain name results

in same host names being numerically closer to each other. This in turn translates to

access locality on the URL set.

22

2.5.5 URL Frontier

The URL Frontier[i2] subsystem receives a batch of URLs from its counterpart(it is

either DUE or hostsplitter in case of Distributed crawling). It maintains those URLs in

the Frontier and propagates them in some order whenever the fetch module seeks a

URL from it.

Figure 2.4 is not just a simple queue but a complicated data structure. It includes mul­

tiple pages from the same host. It avoids trying to fetch all those pages from the same

host at the same time because may be the crawler can overload the server which is not

a good policy. Also, the fetch module should not wait doing nothing, instead keep the

23

module busy. Thus, it balances the tradeoff between not bombarding the server and

also keeping the fetch module busy so that if fetch is not crawling that website at least

it can go to some other server and fetch some pages from there.

24

Following are important considerations that dictate the order in which the URLs are

returned or pulled from the frontier. As mentioned earlier, simple priority queue fails

as there is high locality of pages that go to its own site, creating a burst of accesses to

that site.

• Explicit politeness:[25] obeys any specifications from webmaster on what por­

tions of the site site can be crawled, see section 2.5.3 for more details.

• Implicit politeness:[25] Avoids hitting any site too often even though no speci­

fication exist on the site.

• Freshness: crawl some pages more often that others.

A common heuristic to handle politeness is to insert a time t gap between successive

requests r such that,

t(ri) > t(ri-i)

t(ri) = (K.l(ri - 1)) + T S ...K is a variable delay factor

meaning the time taken by successive request t(rj) is order of magnitude larger than

time taken by most recently fetched t(ri-l request. K is the Crawl-Delay attribute found

in web hosts robot-exclusion protocol. It varies from host to host and its presence is ba­

sically to inform target crawler agent that it may revisit the host in integer N, where N

is usually seconds. On web servers where this attribute is not specified, general rule of

thumb is to set K to 10 sec. l(ri - \) is the latency of the request and T S is the timestamp.

K , l, and T S is the time buffer which is specific to this thesis crawler implementation

and is the earliest time t(ri) at which the host can be hit again.

It is important to visualize URL Frontier diagram figure 2.4 before diving into its pieces.

A URL follows the path into the Frontier and immediately encounters set of front

queues F . It enters into one of these F queues. There are also another set of queues

called B back queues. At some stage the URL will be pulled out of the front queue and

25

then sent into one these back queues. Later, at some stage, it will be pulled out of that

back queue and accessed by fetcher thread which then goes and actually fetches the

document at that URL endpoint.

Each front queue Fm in range { 1, 2, 3 ...m} and back queue Bn in range { 1, 2, 3 , ...n}

is literally a F IF O queue. The incoming URL gets classified into one of the 1, 2, 3, ..F

front queues

• Front queues Fm manage prioritization. They influence the rate at which you

ping the same web server again and again.

• Back queues Bn enforces politeness.

26

Figure 2.5: Frontier Front Queue [12]

Figure 2.5 gives a close inspection on Front Queues Fm. Incoming URL is assigned a

integer priority between 1 & m. Based on the priority assigned it is going to enter that

particular queue. priority Fi holds URLs for web servers that need to be crawled very

very frequently. For instance, let Ls be links, VLs e dice.com 1— > F 1 has highest crawling

requirement whereas VL s e jobs.com 1— > Fm contains URLs which has least crawling

requirement.

Heuristics for assigning priority,

• keeping track of how frequently the web pages are changing on a particular web

server and how authoritative the pages are, if it occurs a case where a refresh rate

is pretty high for any web server and pages happen to be important enough then

those web servers are going to be crawled more often

• Application specific.

27

The back queue B exist to achieve politeness because the crawler shouldn't hit the

server too frequently. Again, there are B back queues from {1 , 2, 3, ...n}, so when the

URLs are pulled out in biased order from F Front queues, they are going to enter into

one or more of these back queues.

Figure 2.6: Frontier Back Queue [12]

Recall the heuristic to handle politeness explained earlier, each back queue Bn corre­

sponds to a particular domain. For e.gback queue Bi is for server monster.com, B 2 could

be the server indeed.com, and so on. So all the URLs which have base name dice.com,

when they emerge from the front queue enter queue B 1. Furthermore, Back queues

maintains a minimum priority heap data structure in which the keys are such that the

parent key k is less than the key of both of its children i.e k < 2 k and 2 k + 1 and so the

smallest item in the heap is at the root of the heap.

The size and vertex V (q,t) of the heap is B. the key q from vertex pair (q, t) in it maps

to one of the servers/back queues Bn. The value t is going to be threshold timestamp

thts which is the value of time before which I am not allowed to hit the same server Bn

28

again. The very fact that back queue structure maintains a minimum heap is that its

particular root represents the server which has the least value of the timestamp. Its the

very server that is allowed to query next before it queries any of those other servers. A

URL u is pulled out from the head of server queue q and fetched by fetch module. This

is handled by back queue selector function

While this cycle continues, the back queue router ensures the server queues Bn are

non-empty. It is busy with pulling a URL u! from the head of front queue picked up by

some randomize front queue function. Following this, it checks whether server queue

q exists for u', if so, then it gets added to that queue. It goes again to pull another URL

w, this time it sees that server queue q is now empty and there insert w in it and re­

names the q to q‘. During the same iteration, the process sinks a new vertex V' (q', t')

on to the min-heap based on the meta-information of w such as time t' .

29

2.5.6 Distributing Web Crawl

A crawler program as a whole can be distributed for various reasons. A distributed

crawler can crank up crawling rate. This is achieved by making a identical clone of

single node crawler and replicating it onto another machine. Another advantage of

distributing the crawl is that a subset of websites are crawled by a machine which is

geographically closer to its data center/region. The immediate question is how does

mercator extend its architecture and also how do these nodes communicated and share

URLs is shown in figure 2.7.

Figure 2.7: Host Partitioning [12]

Lets say there are 3 different nodes designated to crawl the web M\, M2, M3. All the

hosts that are being crawled are partitioned into 3 sets. Imagine taking every single

web server on the web or in the seed set, taking the URls for those servers, and hashing

those URLs in the integer range i E { 1, 2, 3}. For instance, web server address usjobs.com

could get hashed to an integer 2. So all those URLs that are being stored by that web

server will be parsed by node M2 while the other two nodes do not fetch documents

located on usjobs.com.

30

The key to the implementation is the host splitting[i2] component shown in figure

2.7. The component at machine Mi computes which machine is meant to crawl the

URLs of usjobs.com. It takes the URL, looks at its server's address and hash it to the

integer 2 upon which it knows M2 is supposed to crawl URLs located on this server

and therefore sends it to node M2. Looking at the snapshot of node M2, it has passed

content seen, URL filter tests which confirms the incoming URL from different node is

valid and need not go through the tests again. The only thing node M2 has to check is

whether that URL already exists in its own local URL frontier version or its own DUE.

If the URL is new, the node will add it to its own URL frontier. At the same time node

M i simultaneously receives URLs that it is supposed to crawl from those other nodes

[M 2 ,M 3 }.

31

2.6 Software Design Principles

This section mentions few core design principles necessary to maintain healthy code­

base and knowledge to build scalable software. The design patterns are abstract and

universally applied in different programming paradigms.

2.6.1 Open-Close Principle

When a certain code is designed with an intent to extend it but does not need any

modification whenever requirements change or when new use-case is requested, such

code is said obeying open-close principle[21]. In other words, it is open for extension

and closed modificaiton. This design process gives more flexibility to the program and

make future changes cheaper.

Figure 2.8: A example JukeBox program using Open/Close Principle [21]

Consider an example of this principle in image 2.8, the Jukebox inner class implements

Comparator interface, overriding compare method to search on different attributes of

the class (eg. search on title, artist, etc). That method is invoked from concrete imple­

mentation of abstract Search class. algorithm upon calling Collections.search(). The

32

search functionality offered by two concrete class vary independently and their run­

time doesn't affect each other. Even more search algorithms can added without af­

fecting existing search. The same comparators in JukeBox can also be used to perform

sorting on songs called by respective sorting algorithm overriding sort method from

sort interface.

33

Dependency Injection(DI) promotes open-closed principle and reduces loose coupling.

It is one of the most important topics applicable to almost all software produced. DI

provides references to objects the class depends on instead of allowing class to gather

dependencies by itself. The dependent class doesn't take into account the how, where

and what of implementation. This makes great impact on the flexibility of software

design.

2.6.2 Dependency Injection

Figure 2.9: CD Player using Dependency Injection [21]

Figure 2.9 shows an implementation using Dependency Injection. The Player class is a

dumb box; it does not know anything about Compact Disc(CDs) shown above i.e Be-

stofMarkKnopfler, BestofMichaelJackson; it is dependent on its client to provide with

working instance of CD. Without DI, the Player can create and play only records that

were harcoded in its implementation. Anytime, a new records need to be played, Player

class needs changes to its code. This violates Open-Close principle. DI makes the code

reusable and increases unit tests.

DI can be achieved in multiple ways depending on the programming language in use.

For dynamic languages like javascript and python, the support for higher order func­

tions can perform dependency injection whereas static, class based language such as

java, DI is achieved using DI frameworks.

34

Dependency Injection is subclass of broader principle called Dependency Inversion[2i].

Its aim is same as DI - to make the class as simple and less coupled to the rest of the sys­

tem. Inversion concept is observed in MVC frameworks. Its promotes the philosophy

of coding to contract. Contract being the creator of plugins and not worrying who will

use them; the inversion figures out which class to instantiate. It can load dependencies

on a scale of 100.

Robert Martin's analogy on Inversion pattern{ocdi is "Hollywood Principle - Don't call

us, we will call you". Features found in a piece of software supporting DI framework

include:

• expands code only through plugin/extensions

• plugins are independent and can be added or removed any point of time.

• system auto-detects plugins, configures which plugins should be used and how

• defines interface for each plugin type

2.6.3 Dependency Inversion

35

2.6.4 Principles for designing scalable systems

When a piece of software needs to grow to a size requiring horizontal scalability, care­

ful thought must be given to tradeoffs between endless scalability and practicality of

each solution. Also assessment of not overengineering the solution needs to taken into

account. Three techniques that help design scalable systems. Each one has different

advantages and different cost.

• Adding identical copies of components[23]: This is easy and most common

scaling strategy applied to application build from scratch. Identical copies of

components or server equally serve incoming request. A client request to any

one of random cluster of clones yields correct results. This scaling strategy is not

restricted only to client-server applications but also applicable to autonomous

program like web crawlers. Mercator crawler described in this report uses exact

copies of crawler onto individual machines and distributes traffic through its host

splitter component.

• Functional partitioning^] : Identifying parts of the system focused on spe­

cific functionality and creating independent subsystems out of them. Figure 2.10

Figure 2.10: Functional Partitioning in Netflix as an example

shows how a netflix streaming service is divided into two major subsystems - the

36

video processor and the content streamer. This brings a lot of benefits but also

increasing engineering challenges. The main benefits are both service operate in­

dependently, parallel teams work on independent codebases. Each service scales

independently of other.

• Data partitioning:[23] Refers to maintaining subset of data onto each machine

and controlling its state independent of other machines. This is the application

of shared-nothing principle. With no data sharing, there is no data synchroniza­

tion, no need for locking on global data store, and so failures can be isolated

because nodes are not dependent on each other. A simplistic approach of data

partitioning is distributing objects among machines based on first english alpha­

bets of lookup key which maps to actual machine. A more sophisticated tech­

nique will use consistent hashing to partition subset of data fairly among ma­

chines and keeps distribution fair when capacity is increased/decreased. Hence,

data when partition correctly, provides endless scalability - adding more users,

handle more parallel connections, collecting more data and deploy program onto

more servers.

37

2.6.5 Managing State

Managing state is often overlooked aspect when addressing the scaling problem of the

application. If not done properly, it can create barriers to scale the application well. Au­

thor Bill Wilder in chapter 2 of his book[36] reminds that in a program environment

where identical copies are used to perform some computation, nodes using its own

local/in-memory to cache objects are extremely difficult/tricky to coordinate cache in­

validation. In such cases, it is best to maintain a global shared cache store so there is

only one copy of each object and easier to invalidate.

Figure 2.11: redundant copes of same cached object [36]

Once you have a shared resource such as shared cache, for accessing them, locks are

used to prevent race conditions and to synchronize access to shared resources. To

achieve Horizontal Scalability(HS), distributed locks systems such as zookeeper [13]

or chubby [5] can be considered. Many apps use local locks which causes bottlenecks.

Instead of trying to share locks on web servers, you should push the state out of applns

servers similar to http session data store.

Figure 2.12: local locks preventing HS [36]

38

To prevent the condition shown in figure 2.12, rule of thumb is to use a combination of

functional partitioning and scaling out using clones. Remove the locking functional­

ity from the application code and create an independent service from it. Then lets the

program clones use shared lock service to share locks globally.

Figure 2.13: clones using shared locking mechanism [36]

Potential disadvantage to using shared lock management is the increased latency. Locks

can be easily implemented with memcached/redis but not as robust as Zookeeper, as

it offers useful functionality for example - receiving notifications when a lock gets re­

leased.

39

2.7 Event-Driven Architecture

This style is different from traditional request/response programming model where

the interaction between different components are accomplished by announcing events

that have already occurred. An event does not hold any logic but contains a piece of

data describing something has happened inside the application. Being able to identify

parts of the application that fit into this model can positively impact on scalability.

2.7.1 Message Queues (MQ)

MQs are one such tool for achieving asynchronous behavior in the application even if

the programming language in use does not support it.

Figure 2.14: Message Queue with Producers and Consumers [34]

MQ buffers messages and distributes it in asynchronous fashion. A message is XM-

L/JSON data containing all information required to perform an operation. Requests

served through MQs are always unidirectional, one-way, fire-and-forget style. Figure

2.14 shows MQ involves a producer/publisher on one side and consumer on other side.

Producers push message to the queue which is buffered and finally delivered to active

consumer.

decoupling

message queues deliver the highest degree of decoupling. The biggest one is

different language runtime.

scaled independently

Producer and consumers can be horizontal scaled separately without overloading

the system. The processes can also be hosted on completely separate machines.

40

balancing traffic

Immediate advantage after scaling to separate machines is evening out spikes

in capacity handling. This increases availability because messages produced are

enqueued quickly before consumer can process it at its capacity.

fault-tolerance

publishers and consumers are not affected by each others failure instances as they

are not directly bound to each other but through intermediary such as queue,

therefore, message processing can be stopped at any time for maintenance. Simi­

larly, a hardware failure can be replaced with new machine without bringing the

entire application to halt.

async processing

Producers and consumer work independently and constraint only by adhering

to request format. This separation between producer and consumer enables non­

blocking, asynchronous processing. Neither of them wait for each other to be­

come available.

2.7.2 RabbitMQ as a Message Broker

A message queue[34] can simply be seen as utility powered with SQL database. But

there exist dedicated message broker which houses essential functionality such as mes­

sage routing and delivery, permission control, and failure recovery. All this makes

working with them easy. Brokers are sophisticated implementation of message queues.

They are also called "message-oriented middleware".

Figure 2.15: RabbitMQ broker terminology [34]

41

RabbitMQ[34] is a high-performance, generic message passing platform. This broker

uses configuration over code to perform request routing and delivery. It exposes an

API to dynamically configure routing. It speaks AMQP, STOMP messaging protocols,

various client libraries exist to communicate with rabbitmq. The separation between

publishers and consumers is accomplished through a concept called as exchange points

as shown in figure 2.15. Producers P\, P2 has to known the name of the exchange only

to enqueue the message in the right queue which is later consumed by consumer C\,

C2. Moreover, RabbitMQ also supports complex routing through custom routing key

patterns, along with built-in patterns like direct worker queue and pub/sub.

42

2.8 Amazon Web Services(AWS)

AWS is an on-demand cloud computing platform delivering technical infrastructure to

customers through its web services. The customers are billed on a metered pay-as-you-

go basis. Following is a short summary of list of services applied to run the whirlpool

web crawler.

Identity & Access Management (IAM)

IAM is a free of charge access control service. Allows aws account holder to create

and manage AWS users groups, and roles. Also enforce permissions on them

to allow/deny access to AWS resources by attaching to it managed and custom

policies.

Virtual Private Cloud (VPC)

VPC is a logically isolated virtual network environment that solutions architect

provisions within which you can launch other AWS resources. A VPC is typically

composed of public and private subnets. You can attach route tables to faciliate

communication between different subnets and add a combination of stateful/s-

tateless firewalls.

Internet Gateway (IGW)

IGW is a VPC component which is attached to the VPC that establishes connec­

tion between your running instances in the VPC and the internet. IGW supports

IPv4 and IPv6 addresses.

Network Address Translation (NAT)

NAT component has its place in public subnet of the VPC to enable instances in

the private subnet to initiate outbound traffic to the internet but deny inbound

traffic initiated by external machine on the internet. There exist NAT gateway and

NAT instance. Both serve same purpose but differ by features and how they are

handled. Just to note, NAT gateway is managed service by AWS whereas NAT

instance is managed entirely by entity using it.

43

Elastic Compute Cloud (EC2)

EC2 is most widely used, highly available compute capacity of AWS delivered

through its own web service. Its the first service of AWS that changed the eco­

nomics of rental computer hardware by allowing customers to pay only for what

they used and how long they used.

AWS Monthly Calculator

This is a tool allowing customers to estimate monthly charges against their use of

AWS services. This helps organizations identify areas where it can cut cost and

plan according to their budget.

44

2.8.1 AWS Cloudformation

According to aws documentation [14], cloudformation(CF) is a service which lets you

model and set up aws resources so that you spend less time managing resources and

focus more on application logic that runs on those resources. Basically, in a template

you describe all resources that make your architecture. You dont need to individually

create and configure aws resources and figure what what's dependent on what.

some scenarios that demonstrate how aws cloudformation can help.

• simplify infrastructure management

• quickly replicate infrastructure

• easily control and track changes in your infrastructure

Some of the big concepts in CF are Templates, Stacks, and ChangeSets.

• Templates: CF uses templates saved in TXT, YML, or JSON as a blueprint for

building AWS resources. The templates can be reused on altogether different

regions by supplying input parameters at the time of stack creation.

• Stacks: CF manages related resources as a single unit called a stack. Creating,

updating, and deleting a collection of resources is done by creating, updating,

and deleting stacks. All the resources in a stack are defined by the specified CF

template. To create resources which involves - Auto-Scaling group, Elastic Load

Balancer(ELB), and an Amazon RDS database instance, create a stack by sub­

mitting the template consisting of those resources and CF provisions all those

resources on your behalf. This requires a service role to be present before CF

can actually create resources, refer to section 4.5 under whirlpool operations. To

addon, Stacks can be operated using AWS CF console, APIs, and AWS CLI.

• ChangeSets: Making changes to the running resources in a stack, updates the

stacks. Before changes are applied to the resources, a change set is generated

45

which is a summary of proposed changes. ChangeSets makes the operator see

how the his/her changes might impact current running resources, especially for

critical resources, before implementing them. For example, if the name of the

db identifier of Amazon RDS instance is changed, CF will create a new database

and delete the one one. Data in the old database gets lost unless it was already

backed up. If the given changeset is generated, operator will see that the change

will cause database to be replaced and therefore the operator will be able to plan

accordingly before update to a stack is applied.

46

2.9 Docker Containers

Containers are used to develop and build apps once, locally and run anywhere. Being

flexible and lightweight, they are used to containerized complex programs such as this.

Docker has its own terminology and concepts to be able to use it correctly. So a docker

image is a executable package that includes everything required to run the program.

A running instance of an image is called a container.

2.9.1 DockerFile

1 FROM python:3.7.4-buster as whirlpool-urlfilter-base
2

3 ENV PYTHONDONTWRITEBYTECODE=1

4 ARG WH_URLFILTER_ROOT=/home/whirlpool/whirlpool-urlfilter

5 WORKDIR $WH_URLFILTER_ROOT

6

7 RUN apt-get update \

8 && apt-get install -y — no-install-recommends netcat \

9 && rm -rf /var/lib/apt/lists/* \

10 && useradd — create-home — shell /bin/bash whirlpool \
1 1 && chown -R whirlpool:whirlpool $WH_URLFILTER_ROOT
12

13 # files necessary to build the project

14 COPY .pylintrc ./

15 COPY requirements.txt ./
16

17 RUN mkdir logs/ \

18 && pip3 install -r requirements.txt

19
20 COPY scripts/ scripts/
2 1 COPY urlfilter/ urlfilter/

22

23 # docker image for dev target

24 FROM whirlpool-urlfilter-base as whirlpool-urlfilter-dev

25
26 COPY scripts/wait-for-it.sh scripts/wait-for-it.sh

27 ENTRYPOINT [’’bash ./scripts/wait-for-it.sh”]

28

29 # docker image for prod target
30 FROM whirlpool-urlfilter-base as whirlpool-urlfilter-prod

3* 1 2 3

32 COPY scripts/wait-for-it-prod.sh scripts/wait-for-it-prod.sh

47

This is a dockerfile for whirlpool-parser docker image, it defines what goes on in the

environment inside your container.

33 ENTRYPOINT [’’bash ./scripts/wait-for-it-prod.sh”]

48

docker-compose is not bundled with docker utility and therefore installed separately.

Compose is a tool for defining multi-container applications. For e.g, rest api, database

server, redis cache are the services that make up application stack and can be launched

with single compose command.

version: '3'

services:

rest-api:

build: .

ports:

- ”5000:5000”

volumes:

- .:/code

- logvolume01:/var/log

links:

- redis

redis:

image: redis

volumes:

logvolume01: {}

2.9.2 Docker Compose

49

3 | Implementating Whirlpool

D o m a in
C areerB u ild er
in d eed .co m
jo b .co m
la d d ers
l in k e d In
gla ssd o o r
m onster
sim p lyh ired
us. jobs
d ice.com
idealist.com

O k a y to c r a w l
y e s

yes(restrictive)
y e s
y e s
No

yes(restrictive)
ye s(restrictive)

y e s
y e s

yes(restrictive)
y e s

Figure 3.1: Whirlpool seed set & its crawl ordering policy

Whirlpool is a continuous, topical crawler(section 2.3) that never terminates by itself,

figure 3.1. The focus is to maximize freshness over coverage of content crawled from

given seeds. The seeds are active job portals which serve as a perfect candidates to con­

tinuously monitor and revisit already visited pages. This is done without overhauling

the seed servers by implementating the url frontier scheme (section 2.5.5).

50

3.1 RabbitMQ as a Central Message Bus

RabbitMQ is a sophisticated version of messaging queue and its application in this

thesis makes the project unique. Each block(subsystem) of whirlpool design consists

of one or more pair of consumer and producer inside RabbitMQ that subscribes and

publishes events, shown in figure 3.2.

Figure 3.2: Message Distribution using RabbitMQ Direct Exchange

Direct worker queue[34] is one of the three well known message routing methods used

to communicate with the queues. In this case, the consumer on one end has to know

the name of the queue while the producer has to know the exchange name only and not

51

the queue to deliver event message to the right consumer subscribed to it. RabbitMQ's

internal routing decouples (also promotes open/close principle) producer from con­

sumer, both physically and logically. This manifestation reminds us of service-oriented

architecture style(SOA). Each pair is a autonomous service, fairly generic, focusing on

one particular problem, wired together to build complex chain of producers and con­

sumers thus completing the crawler design.

RabbitMQ is used to decide which blocks of the mercator should communicate with

each other and how the messages should flow through the queues. The Queues are

logically grouped into two different virtual host(vhost) - the frontier vhost and the

subsystems vhost. The idea behind vhost in RabbitMQ is similar to vhost in apache,

however, the difference is vhost in RabbitMQ are created using HTTP APIs whereas

in apache they are specified in configuration file. Each block authenticates to its desig­

nated vhost which has appropriate resource permissions preset. The queues for URL

frontier solely lives in frontier vhost whereas the fetcher, parser, seentest, filter, and

the due queues reside in subsystems vhost, see figure 3.2. Interconnection between

the vhost exist at the vhost generic consumer-producer processes.

Consumer threads using Frontier queues use the pull model because consumer pulls

messages from the queue. On the other hand, push model is used for consumers un­

der subsystems vhost. It is model in which the consumer runs constantly in an infinite

loop, getting a persistent connection to the message broker.

52

3.2 Shared Services with Docker

Figure 3.3: Single-node Whirlpool Subsystem Isolation using Docker

This is the production and development state of whirlpool containers that is deployed

in the AWS cloud. Afterall, this is a whole point of using containerization. All it takes

is a orchestration file that reads production level configuration when deploying on

AWS. One exception here in figure 3.3 is that in production environment, postgresql

database is a AWS RDS instance and during local development postgresql is self con­

tained docker container. A clear distinction is made to distinguish service running

directly on provisioned machine or in a container. Each solid box is a separate ma­

chine and dashed box is a container on that machine.

The state of mongodb, postgres is separated from the state of each crawler node and

shared with each running instance of crawler. The state of RabbitMQ is local to machine

its running on. This becomes a stateless, shared nothing architecture. Each message

flowing through the queue is independent of the other. Load sharing among other run­

ning instance of crawler is not based on hostname but instead uses consistent hashing,

see section 3.7 to understand the benefits of it.

53

The fetch subsystem has the job to visit the html page and the result of it can have many

different outcomes. Blocking messages in queue until the current url is complete can

leave the consumer stranded and messages piling up in the fetch queue. Depending

on the language runtime used, fetch's consumer script should either be multi-threaded

or process urls in asynchronous fashion. The later approach is adopted using nodejs.

Handling of politeness and coordinating priority of urls to crawl is a multi-threaded

jar executable written in java.

54

3.3 Developing code with Docker

At the foundation of any dockerized program, dockerfile is a place to package source

code. The biggest advantage of using containerization as discussed in section 2.9, is to

get same program behavior under development and production environments, mak­

ing deployment process easier. At first, a developer will use dockerfile for develop­

mental use. This approach, however, is time-consuming, slows speedy development

as docker engine takes a while to build & re-run on every change. Whats even worse

is that the size of development image gets bigger on each build as dependencies are

added/removed, updates to the base images are installed. This actions aren't required

when developing code.

The best practice when developing code with docker is to use docker-compose.yml to

define the environment at different layers. The version 2 of compose file allows to ex­

tend and reuse existing layers. Version 2 is more developer friendly while version 3 is

geared towards production use. As you can in below image under services directive

- install and quick-up project services extend base project.

1 version: '2.4'

2

3 networks:
4 default:

5 external:

6 name: whirlpool-net

7

8 services:

9

10 base:

1 1 image: node:10.16.0

12 command: bash -c ’’useradd — create-home — shell /bin/bash whirlpool && chown -R
^ whirlpool:whirlpool /home/whirlpool/whirlpool-fetcher”

13 volumes:
14 - .:/home/whirlpool/whirlpool-fetcher

15 - wh-fetch:/home/whirlpool/whirlpool-fetcher/node_modules
16 working_dir: /home/whirlpool/whirlpool-fetcher

17 environment:

18 - NODE_ENV=development

19 networks:

55

20 - default
21

22 install:

23 extends:

24 service: base

25 command: npm install — no-audit
26

27 quick-up:

28 extends:

29 service: base

30 command: npm start

56

31

32 volumes:
33 wh-fetch:

34 external: true

The environment defines external network sharing it with containers defined outside

and inside the compose file. This is specific to development setup where one compo­

nent is actively getting developed while others are in ready state. Similarly, the external

volume persist javascript(in this example) dependencies outside the container, thus al­

lowing sharing among other containers such as install and quick-up services.

1 install:
2 docker-compose -f docker-compose.build.yml run — rm install

3
4 quick-up:
5 docker-compose -f docker-compose.build.yml run — rm quick-up
6

7 prod-build:

8 docker build -t whirlpool-fetch-prod:latest — target whirlpool-fetch-prod .

9
10 tag-prod:
1 1 docker tag whirlpool-fetch-prod:latest rihbyne/whirlpool-fetch-prod:latest
12

13 push-prod:

14 docker push rihbyne/whirlpool-fetch-prod:latest

The use of Makefile makes docker commands easier to remember when typing on the

command line. Note that the same commands can also be integrated into IDE of choice.

$ make install

Trying the above command for the very first time will establish network, pull node

image only once and install dependencies to the specified external volume. This is for

the project defined in docker-compose.build.yml.

$ make quick-up

Once the packages are installed, and after having made some changes to the code.

The program is launched using the above command. It runs inside the container with

57

installed packages shared by base servive. The flow is pretty fast as the install and run

operations are isolated and there is no time wasted in building and packaging on every

iteration of code change. This is very much ideal and correct way to use docker while

writing code.

$ make prod-build && make tag-prod && make push-prod

This command clubs 3 commands - packages code for running on production machine,

labels the image and pushes it to a central docker repository.

58

3.4 Policy of assigning priorities & picking queues

Figure 3.4: Whirlpool Parser subsystem using Dependency Injection

Figure 3.4 is a class diagram for parser subsystem. Its uses the Dependency Injection

design pattern discussed in background chapter, section 2.6. DiceParser, IndeedParser,

etc are concrete implementations of HTMLParser class. Each represents a parser for set

of seeds shown in figure 3.1. Each of which is a knowledgeable to understand given

page relevance followed by assigning single digit numeric weight to extracted urls from

the given page. The URLs flow through various message queues until it lands in fron­

tier queues where they are organized into different priority levels.

The Document class is highly decoupled from those array of concrete classes. Dur­

ing runtime, the concrete classes are loaded by the dependency inject. Upon receiving

message from the queue, it invokes isMatch(), extractLinks() on one of those concrete

classes based on the metadata in the message.

59

3.5 SeenTest - Deduplication

The content seentest is important subsystem in crawler implementation. Its function

is to filter out copies of documents which are similar and already present in the data

store. The problem is addressed with employing techniques like fingerprinting, shin­

gling, or bloom filters.

Fingerprinting is the easiest but less useful as it doesn't do the job of detecting near du­

plicates. Below is the SQL table showing rows of fingerprint documents using SHA1.

More precisely, page_fp attribute corresponding to hash in hex for that entity.

Figure 3.5: document fingerprinting only avoids exact duplicates

The figure 3.6 shows entities using simhash[20] function which internally shingles the

words in the document and outputs a single integer(attribute page_fp).

Figure 3.6: near-duplicate detection using shingling[20]

A simhash integer of incoming new document is compared against all the available

simhashes in the table. A threshold constant T of less than equal to 0.70 is set during

pairwise comparison. Any document exceeding T is dropped from mongodb collec­

tions except its metadata is saved to postgresDB. Shingling combined with hashing

saves disk space per document and thats exactly why simhash exist.

60

A bruteforce implementation of pairwise comparison of simhashes has a run time com­

plexity of O(n). Having a dense index such as primary key on attribute id or page_fp

along with spare index also known as secondary index on attribute domain can speed

lookup and decrease disk seeks. The dense index is aware of byte location pointing

to blocks, trackers and sectors, whereas, the secondary index inturn points to primary

index. This solution only goes so far. A more sustainable improvement is proposed in

next chapter.

Here are few rows of integer hashes belonging to documents crawled. It is showing the

similarity between documents compared. The hashes highlighed in red get dropped

for > T . Similarity is calculated using hamming distance for simhashes and Jaccard

Index.

61

3.6 URL Frontier

The URL Frontier scheme in whirlpool operates in a same way as it does for mercator

crawler, discussed in background section 2.5.5.

• Prioritizer Policy: A continuous URL is assigned a average priority of 3-4 whereas

a non-continuous URL is assigned a priority of 1-2. In whirlpool, a URL is consid­

ered continuous if the page is revised giving rise to the discovery of new URLs.

• Front Queue Biased Selection Policy: The bias selector is a randomize queue strat­

egy on how the items get pulled out of the F Front queues and enter the B back

queues. The trick is to pull items from higher priority queue more frequently

compared to mid and low priority queues.

62

3.7 Distributed crawling(splitting by key range vs. hash

of key)

This section presents strategies to distribute crawling activity across many nodes. Each

participating node is given the responsibility of downloading a slice of seed set. The

main reason to distribute crawling is to make it scalable.

Mercator's[12](1999) host splitter component distributes load by hostname. Limita­

tions of this way of distribution and alternatives are discussed below. Ubicrawler[4](2004)

achieved linear scalability, fault tolerance through consistent hashing[16]. Both de­

signs mention some form of load balancing however papers fall short of explanation

on technicalities surrounding it.

When the goal is to distribute load evenly across finite number of nodes, say, 5 nodes

should handle 5 times the throughput of a single node. One way to split the load is to

assign a range of request boundaries from minimum to maximum to each node. Exam­

ples of load distribution based on range of keys can be hostnames, alphabets A-Z, etc.

This works as long as there exist calculated risk of every node getting a fair share of

the load but in many cases, load is unbalanced which causes one crawler node to com­

pute more data than others causing skewed workloads[16]. In extreme cases, only a

specific boundary(e.g A-D) assigned to a node is taking all the load while other nodes

responsible for handling boundary say X-Z, sits idle, such high disproportionate load

becomes a hot spot[16] in distributed systems terminology.

To overcome problems encountered above with partitioning load by key range is to

use hash function such that output of hash of a key is an integer which maps to a

position somewhere on the line across the range of numbers, shown in figure 3.7. A

hash function with low collision probability can turn a skewed load into uniformly dis­

tributed load. Each physical machine/node pn is hashed to a random integer between

63

0 to 2 n — 1 where N =16 using a 16-bit hash function that serves range of hash values

falling within its request boundaries R B i. Figure 3.7 shows RBi can be psuedoran-

domly or evenly spaced to fairly distribute load across pni.

Figure 3.7: partitioning by hash of key

Certain attributes of a machine can be used as a input key to a hash function mapping

to a integer on the line figure 3.8. From left to right, when hash of a absolute URL(e.g at

23000) used as a key falls within a nodes range, task request is fulfilled by that node(at

40000). This way of distributing the load evenly across machine is called consistent

hashing[16]. Hashing reduces skewed workloads and hot spots but they cannot be 100

percent eliminated.

Figure 3.8: Rebalancing physical nodes by mod N

So far the assumption is parallel crawling will always be performed on a fixed number

of pn which is quite unlikely. Overtime, a crawler's seed set may expand or shrink

or altogether change its characteristics(see figure 3.1 requiring more CPU to cope up

with or a node can crash for some reason(e.g RAM overflow). All these changes mean

moving messages between nodes. Once rebalancing is successfull, crawling load is

distributed fairly among available nodes.

The easy strategy to rebalance request boundaries assigned to a node pni is through

phi = h(url) mod N, where N is total number of available pni. For e.g, h(url) mod 5

would direct service request to any pnodes between 0 < pni < 4. Figure 3.9 shows a

troubling trend with mod N where rebalancing of N nodes causes half of service re-

64

Figure 3.9: data movement when using modulo N

quests to redirect to another nodes. Every addition of new node pni has 50% shift in

service request, same happens in reverse. Note that the crawler program implemented

for this thesis keeps state of URLs local to its message queue, therefore making rebal­

ancing with mod N an expensive operation.

The problem is countered by iterating each pni through few different hash functions

and marking its positions on the line as shown in figure 3.10. The values obtained are

called virtual nodes(vnodes) vni which are just essentially integers of different hash

functions(in this case - h2, h3, h4) and not virtualboxes running on real hardware. A

rule of thumb is to have more number of vn than there are pn so that several vn are

assigned to pn. For e.g a cluster of 3 pnodes has 12 vnodes where 4 vnodes are assigned

to each pnode.

Figure 3.10: virtual nodes to reduce shifts in data movements between nodes

Once vnodes have positions on the line, pnodes are finally placed on the line with

hash function quite different from that used for respective vnodes. Figure 3.11 shows 4

physical nodes, each running an instance of rabbitMQ with crawler subsystems bound

to them. This works differently from previous modulo N strategy. When a request

comes in and its hash(44000) falls somewhere near to vn3 who's hash value is 46000,

it is consumed by pnode pni at hash value 60000. Similarly, a hash value of 10 is near

to vn9 is served by pn4. When a new pnode is added to the existing cluster, fewer

65

vnodes from every pnode p n in the cluster get reassigned to newly added pnode and

url is consumed by first pnode available on the line, from left to right. The same thing

happens in reverse when node is being removed from the cluster. The criteria for load

distribution can be, more powerful pnodes can take greater share of the load meaning

assigning more vnodes vn for that particular pnodes pn.

Figure 3.11: Rebalancing physical nodes with virtual nodes

In order for crawler subsystems to know whether a current url is for itself or other

pnodes in the cluster (pnodes are actually crawler subsystems), even when pnodes are

rebalanced and assignment of vnodes to pnodes change, there exist a service discovery

tool which keeps up-to-date information on ip address and port number of pnodes in

cluster and can thereby direct url request to the right pnode. The host splitter makes

the routing decision and learns about changes in the assignment of vnodes to pnodes.

It does so through zookeeper[13] which is a coordination service for keeping metadata

about pnodes cluster.

Figure 3.12: zookeeper used to maintain up-to-date information on which vnodes are
assigned to pnodes

66

Each pnode pn when available, registers itself with zookeeper. The zookeeper table

in figure 3.13 maintains mapping between vnodes vn to pnodes pn. Host splitter sub­

scribes to zookeeper server. When a pnode is added or removed and vnodes are reas­

signed, zookeeper notifies host splitter component.

hash range vnode(vni) pnode(pni) IP
0 - 3k vn9 pn4 10.0.0.4

3k- 6k vn8 pn4 10.0.0.4
6k - 10k vn7 pn3 10.0.0.3
10k - 15k vn6 pn2 10.0.0.2
15k - 20k vn5 pn2 10.0.0.2
20k - 35k vn4 pn2 10.0.0.2
35k - 45k vn3 pm 10.0.0.1
45k - 55k vn2 pm 10.0.0.1
55k - 65k vni pn4 10.0.0.4

Figure 3.13: zookeeper table

67

4 | Whirlpool Operations

This chapter discusses server farm assembly for running whirlpool on a on-demand

hardware resources offered by AWS. It uses altitude analogy to illustrate important

additions in infrastructure at various levels in detail. The last section explains hardware

configuration of resources used and their pricing details.

4.1 Infrastructure from 10,000 feet

Given a working knowledge of AWS and behavior of application that will run on top

of its resources, it becomes much easier to combine different tools to architect AWS

solution. For this project, identical copies of crawler application are deployed onto

more than one machine. Special attention is paid to managing the state of the crawler.

Combining understanding of theory discussed in section 2.6.5, intuition, and experi­

ence, the program maintains a global datastore(ContentDB) shared across all crawler

processes. A running crawler process dumps downloaded data since the scope of the

crawler for this thesis is confined to only data-collection. Also, the message broker Rab-

bitMQ which forms the communication backbone is stateful(local) to a crawler process.

So spinning each new crawler node will have its own RMQ bound to it. The internal

metadata that crawler maintains which leverages a relational database and in-memory

cache is also shared across crawler nodes to overcome scalability challenges and issues

addressed in the theory of managing state in section 2.6.5. Lastly, the crawler program

which forms the core business logic of this thesis shouldn't be part of DMZ zone.

Keeping above paragraph in mind, figure 4.1 shows a AWS assembly containing four

68

subnets numbered 1-4 within a VPC. The Internet Gateway(IGW) is active and at­

tached to this VPC. Public subnet 1 is explicitly associated with route table 1 which

consist of route rule that directs traffic from subnet 1 to the outer public internet. The

data transfer in crawling process is such that it will make connection requests to the

web sites and pull data into the amazon cloud, thus the inbound data transfer cost from

the internet into amazon cloud is free. Security-wise, the crawler nodes should never

except incoming connections from internet. These nodes are placed in private subnet

4. By default a private subnet within a AWS VPC is accessible to/from other subnets

only within its VPC CIDR block and is denied any inbound/outbound connections to

the internet. As a best practice, subnet 4 is allowed only inbound connections. This

is done by associating subnet 4 with route table 2. A route in table 2 directs internet

traffic to NAT instance deployed in public subnet 1 which further takes from Internet

Gateway(IGW) attached to the VPC all the way into public internet.

69

Figure 4.1: Whirlpool Infrastructure using VPC, AZ, and Subnet Sizing

The VPC in figure 4.1 uses Classless Inter-Domain Routing(CIDR) block of 10.0.0.0/26

which gives a range of 64 IPv4 addresses. This thesis uses a tool [8] to calculate CIDR

blocks. AWS VPC reserves first four and last IPv4 addresses of each subnet created

for internal usage and therefore cannot be assigned to any instance of any resource.

The primary CIDR block size of VPC is then used to create 4 subnets each with a non­

overlapping CIDR block size. The minimum subnet size allowed is 28 and 16.

CIDR block size is given by 2(32 x), substituting x = 26 yields,

2(3 2 - 2 6) _ g4 IP addresses

D B S u b n e t G r o u p

4 subnets formation _ ^16̂ + ^16̂ + ^16̂ + ^16̂
p u b l i c s u b n e t p r i v a t e d b s u b n e t 1 p r i v a t e d b s u b n e t 2 p r i v a t e c r a w l e r s u b n e t

70

Actual IP addresses available
DB Subnet Group

p u b l i c s u b n e t p r i v a t e d b s u b n e t 1 p r i v a t e d b s u b n e t 2 p r i v a t e c r a w l e r s u b n e t

Public subnet IP range = 10.0.0.0/28 ̂ (0 - 15)

Private db subnet 1 IP range = 10.0.0.16/28 (16 - 31)

Private db subnet 2 IP range = 10.0.0.32/28 ̂ (32 - 47)

Private crawler subnet IP range = 10.0.0.48/28 ̂ (48 - 64)

71

4.2 Infrastructure from 5,000 feet

Figure 4.2 shows the final assembly of whirlpool crawler project.

Figure 4.2: Whirlpool infrastructure with Route tables, NAT

Each subnet gets assigned a main route tables which cannot be deleted but instead can

be overridden with custom route tables immediately effective on subnets as evident in

figure 4.2 with route tables 1 & 2. Speaking of NAT instance in public subnet 1, is like

any other AMI linux image but ships with pre-configured iptables. NAT forwards traf­

fic from instances in subnet 4 to the internet and send the response for corresponding

request back to those instances in subnet 4. It won't allow outside clients to initiate

connections with instances in subnet 4. The custom route(shown in route table 2) di­

rects the traffic originated within any of the private subnet peers matching subnet mask

0.0.0.0/0 to NAT server. The custom route(show in route table 1) scopes all packets

matching 0.0.0.0/0 route to IGW. The traffic from private crawler subnet flows to NAT

72

Instance and then to the IGW. The NAT translate back-and-forth source and destina­

tion IPs of private instances assuming external property - source/destination check is

disabled.

The subsystems of whirlpool leverage relational database(Amazon RDS) to maintain

a history of URLs, NoSQL(EC2-mongoDB) to store extracted text. AWS does not have

managed instance of MongoDB and requires the interested party to operate, maintain

on an EC2 Instance. Also, later on, a cache server(AWS ElasticCache) can be adopted

to optimize lookup efficiency against relational database by those subsystems depen­

dent on it. Given this requirement, its safer to form a private subnet 2 dedicated to

placement of data stores and in-memory cache as shown in the figure 4.2. This way,

the data store subnet would stay safer accepting network connections within the VPC,

specifically only from instances allowed by statefull firewalls(VPC security groups)

attached to it. For relational database, amazon's RDS DB subnet group mandates 2

subnets, each in different availability zones to successfully launch the instance. Thus,

a private subnet 3 in the figure.

Following are a list of VPC security groups in place for figure 4.2 which regulate in/out

flow of traffic attached to EC2 instances, elasticCache, and RDS instance respectively.

Type Protocol Port Range Source Description
SSH TCP 22 sg-<bastion node> only allows ssh to crawler

nodes from bastion in­
stance

Custom TCP 8080 sg-<bastion node> access RMQ manage­
ment console access ssh
tunneled to client host

Table 4.1: Inbound rules of Security Group(sg) for EC2 crawler in private subnet 4

73

Type Protocol Port Range Source Description
SSH TCP 22 sg-<bastion node> ssh only from bastion in­

stance
Custom TCP 27017 sg-<crawler node> mongo traffic from crawler

nodes
Custom TCP 27017 sg-<bastion node> egress mongo traffic tun­

neled to client host

Table 4.2: Inbound rules of Security Group(sg) for MongoDB in private subnet 2

Type Protocol Port Range Source Description
SSH TCP 22 0.0.0.0/0 open to the world. Safely

handle pvt. keys.
HTTP TCP 80 sg-<crawler node> accept non-ssl http traffic

from crawler node
HTTPS TCP 443 sg-<crawler node> crawler downloads SSL

HTTP traffic

Table 4.3: Inbound rules of Security Group(sg) for bastion host in pub subnet 1

Type Protocol Port Range Source Description
Custom TCP 5432 sg-<crawler node> accept sql request from

crawler node
Custom TCP 5432 sg-<bastion node> egress rds tunneled to

client host

Table 4.4: Inbound rules of Security Group(sg) for AWS RDS in pvt subnet 2 and 3

Type Protocol Port Range Source Description
Custom TCP 112 11 sg-<crawler node> allow memcache traffic

from crawler nodes
Custom TCP 112 11 sg-<bastion node> egress cache traffic tun­

neled to client host

Table 4.5: Inbound rules of Security Group(sg) for AWS ElastiCache in pvt subnet 2

74

4.3 Bastion Host

As per the wikipedia arcticle, a person named Marcus J. Ranum defined the term
bastion host while discussing a article on firewalls as

"...a system identified by the firewall administrator as a critical strong point in the
network security. Generally, bastion hosts will have some degree of extra atten­
tion paid to their security, may undergo regular audits, and may have modified
software."

Not necessarily in the context of AWS but also in data centers of IT organization, a bas-

ton host sole purpose is to provide access to private network from external network

such as internet. In a typical AWS VPC setup, an instance in a public subnet with a se­

curity group that includes a inbound rule to accept SSH traffic from trusted client host

establishes secure remote connectivity after which the instance(bastion host) acts a

jumping point to ssh into various private instances belonging to various private subnets

within its VPC. With bastion host in place, a administrator uses ssh-agent forwarding

to authenticate to private instances. Agent forwarding doesn't require administrator

to store private keys on the bastion host and AWS best practices forbids storing private

key files on servers. Figure 4.2 demonstrates a special network configuration where

bastion host is placed in DMZ zone separated from private, trusted networks such as

subnets 2, 3, and 4. Another benefit bastion hosts provide is not having to expose var­

ious management ports to internet to configure utility/application services on private

instances of the infrastructure.

Agent forwarding is enabled by passing below flag when login into a remote node.

$ ssh -A user@ip

Since whirlpool assembly contains multiple networks, following ssh aliases in .ssh/-

config saves from typing.

3

access to whirlpool bastion and its private nodes
Host whirlpool-bastion

HostName ec2-x-x-x-x.us-east-2.compute.amazonaws.com

75

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

User ec2-user

IdentityFile ~/.ssh/whirlpool-jumbox.pem
ProxyCommand none

Host whirlpool-crawler-1

HostName ip-x-x-x-x.us-east-2.compute.internal
User ubuntu
IdentityFile ~/.ssh/whirlpool-jumbox.pem
ProxyCommand ssh whirlpool-bastion -W %h:%p

Host whirlpool-mongodb
HostName ip-x-x-x-x.us-east-2.compute.internal
User ubuntu
IdentityFile ~/.ssh/whirlpool-jumbox.pem
ProxyCommand ssh whirlpool-bastion -W %h:%p

76

4.4 Monitoring services with SSH Tunnels

This project steals concepts behind ssh tunnels [35] and applies them to its own AWS

architecture, figure 4.2, to keep track of activities happening inside it. SSH tunnels are

nicely explained by Scott Wiersdorf in his article; the source is listed in references. Im­

age 4.3 shows a client-host connecting to an example web-server on port 80 tunneled

through tunnel-host using ssh utility.

SSH tunnels involves two hosts - client-host, and tunnel-host. The client-host spec­

ifies the tunnel to be created. On the other hand, tunnel-host creates the tunnel con­

nections. Both the hosts are defined as single bash command. The traffic between

client-host to tunnel-host is secured by secure shell. All the TCP traffic past the

tunnel-host is not secured by SSH. The connections in SSH tunnels are initiated at

only one end and so the listening end of the tunnel is referred to as tunnel ingress and

terminating end of the tunnel is referred to as tunnel egress as illustrated in the image

4.4.

77

In the case of whirlpool network topology, client-host is the machine used to ssh

into bastion-host. The tunnel-host is the bastion-host (NAT instance) and this is

where the SSH connection ends. Bastion-host forwards TCP connection to a specified

private instances within whirlpool AWS deployment because SSH agent-forwarding is

enabled, discussed in previous section. The specified private instance is the egress and

ingress is the client-host bound to a particular port.

Following are the commands fired to monitor, diagnose services inside AWS. Note the

egress 10.0.0.56:8080 and ingress is an omitted localhost on port 8080. The bastion

host whirlpool-bastion forwards TCP to egress. N indicates no commands over SSH.

This command is used for monitoring RabbitMQ server running on 10.0.0.56:8080.

The corresponding firewall rules is enabled for the same.

$ ssh -L 8080:10.0.0.56:8080 whirlpool-bastion -N

This command is used for making private ec2-mongodb instance available on localhost.

$ ssh -L 27017:10.0.0.26:27017 whirlpool-bastion -N

This command is used for making private RDS instance available on localhost.

78

$ ssh -L 5432:whirlpool-postgres-prod.ytrewqgfdsa.us-east- 2 .r d s .

amazonaws.com:5432 whirlpool-bastion -N

This command is used for making private memcache instance available on localhost.

$ ssh -L 11211:whirlpool-cache.qwerty.0001.use2.cache.amazonaws.com

:11211 whirlpool-bastion -N

79

4.5 IAM and roles

Showcase few IAM policies related to whirlpool project here.

Figure 4.5: Existing accounts and service role

This project is run under IAM whirlpool user with limited technical privileges by en­

forcing IAM policies, delegated by IAM administrator. The IAM administrator has full

technical access but not billing access granted by AWS root user account. A service role

exist because AWS cloudformation as a service provisions other services on behalf of

whirlpool user by assuming a service role. Use of service role in context of this project

is shown in figure 4.5.

A service role contains a trust policy and permissions policy. Existing iam policies

are added as permissions policy under 'actions'. Under 'resource/principal' property,

cloudformation which assumes role is specified as a trust policy. A restricted IAM

whirlpooluser doesn't need to be given permissions to create/modify/delete roles in­

80

stead only list/describe/use roles. Note, this works only if IAM policies attached to

whirlpool IAM account has IAM:passrole action included.

Following are the restrictive, custom, managed IAM policies effective under whirlpool

IAM account.

1 - whirlpool-user-iam-cache-vpc-policy.json

2 - whirlpool-user-iam-cloudformation-policy.json
3 - whirlpool-user-iam-cloudformation-role.json

4 - whirlpool-user-iam-cloudformation-s3-policy.json

5 - whirlpool-user-iam-ec2 -vpc-policy.json

6 - whirlpool-user-iam-policy.json
7 - whirlpool-user-iam-rds-vpc-policy.json

Below is the code snippet of whirlpool-user-iam-ec2-vpc-policy.json, one of exist­

ing IAM policies attached to IAM whirlpool account.

1 {
2 "Version”: ”2012-10-17”,

3 "Statement”: [

4 {
5 "Effect”: "Allow”,
6 ’’Action”: [

7 ”ec2:RunInstances”,

8 ”ec2:RebootInstances”,
9 ”ec2:StopInstances”,

10 ”ec2:StartInstances”,

1 1 ”ec2:TerminateInstances”,

12 ”ec2:Describe*”,
13 ”ec2:AttachVolume”,

14 ”ec2:DetachVolume”,

15 ”ec2:DeleteVolume”

16],
17 ’’Resource”: [
18 ”arn:aws:ec2:us-east-2:612113937920:volume/*”,

19 ”arn:aws:ec2:us-east-2:612113937920:instance/*”,

20 ”arn:aws:ec2 :us-east-2 ::image/*”,

2 1 ”arn:aws:ec2:us-east-2:612113937920:network-interface/*”,
22 ”arn:aws:ec2:us-east-2:612113937920:key-pair/*”,

23 ”arn:aws:ec2:us-east-2:612113937920:security-group/*”

24]

25 ^
26 {

27 ”Effect”: ’’Allow”,
28 ’’Action”: [

29 ”ec2:*Route*”,

81

30 ”ec2:DeleteNetworkAcl”,
3 1 ”ec2:DeleteNetworkAclEntry”,

32 ”ec2:DeleteRoute”,

33 ”ec2:DeleteRouteTable”,

34 ”ec2:AuthorizeSecurityGroupEgress”,

35 ”ec2:AuthorizeSecurityGroupIngress”,
36 ”ec2:RevokeSecurityGroupEgress”,

37 ”ec2:RevokeSecurityGroupIngress”,

38 ”ec2:DeleteSecurityGroup”

39]>
40 ”Resource”: ”*”,
41 ”Condition”: {

42 ”StringEquals”: {

43 ”ec2:vpc”:

^ ”arn:aws:ec2:us-east-2:612113937920:vpc/vpc-0c7a0ba5e8cad5b83”

44 }

45 }
46 }>

47 {
48 ”Effect”: ”Allow”,

49 ”Action”: ”ec2:RunInstances”,

50 ”Resource”: ”arn:aws:ec2:us-east-2:612113937920:subnet/*”,
51 ’’Condition”: {

52 ”StringEquals”: {
53 ”ec2:Vpc”:

^ ”arn:aws:ec2:us-east-2:612113937920:vpc/vpc-0c7a0ba5e8cad5b83”

54 }

55 }

56 },
57 {
58 ”Action”: [

59 ”ec2:Describe*”,
60 ”ec2:*KeyPair*”,

61 ”ec2:*Nat*”,

62 ”ec2:*Gateway*”,

63 ”ec2:*subnet*”,

64 ”ec2:CreateSecurityGroup”,

65 ”ec2:CreateVolume”,
66 ”ec2:ModifyVolume”,

67 ”ec2:createTags”,

68 ”ec2:DeleteTags”,

69 ”ec2:CreateRouteTable”,
70 ”ec2:ReplaceRouteTableAssociation”

71 L
72 ”Effect”: ’’Allow”,

73 ”Resource”: ”*”

74 }

75]

82

76 }

83

4.6 AWS Services Hardware Specfication & Cost Estima­

tion

Figure 4.6: Whirlpool Hardware Specification on AWS

From table 4.6 under Amazon EC2 services, crawler nodes and the Bastion host sits on

a on-demand EC2 instance which is of type t2.micro. The t2.micro has single core vir­

tual CPU (vCPU) with 1 GiB of Memory. Each crawler node runs a message broker -

RabbitMQ to interconnect the crawler subsystems. According to RabbitMQ Documen­

tation [27], the host should have at least 128 MB memory available at all times. More­

over, it wont accept any new messages when it detects that its using more than 40% of

avialable memory. Being said that, there is always an option to change the current in­

stance type from t2.micro to t2.small and so on depending on usage. MongoDB which

collects extracted text is also hosted on On-Demand t2.micro instance type, which is a

1 GB, dual-core vCPU operating at 50% of its capacity.

Coming to Amazon Storage, the crawler node is coupled with Elastic Block Storage(EBS)

volume of 8 GiB. The volume is general purpose SSD capped at 100 IOPS giving a

throughput of 128 MB/sec. For mongoDB an EBS volume of 15GB is used. It is for-

84

matted with XFS filesystem for its data directory as recommended in its production

checklist.

Whirlpool uses one On-Demand RDS instance with PostgreSQL engine operating at

50% utilization monthly. The underline managed Operating System is a db.t2.micro

deployed in a single AZ. PostgreSQL to store fingerprints of a web page content at a

given URL, robots.txt attributes of each site, and URLs already enqueued to be crawled.

Amazon ElasticCache provides a choice between Memcached & Redis Instance. It will

be used by URL filter subsystem of whirlpool.

85

Table 4.7 provides approximate monthly billing information of AWS services used by

this project to build, test, and run experiments. The calculation was performed using

AWS monthly calculator. At the time of this writing, the author is enrolled is 12-month

AWS Free tier access which discounts most of the services the crawler system leverages.

A W S R e s o u r c e C o s t E s t i m a t i o n

S e r v i c e T y p e C o m p o n e n t s R e g i o n C o m p o n e n t P r i c e S e r v i c e P r i c e

A m azon EC2 S erv ice (US E a st (O hio)) $ 2 5 . 9 5

C o m p u t e : U S E a s t (O h i o) $ 2 1 . 2 5

E B S V o l u m e s : U S E a s t (O h i o) $ 4 . 7 0

E B S I O P S : U S E a s t (O h i o) $ 0

A m azon RDS S erv ice (US E a st (O hio)) $ 8 .8 9

D B i n s t a n c e s : U S E a s t (O h i o) $ 6 . 5 9

S t o r a g e : U S E a s t (O h i o) $ 2 . 3

A m azon E lastiC ach e S erv ice (US E a st (O hio)) $ 6 . 2 3

O n D e m a n d C a c U S E a s t (O h i o) $ 6 . 2 3

A m azon VPC S erv ice (US E a st (O hio)) $ 0 . 0 0

AWS D ata T ra n sfe r In $ 0 . 0 0

U S E a s t (O h i o) R e g i o n : $ 0 . 0 0

AWS S up p ort (Basic) $ 0

S u p p o r t f o r a l l A W S s e r v i c e s : $ 0

F r e e T i e r D i s c o u n t : $ - 2 6 . 8 2

T o t a l M o n t h l y P a y m e n t : $ 1 4 . 2 5

Figure 4.7: Whirlpool Hardware Cost Estimation on AWS

With the free-tier in use, the total price is dropped almost by 50 %. Under free tier,

EC2 is limited to 750 hours/month which equates to approx. 24 hours/day for 30 days

using only Linux, RHEL. Any combination of EBS (SSD/Magnetic) is 30 GiB. Amazon

RDS again limited to 750 hours/month upto 20GB of general purpose SSD database

storage. Amazon ElasticCache - 750 hours. NAT instance is priced similar to other

EC2 crawler instance types. There is no charge for data transfer between cross-region

multi-AZ as this implementation is only us-east-2 single AZ. Also, the data transfer

into AWS cloud is free.

86

4.7 Boot Process

A fresh installation of whirlpool crawler comprising of multiple services begins by first

packaging production code for each service as docker image. The below code snippet

shows Dockerfile of whirpool-fetch component. Lines 1, 28, and 31 show dev and

prod target images get derived from base image. The specialized image produced differ

by configurations, evironment variables, etc.

1 FROM node:10.16.0 as whirlpool-fetch-base
2

3 ARG WH_FETCH_ROOT=/home/whirlpool/whirlpool-fetcher

4 WORKDIR $WH_FETCH_ROOT

5

6 RUN apt-get update \

7 && apt-get install -y — no-install-recommends netcat \

8 && rm -rf /var/lib/apt/lists/* \
9 && useradd — create-home — shell /bin/bash whirlpool \

10 && chown -R whirlpool:whirlpool $WH_FETCH_ROOT

11

12 # files necessary to build the project
13 COPY package.json ./

14 COPY .babelrc ./

15 COPY .eslintrc.js ./

16 COPY .eslintignore ./
17 COPY package-lock.json ./
18

19 RUN mkdir logs/ \

20 && npm install — no-audit
21

22 COPY config/ config/

23 COPY src/ src/

24

25 # docker image for dev target

26 FROM whirlpool-fetch-base as whirlpool-fetch-dev

27

28 COPY scripts/wait-for-it.sh scripts/wait-for-it.sh

29 ENTRYPOINT [’’bash ./scripts/wait-for-it.sh”]

30
3 1 # docker image for prod target

32 FROM whirlpool-fetch-base as whirlpool-fetch-prod

33

34 COPY scripts/wait-for-it-prod.sh scripts/wait-for-it-prod.sh

35 ENTRYPOINT [”bash ./scripts/wait-for-it-prod.sh”]

87

The below command packages production docker image from base layer, skipping dev

layer.

$ docker build -t whirlpool-fetch-prod:latest --target whirlpool-fetch

-prod .

Production docker images for rest of the whirlpool components are packaged using

same structure and pushed to dockerhub registry. One thing to note is its not recom­

mended to always use the latest tag while publishing the package but instead use

semantic version tags.

1 - rihbyne/whirlpool-rmq:latest
2 - rihbyne/whirpool-parse-prod:latest

3 - rihbyne/whirlpool-contentseen-prod:latest

4 - rihbyne/whirlpool-urlfilter-prod:latest

5 - rihbyne/whirlpool-due-prod:latest
6 - rihbyne/whirlpool-urlfrontier-prod:latest

Next, provisioning AWS resources by firing up stack creation using Cloudformation(CF)

template and AWS-cli. All required AWS components for whirlpool project such as In­

ternet Gateway(IGW), ec2-instances, VPC Security Groups, Subnets, etc are expressed

in YAML cf template. Following represents justa gist of omitted cf template which

spans multiple pages.

58 RDSEndpoint:
59 Type: String

60 Description: ’’postgres connection endpoint used by crawler nodes”

61

62 SSHKeyPair:

63 Type: ”AWS::EC2::KeyPair::KeyName”
64 Default: whirlpool-jumbox

65 Description: ’Amazon ec2 key pair to use”

66

67 Ubuntulmageld:

68 Type: ”AWS::EC2::Image::Id”
69 Default: ami-05c1fa8df71875112

70 Description: ”image id for ubuntu images”

71

72 NATImageld:

73 Type: ”AWS::EC2::Image::Id”

74 Default: ami-00d1f8201864cc10c

88

75 Description: "image id of NAT instance”
76

77 # --------- defines AWS resources for whirlpool project ---------------

78 Resources:

79 # define internet gateway to attach to already existing VPC
80 whirlpoolIGW:

81 Type: AWS::EC2 ::InternetGateway

82 Properties:

Given snippet from whirlpool CF template uses cloud-init scripts that run shell scripts

at launch. automating postgres post-initialization, docker & docker-compose setup.

Finally, the shell script log is redirected to log directory for traceback.

629 DependsOn: WhirlpoolGatewayAttachment

630 Properties:

631 AvailabilityZone: ”us-east-2 a”
632 BlockDeviceMappings:

633 - DeviceName: ”/dev/xvda”

634 Ebs:

635 VolumeType: "standard”
636 DeleteOnTermination: ”false”

637 VolumeSize: ”8”

638 # NoDevice: {}
639 Imageld: !Ref NATImageld

640 InstancelnitiatedShutdownBehavior: ”stop”

641 InstanceType: !Ref InstanceTypeParameters
642 KeyName: !Ref SSHKeyPair
643 Monitoring: false

644 NetworkInterfaces:

645 - AssociatePublicIpAddress: ”true”
646 DeviceIndex: ”0 ”

647 DeleteOnTermination: ”true”

648 GroupSet:

649 - !GetAtt whirlpoolBastionNatSecGrpPubSubl.GroupId

650 SubnetId: !Ref whirlpoolPublicSubnetl
651 SourceDestCheck: false

652 Tags:

653 - Key: Name

654 Value: whirlpool-bastion-node
655 - Key: Capacity

656 Value: 8GiB

657 - Key: ec2 -purpose

658 Value: bastion-node

659 - Key: placement
660 Value: pubsub-1

661 Tenancy: ’’default”
662 # UserData: String; come back later

89

663
664 # -------- define crawler node 1 -------------
665 whirlpoolCrawlerNode:

666 Type: ”AWS::EC2 ::Instance”

667 Properties:

668 AvailabilityZone: ”us-east-2 a”
669 BlockDeviceMappings:

670 - DeviceName: ”/dev/sda1 ”

671 Ebs:

672 VolumeType: ”gp2 ”
673 DeleteOnTermination: "true”

674 VolumeSize: ”8”

675 NoDevice: {}

676 Imageld: !Ref UbuntuImageld
677 InstancelnitiatedShutdownBehavior: ”stop”

678 InstanceType: !Ref InstanceTypeParameters

679 KeyName: !Ref SSHKeyPair
680 Monitoring: false

681 PrivateIpAddress: ”1 0 .0 .0 .5 6 ”

682 SecurityGroupIds:
683 - !GetAtt whirlpoolCrawlerSecGrpPvtSub4 .GroupId
684 SourceDestCheck: true

685 SubnetId: !Ref whirlpoolPrivateSubnet4

686 Tags:
687 - Key: Name

688 Value: whirlpool-crawler-node

689 - Key: Capacity
690 Value: 8GiB

691 - Key: ec2 -purpose
692 Value: mercator crawler

693 - Key: placement
694 Value: pvtsub4

695 Tenancy: ’’default”
696 UserData:
697 Fn::Base6 4 :

698 !Sub |
699 #cloud-config

700 repo_update: true

90

The template file needs to be uploaded to S3 before CF reads it to create stack. Ap­

propriate IAM S3 policy and bucket level policy imposed from administrator account,

is effective to limit GET, PUT, LIST only to given CF template file. A constraint un­

der IAM CF policies is set to allow stack creation/deletion/update from existing CF

template.

$ aws s3 cp whirlpool-cf-template.yml s3 ://whirlpool-cf-templates/

This command schedules stack creation on CF dashboard triggered using aws-cli. It

takes couple of minutes before all defined resources get created. The create-stack

command contains arguments in key, value pair which map to input parameters and

AWS specific parameters in the template.

$ aws cloudformation create-stack --stack-name whirlpool - crawler \

--template-url https ://wh-cf-templates.s3 .us-east-2 .amazonaws.com/cf-

template.yml \

--parameters ParameterKey=rdspwd,ParameterValue=<password> \

ParameterKey=rdsdbname,ParameterValue=<mydb> \

ParameterKey=rdswhuser,ParameterValue=<exampleuser> \

ParameterKey=rdswhpwd,ParameterValue=<examplepassword> \

ParameterKey=rdsendpoint, \

ParameterValue=whirlpool-postgres-prod.cmogaprwtcsg.us-east-2 .rds.

amazonaws.com

91

Once the stack on the CF dashboard is flagged 'green' indicating complete, production

docker-compose is securely copied over to private e2 instances in the private subnet 4.

The second command starts all the services specified in the compose file configuration.

$ scp prod-docker-compose.yml whirlpool-crawler-1:~/

$ docker-compose -f prod-docker-compose.yml up -d

Figure 4.8: docker pull, extract, start containers

Deleting the stack whirlpool-crawler terminates ec2 machines and dependent com­

ponents in chronological order.

$ aws cloudformation delete-stack --stack-name whirlpool - crawler

92

5 | Experiment Results & Justification

This section is based on lessons learned and any observations made in section 3.

5.1 HTTP Fetch URL

The HTTP fetcher subsystem is responsible for downloading the HTML page for a

given absolute URL. Figure 5.1 present a grouped bar chart combining HTTP requests

with DNS lookup entries cached and non-cached. Each bar is a HTTP call to the web

host and height of the bar is the time taken to respond back to a corresponding request.

The graphs shows median response time for cached and non-cached DNS lookups. It

also shows response time for 75th and 95th percentiles for cached DNS lookups. Over­

all, comparing both the medians, HTTP request with cached DNS entries performed

faster by approx. 250ms compared to non-cached requests. There are far fewer cached

requests exceeding the 95th percentile compared to plain requests.

93

5.2 RabbitMQ Dashboard

Following statistics are derived using the management plugin available to monitor and

handle active rabbitmq node.

Figure 5.2: Queued messages

The line graph in figure 5.2 shows 5,236 messages are ready to be delivered across

various consumers connected to this rabbitmq instance with 213 messages are yet to be

acknowledged by consumers itself as messages are manually acknowledged through

custom logic between consumer to consumer processes.

Figure 5.3: Message Rates

Figure 5.3 measures various operations/sec occurring on the work queues for the given

rabbitmq instance. Publish is the rate at which messages enter the work queue. Mes­

sage Delivery with manual acknowledgement is the rate at which messages are deliv­

ered to the consumer(s). Publisher confirms is the rate at which rabbitmq is confirming

messages published by the producer. Since the consumer carries out the processing of

94

the message compared to the producer, the consumer rate is slower by 200 ms to that

of producer.

Figure 5.4 shows total number of connections open on that instance. Every connection

consumes memory mainly the connections TCP buffer. The number of open client con­

nections and rate at which connection open/close aid in determining issues common

in messaging systems like connection leaks and high connection churn. These issues

eventually lead to exhausting resources in which it wont accept new client connections

from that point onward. With this, memory consumption and socket count turns red.

Connections: 7 I Channels: 13 I Exchanges: 19 I Queues: 14

Name File descriptors ? Socket descriptors ? Erlang processes Memory ? Disk space Uptime Info Reset stats

52
1048576 available

7
943626 available

526
1048576 available

| 99MiB |
394MIB high water it

2.5GiB
lark 4BMiB low watermark

22m 36s basic disc 1 rss

Figure 5.4: RMQ node

Connection leaks can be learned from the following chart from rabbitmq management

dashboard under file and socket descriptors where number of connections keep grow­

ing. For this project, figure 5.5 shows stable sockets on the node.

95

Figure 5.5: File and Socket descriptors

Below are long-lived connections to the rabbitmqnode using language specific client li­

brary used by the subsystem of the crawler. The client are using plain authentication to

connect to virtual host(vhost) of the RMQ node. The connection churn rate is observed

only during the crawler bootup indicating the clients use long-lived connections, figure

5-7-

Figure 5.6: RMQ Connections

Channels in message queues are lightweight connections sharing a single TCP connec­

tion. The channels only exist in context of a connection. A consumer using thread-

s/processes to process messages maintains new channel per thread or a process. The

96

Figure 5.7: churn rate

channels are never shared between them. Figure 5.8 shows single digit channels opened

by each whirlpool subsystem. Figure 5.4 on previous page shows total count of chan­

nels for the given RMQ instance.

Figure 5.8: RMQ Channels

Channels also face similar bottlenecks discussed about RMQ connections when metrics

on opening/closing of channels appear to be unusual. The churn rate for the channels

in this project is very low and in fact negligible and that is only due to long-lived con­

nections.

97

5.3 Content SeenTest: Near Duplicate Detection

In Summary, when it comes to detecting similarity between two web pages using shin­

gling, the pages are converted into bag of phrases. The challenge lies in storage require­

ments because the word size for a phrase p adds a space complexity of O(np), where n

is no. of times we have to save the document. Applying a hash function outputs a in­

teger and is able to improve space complexity of bag of phrases to O(n). Minhash[20]

brings storage requirement to O(1) but time complexity of query documents is O(n).

Simhashing[20] performs better than Minhash by querying on a fix q sorted list of

hashes. Its time complexity is given as O(q * log(n)).

To achieve the time complexity expressed in previous paragraph, simhash can be com­

bined with Locality-Sensitive Hashing(LSH)[33] which is a technique that can quickly

find similar entries in a large pool of data. This technique is classified under random­

ized algorithms which do not guarantee exact answer but through a probability func­

tion outputs an answer close to it. The function can be tuned to set the cutoff high/low

or as desired.

For near-duplicate detection at scale, LSH hashes similar documents into same bucket

groups that have a probability threshold set. The bucket count is much smaller than

number of documents need to be compared. As this technique maps a range of similar

documents to same buckets, the number of comparison operations is greatly reduced.

The hash collisions are encouraged and are maximized differing from minimum colli­

sion probability that exist in cryptographic hash functions.

98

5.4 Hash based rebalancing

Figure 5.9: adding new node to existing cluster of nodes

Key observation while rebalancing a cluster when adding or removing a node like pn5:

• entire vnodes are moved between pnodes

• number of vnodes present do not change

• assignment of hash of urls to vnodes do not change

• only the assignment of vnodes to pnodes is changed

The maximum number of pnodes that can be provisioned to manage scalability is equal

to total number of vnodes. At some point if the crawler process changes its property

from being just a topical crawler to also be comprehensive, its compute capacity can

get overhauled, thus requiring more horizontal scalability. Determining how many

machines the crawler can outgrow to depends on what needs to be accomplished with

the crawler.

99

5-5 MongoDB documents

NoSQL stores are a good choice for unstructured data like in figure 5.10. The dimen­

sionality of the data needs to be expanded to cater to data mining and machine learning.

Figure 5.10: screenshot of collected data through crawler

100

5.6 Whirlpool as a Microservice Architecture

microservices.io defines microservices as a

"architectural style that structures an application as a collection of services that
are:

• Highly maintainable and testable
• Loosely coupled
• Independently deployable
• Organized around business capabilities
• Owned by a small team

The Whirlpool crawler project in this thesis shares similar characteristics. Its imple­

mentation is a event-driven microservice identified by the use of asynchronous, broker-

based messaging for collaboration between services(subsystems).

There exist 2 ways to communicate between microservices:

• Synchronous - where each service calls directly other service and awaits reply.

This is achieved using REST or gRPC. Note that this results in dependency be­

tween the two.

• Asynchronous - a message queue is used as a separate layer to send message from

service A to service B. Principles of message queue(covered in section 2.7 apply

here) where service A doesn't wait for the reply.

With message broker

• the messages get delivered with at least once durability

• ensures the workflow cycle completes when participants are temporarily unavail­

able

• ordered delivery

• mechanism for scaling consumers

101

• easier to diversify language runtimes

102

6 Conclusion & Future Work

Whirlpool is a multifaceted project. In one way, it builds a strategy to source data

legally, politely, continuously from machines over the internet, transforms it through

various checks/filters in real time and makes it available to data analyst/scientist. Thus,

it is doing the actual plumbing work of data science. Secondly, the system design of

web crawlers surveyed in background chapter are extensible through plugins but are

developed, deployed and scaled as a one single, monolithic entity. Changes to one part

of the application require redeploying the whole application. Scaling out(horizontally)

require changes in application code and isn't always possible. This project takes a al­

ternative approach to developing building blocks of whirlpool by breaking down its

components into smaller, independently running components called microservices.

Deploying this multi-component project is achieved with docker and kubernetes. Thus

scaling whirlpool is done on per-component basis that means scaling only those com­

ponents that require more resources, while leaving others at their original scale.

This is a list of follow-up ideas that can be turned into potential projects. These are

complex and important topics that deserve a report of their own. This thesis wouldn't

do them justice by making them superficial side notes.

crawler data & log events search using Elasticsearch Engine

Traditionally elasticsearch is being used to power sophisticated search function­

ality on web applications. This can be a fun and educational project using elas-

ticsearch to search for log events in crawler subsystems as well as get analytics

on collected data in MongoDB. The educational part here is learning to model,

103

index, search, and analyze data efficiently.

Adding comprehensive coverage

Currently this project only performs crawling within the bounds of finite seed

set. Being able to discovering new relevant websites similar to input seeds can

make it comprehensive.

Content Extraction

While this thesis focuses on extracting structured HTML that appears multiple

times on similar pages, a more sophisticated way to extract is through machine

learning that can extract unstructured html [26] appearing only once.

Categorizing Jobs using Supervised/RNN classifier

Producing higher dimensional data through feature extraction on collected data

to build job classifier.

SeenTest: Inserting and Querying Simhashes

To work on a performant solution to build the data store to query simhashes effi­

ciently and achieve running time complexity of O(q* log(n)) mentioned in section

5.3. To implement this, various backends can be taken into consideration such as

Cassendra, MongoDB, or Riak.

104

References

[1] AWS. Aws documentation, Aug. 2019.

[2] B a r r , J. Host Your Web Site in the Cloud: Amazon Web Services Made Easy,

illustrated ed. Amazon web services Sitepoint Series. SitePoint, 2009.

[3] B e a u c h e m i n , M. The rise of the data engineer, Jan. 2017.

[4] B o l d i , P., C o d e n o t t i , B., S a n t i n i , M., a n d V i g n a , S. Ubicrawler: A scalable fully

distributed web crawler. Softw. Pract. Exper. 34, 8 (July 2004), 711-726.

[5] B u r r o w s , M. The chubby lock service for loosely-coupled distributed sys­

tems. In Proceedings of the 7th Symposium on Operating Systems Design and

Implementation (Berkeley, CA, USA, 2006), OSDI '06, USENIX Association,

pp. 335- 350.

[6] C h a r i k a r , M. S. Similarity estimation techniques from rounding algorithms.

In Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of

Computing (New York, NY, USA, 2002), STOC '02, ACM, pp. 380-388.

[7] C o s m o , R. D., a n d Z a c c h i r o l i , S. Software heritage: Why and how to preserve

software source code. In iPRES 2017: 14th International Conference on Digital

Preservation (Kyoto, Japan, 2017).

[8] F u l l e r , V., L i , T., Y u , J., a n d V a r a d h a n , K. Classless inter-domain routing (cidr):

An address assignment and aggregation strategy, 1993.

[9] G h e o r g h e , R., H i n m a n , M. L., a n d R u s s o , R. Elasticsearch in Action, 1st ed. Man­

ning Publications Co., Greenwich, CT, USA, 2015.

105

[10] G r u h l , D., C h a v e t , L., G i b s o n , D., M e y e r , J., P a t t a n a y a k , P., T o m k i n s , A., a n d Z i e n ,

J. How to build a webfountain: An architecture for very large-scale text analytics.

IBM Systems Journal 43, 1 (2004), 64-77.

[11] H a r t h , A., U m b r i c h , J., a n d D e c k e r , S. Multicrawler: A pipelined architecture for

crawling and indexing semantic web data. In Proceedings of the 5th International

Conference on The Semantic Web (Berlin, Heidelberg, 2006), ISWC'06, Springer-

Verlag, pp. 258-271.

[12] H e y d o n , A., a n d N a j o r k , M. Mercator: A scalable, extensible web crawler. World

Wide Web 2, 4 (Apr. 1999), 219-229.

[13] H u n t , P., K o n a r , M., Ju n q u e i r a , F. P., a n d R e e d , B. Zookeeper: Wait-free coordi­

nation for internet-scale systems. In Proceedings of the 2010 USENIX Conference

on USENIX Annual Technical Conference (Berkeley, CA, USA, 2010), USENIX-

ATC'10, USENIX Association, pp. 11- 11 .

[14] I n c , D. Documentation, June 2019.

[15] Ja f f e , E., a n d K i r k p a t r i c k , S. Architecture of the internet archive. In Proceedings

of SYSTOR 2009: The Israeli Experimental Systems Conference (New York, NY,

USA, 2009), SYSTOR '09, ACM, pp. 11:1-11:10 .

[16] K a r g e r , D., L e h m a n , E., L e i g h t o n , T., P a n i g r a h y , R., L e v i n e , M., a n d L e w i n , D.

Consistent hashing and random trees: Distributed caching protocols for relieving

hot spots on the world wide web. In Proceedings of the Twenty-ninth Annual

ACM Symposium on Theory of Computing (New York, NY, USA, 1997), STOC

'97, ACM, pp. 654-663.

[17] K l e p p m a n n , M. Designing Data-Intensive Applications: The Big Ideas Behind

Reliable, Scalable, and Maintainable Systems. O'Reilly Media, Inc., 2017,

ch. Chapter 6: Distributed Data, p. 616 pages.

[18] K y l e B a n k e r , P e t e r B a k k u m , S. V. T. H. D. G. MongoDB in Action. Manning, 2015.

106

[19] L e e , H.-T., L e o n a r d , D., W a n g , X., a n d L o g u i n o v , D. Irlbot: Scaling to 6 billion

pages and beyond. ACM Trans. Web 3, 3 (July 2009), 8:1-8:34.

[20] M a n k u , G. S., Ja i n , A., a n d D a s S a r m a , A. Detecting near-duplicates for web

crawling. In Proceedings of the 16th International Conference on World Wide

Web (New York, NY, USA, 2007), WWW '07, ACM, pp. 141-150.

[21] M a r t i n , R. C. Agile Software Development: Principles, Patterns, and Practices.

Alan Apt Series. Pearson Prentice Hall, 2011, ch. Chapter II: Agile Design, p. 529

pages.

[22] M a r t i n , R. C. Agile Software Development: Principles, Patterns, and Practices.

Alan Apt Series. Pearson Prentice Hall, 2011, ch. Chapter I: Reduce DNS lookups,

p. 529 pages.

[23] M a r t i n L. A b b o t t , M. T. F. Scalability Rules: 50 Principles for Scaling Web Sites.

Pearson Education, 2011.

[24] N e w m a n , S. Building Microservices: Designing Fine-Grained Systems. O'Reilly

Media, Inc., 2015.

[25] O l s t o n , C., a n d N a j o r k , M. Web crawling. Found. Trends Inf. Retr. 4, 3 (Mar.

2010), 175-246.

[26] P e t e r s , M. E., a n d L e c o c q , D. Content extraction using diverse feature sets. In

Proceedings of the 22Nd International Conference on World Wide Web (New

York, NY, USA, 2013), WWW '13 Companion, ACM, pp. 89-90.

[27] P i v o t a l . Rabbitmq server documentation, Oct. 2019.

[28] R i c h a r d s o n , C. Microservices Patterns: With Examples in Java. Manning Publi­

cations, 2019.

[29] R i c h a r d s o n , C. What are microservices. Kong, 2019.

[30] R o g a t i , M. The ai hierarchy of needs, June 2017.

107

[31] S e e g e r , M. Building blocks of a scalable web crawler. Master's thesis, Stuttgart

Media University, Sept. 2010.

[32] S h k a p e n y u k , V., a n d S u e l , T. Design and implementation of a high-performance

distributed web crawler. In Proceedings 18th International Conference on Data

Engineering (Feb 2002), pp. 357-368.

[33] S l a n e y , M., a n d C a s e y , M. Locality-sensitive hashing for finding nearest neigh­

bors [lecture notes]. IEEE Signal Processing Magazine 25, 2 (March 2008), 128­

131.

[34] V i d e l a , A., a n d W i l l i a m s , J. J. W. Rabbitmq In Action: Distributed Messaging For

Everyone. Manning Publications, 2012, ch. Chapter 2: understanding messaging,

p. 288 pages.

[35] W i e r s d o r f , S. An illustrated guide to ssh tunnels, Aug. 2015.

[36] W i l d e r , B. Cloud Architecture Patterns: Using Microsoft Azure. O'Reilly Media,

Inc, 2012, ch. Chapter 2: Horizontally Scaling Compute Pattern, p. 182 pages.

108

