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A bstract

We consider fractals generated from d-dimensional generalizations of Pascal’s 

Triangle using modular arithmetic. We calculate their dimensions and prove 

formulas using Lucas’ Theorem. We also study the fractal dimensions involv

ing powers of primes by using the Box Counting Method.

*8-bit Link is the property of Nintendo, but keep it a secret to everybody.
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1. Introduction

1.1. Overview.

Definition 1.1.1. A fractal is a set of points in Rd with self-similarity, meaning that its 

parts consist of smaller copies of itself at every scale.

Fractals are well-known for appearing in nature. Examples of natural fractals include 

snowflakes, coastlines, and even cauliflower. Fractals have applications in Physics to describe 

the patterns produced by chaos [1]. In Applications of the Sierpinski Triangle to Musical 

Composition [4], Samuel C. Dent uses fractal-generating algorithms and a configuration of 

note names to compose music.

Many fractals have non-integer dimensions, which distinguishes them from more familiar 

shapes like two-dimensional squares or three-dimensional cubes. For example, a Sierpinski 

Triangle embedded in R2 has a fractal dimension of about 1.58. Additionally, some fractals 

have integers as their dimensions. One example is the Sierpinski Tetrahedron in R3 with a 

fractal dimension equal to 2.

We generate fractal sets by considering the entries in Pascal’s Triangle and similar subsets 

of Euclidean space, then reducing them with modular arithmetic. In this paper, the scaling 

factor p is always a prime integer. One part of this paper focuses on proving theorems about 

fractal dimensions by applying Lucas’ Theorem. Another part considers Pascal’s Triangle 

mod pn, which shows self-similar patterns, but requires a more advanced method for finding 

fractal dimensions.

1.2. Pascal’ s Triangle and Generalizations. Before discussing fractals, we explain Pas

cal’s Triangle and its generalizations. Let d E N be the lowest dimension necessary to fully 

embed a given object in Rd. For example, a triangle is embedded in at least two-dimensional 

space, and a cube is in at least three-dimensional space. In each of these Euclidean spaces, 

we make a generalization of Pascal’s Triangle.
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1 1 1 1 1 1 1 1 1 1 ...

10 Entries in Pascal’s Line

Considering a one-dimensional version of Pascal’s Triangle, Pascal’s Line is a sequence of 

numbers that starts with 1 and every entry to the right (or any arbitrary direction) is the 

sum of the previous 1, resulting in an infinite sequence of 1s.

1 1 1  1 1 1  ...
1 2 3 4 5
1 3 6 10
1 4 10 ••
1 5
1

6 Rows of Pascal’s Triangle

For d =  2, Pascal’s Triangle is a lattice of numbers embedded in a quarter-plane that 

we represent as points. It starts with 1 at the top and very other entry is the sum of the 

two closest entries in the previous layer. In this picture, the numbers are located above and 

to the left. The entries can also be written as binomial coefficients (see Section 3.1). In 

subsequent generalizations, we omit the dots. Additionally, we do not distinguish between 

the lattice of numbers and the subset in Rd that they generate.

For d =  3, we create two distinct 3-dimensional versions of Pascal’s Triangle.

1 1 1  1 2 1  1 3 3 1  1 4 6 4 1
1 1  2 4 2  3 9 9 3  4 16 24 16 4

1 2 1 3 9 9 3 6 24 36 24 6
1 3 3 1 4 16 24 16 4

1 4 6 4 1
5 Layers of Pascal’s Square Pyramid

Definition 1.2.1. P ascal’s Square Pyramid is a lattice of numbers that we represent as 

points in a sixth of R3 with a square grid of integers at every layer. Starting with 1 at the 

top, every other entry is the sum of the four closest numbers from the previous layer.
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For example, 1 +  3 +  3 +  9 in  the fourth layer add up to the 16 in the fifth layer. The 

entries in the Pyramid are also products of binomial coefficients (see Section 3.2).

1 1 1 1 2 1 1 3 3 1 1 4 6 4 1
1 2 2 3 6 3 4 12 12 4

1 3 3 6 12 6
1 4 4

1
5 Layers of Pascal’s Tetrahedron

Definition 1.2.2. P ascal’s Tetrahedron is a lattice of numbers in R3 with a triangular 

grid of integers at every layer. Starting with 1 at the top, every other entry is the sum of 

the three closest numbers in the previous layer.

For example, 3 +  3 +  6 in the fourth layer add up to the 12 in the fifth layer. The entries 

in the Tetrahedron are also the multinomial coefficients (see Section 3.3).

This paper considers two “families” of objects. Both families start with Pascal’s Line and 

Triangle, and the families become distinct when d > 3.

Definition 1.2.3. A Pyram idion is a geometric shape created by connecting a point (called 

the apex) to a hypercube (a generalized cube).

This generalizes a Square Pyramid to any number of dimensions. The name “Pyramidion” 

comes from the capstones in Egyptian architecture [7].

Definition 1.2.4. A Simplex is an d-dimensional generalization of a Tetrahedron.

1.3. H ausdorff Dim ension. When we reduce the entries of Pascal’s Triangle with modular 

arithmetic, many different patterns emerge. When the modulus is a prime or a power of 

a prime, these patterns form self-similar structures, which generate fractals as they fill in 

the quarter-plane. Self-similarity means that when we zoom in or out, we see copies of the 

original set at different scales. We want to define what it means for these fractals to have 

a dimension. One common way to define the fractal dimension is through the Hausdorff 

dimension.
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Definition 1.3.1. The H ausdorff dimension D is a generalized notion of dimension 

which considers scaling and self-similarity. The formula [9] used is

SD =  C or alternatively, D =  =  logo(C).
log(S)

This formula only requires the scaling factor and the number of self-similar objects to find 

the dimension for many fractals and even familiar objects.

Exam ple 1.3.2. If we take a square and double the side lengths, the result is a square with 

4 times the area of the original. Therefore, the Hausdorff dimension D =  log2(4) =  2, which 

agrees with a square being two dimensional.

When the formula is applied to a fractal, we only have to consider the number of self-similar 

shapes and the scaling factor.

1.4. B inom ials and M ultinom ials.

Definition 1.4.1. If we want to choose m objects from a set of n objects, the number of 

ways to do this is called a Binomial Coefficient and its value is given by

n n!
m m!(n — m)!

Note: If n < m, then Q ) is equal to zero.

Definition 1.4.2. In general, if we want to put n objects into m separate containers, then 

the number of ways to organize these objects is called a M ultinomial Coefficient and its 

value is given by
n n!

\k1 fk2 , ...,km)  ki!k2!...km!
m

where ^ 2  ki =  n.
i=l

The multinomial coefficients are more generalized than the binomial coefficients. While the 

binomial coefficients only have two categories, the multinomial coefficients allow m categories.

In Section 3, we prove that the entries of Pascal’s Triangle and its generalizations are equal 

to these coefficients.
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1.5. Sierpinski Triangle.

Sierpinski Triangle after 7 Iterations

The Sierpinski Triangle is a fractal often generated by cutting triangles out of a whole 

triangle and repeating this process iteratively. This fractal also resembles a pattern generated 

by the entries in Pascal’s Triangle after reducing them mod 2. In this process, the zero entries 

are left blank while the remaining entries are filled in. Since Pascal’s Triangle has no end 

point, this process constructs a Sierpinski Triangle in a quarter-plane instead of cutting pieces 

out of a whole triangle. In order to find the Hausdorff dimension, we can see that it has a 

scaling factor of 2, and the number of similar objects is 3. This means that the Hausdorff 

dimension is log2 3 ~  1.58. In Iterated Function Systems and Fractals Chaos, fractals, and 

noise [5], Lasota, A. and Mackey, M. C. say that the Sierpinski Triangle can be seen by the 

human eye. However, in 100 years vnth the Sierpinski Triangle [3], Rafael Prieto Curiel says 

that the Sierpinski Triangle is “invisible to the human eye, and impossible to display using 

the pixels of a computer screen, but certainly not beyond the scope of our imagination!” It 

seems that a hypothetical Sierpinski Triangle existing in the real world is not visible to the 

human eye. For comparison, a spider web that is very far away still has some area, but the 

Sierpinski Triangle has zero area.
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1.6. B ox  C ounting M ethod .

27 Boxes in 8 Rows of Pascal’s Triangle mod 2

Definition 1.6.1. The B ox Counting M ethod is a technique for finding the dimension 

of a fractal by covering it vnth a grid and counting boxes that overlap vith the fractal.

For more accuracy, the boxes can be made smaller. Alternatively, the boxes can stay the 

same and the image of the fractal can be extended to infinity. This method is effective on 

fractals in Pascal’s Triangle because the entries occupy discrete spaces. The Box Counting 

Method is also more useful than the Hausdorff dimension because it can apply to Pascal’s 

Triangle mod pn where pn is a power of a prime number.

When applying this method to fractals in Pascal’s Triangle, we use the formula

D log(Boxes containing the fractal)
log(Number of rows considered)

This formula also needs to end at the “bottom” of a triangle for the best results. This means 

that the number of boxes is equal to the number of nonzero entries, and the number of rows 

is always a power of p, which is also the scaling factor. For example, if we apply the Box 

Counting Method to 2n rows of Pascal’s Triangle mod 2, the dimensions generated are log2 3, 

log4 9, log8 27, ... etc. each with the same dimension.

log(3n) =  n log (3) =  log(3) _  1 58 
log(2n) n log(2) log(2) ’

which is the same dimension as the Sierpinski Triangle.
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2. Fractal Dimensions for P rime M oduli

2.1. D im ensions in Pascal’ s Pyram idion.

16 Layers of Pascal’s Square Pyramid mod 2

Starting with Pascal’s Pyramidion mod 2, we examine the dimensions of the fractals and 

make a general formula. In the following table, lowercase d represents the dimension of Rd 

in which the object is embedded, and capital D is the dimension of the fractal generated by 

the nonzero numbers after reducing them mod 2.

Object d D

Line 1 log2 (2) =  log2(1 +  1)

Triangle 2 log2(3) = log2(1 +  2)

Square Pyramid 3 log2(5) = log2( 1 + 4)

Cube Pyramid 4 log2(9) = log2( 1 + 8 )

Fractal Dimensions for d-dimensional Pyramidions mod 2

C orollary 2.1.1. The dimension of the fractal in Pascal’s Pyramidion mod 2 is

D =  log2(1 + 2d- 1).

This corollary is one case of the following, more general theorem.
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27 Layers of Pascal’s Square Pyramid mod 3

When examining other prime moduli, we get the following tables.

Mod Line: d = 1 Triangle: d = 2

2 log2 (1 +  1) log2(1 +  2)

3 log3 (1 +  1 +  1) log3 (1 +  2 +  3)

5 log5(10 +  20 +  30 +  40 +  50) log5(P  +  21 +  31 +  41 +  51)

Mod Square Pyramid: d = 3 Cube Pyramid: d =  4

2 log2(1 +  4) log2(1 + 8)

3 log3(1 +  4 +  9) log3(1 +  8 +  27)

5 log5(12 +  22 +  32 +  42 +  52) log5(13 +  23 +  33 +  43 +  53)
In each of these cases, the total is a sum corresponding to the modulus. For example, the 

table has a sum of two numbers for mod 2 and five numbers for mod 5. By rewriting them 

in this way, we can see that they are sums of powers of integers. This leads to a formula for 

the dimension of the fractal in Pascal’s Pyramidion in any Rd and any prime modulus p.

Theorem  2.1.2. For any d E N and any prime modulus p. The dimension of the fractal in 

Pascal’s Pyramidion mod p is

D =  K >  ( E  ^  ■

The proof of this theorem is in Section 4.3. The corollary above is a case where p = 2 . 

Next, we examine fractal dimensions in Pascal’s Simplex.
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2.2. Dimensions in Pascal’s Simplex.

16 Layers of Pascal’s Tetrahedron mod 2

27 Layers of Pascal’s Tetrahedron mod 3

When examining prime moduli in Pascal’s Simplex, we get the following tables.

Mod Line: d = 1 Triangle: d = 2

2 log2 (1 +  1) log2(1 +  2)

3 log3 (1 +  1 +  1) log3 (1 +  2 +  3)

5 log5(1 +  1 +  1 +  1 +  1) log5(1 +  2 + 3 +  4 +  5)

Mod Tetrahedron: d = 3 Hypertetrahedron: d =  4

2 log2 (1 +  3) log2(1 +  4)

3 log3(1 +  3 +  6) log3(1 +  4 + 1 0 )

5 log5(1 +  3 +  6 +  10 +  15) log5(1 +  4 +  10 +  20 +  35)
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Noticing that these numbers are sums of sums of 1s, we obtain the entries of Pascal’s Tri

angle. By rewriting these entries as binomial coefficients, the dimension of Pascal’s Simplex 

mod p, can be calculated from the formula in the following theorem.

Theorem  2.2.1. For any d E N and any prime modulus p. The dimension of the fractal in 

Pascal’s Simplex mod p is

D ( ’  - - +  d)  " ■ *  ( '  -  d ‘  O '

The proof is in Section 4.4.

Rem ark: In Determining the Dimension of Fractals Generated by Pascal’s Triangle [8], 

Ashley Melia Reiter found and proved the exact same formula using a similar method. There 

is also a minor typo on the fourth page of her paper. In the proof of Theorem 1-Multinomial
(  k A

Divisibility Theorem, it says di +  al2 , but it should say di instead of di.

2.3. Limits o f  Formulas. For our formulas for dimension, we let d be a fixed positive 

integer and find the limits as p ^  x>. Even though p needs to be a prime number, it is 

possible to let p go to infinity because there are infinitely many prime numbers. One general 

pattern is that the fractal dimension seems to be slowly approaching the dimension of the 

space as the modulus increases. This led to the question: if we let p go to infinity with some 

fixed d E N, do the nonzero entries “fill” the space and form a subset of Rd with a dimension 

equal to d?

Lem m a 2.3.1. Let D be the fractal dimension of the Pyramidion mod p in Rd. Then 

lim D =  d.

Proof. From earlier, the formula for the Pyramidions is D =  logp ^ ^  A-1^ . The general 

formula for the sums of powers of integers, with c E N, is given by Faulhaber’s Formula [10].

=  - + 7  C + 1 )  Bmnc+1-m,c + 1  mk=1 m=0 '  /

where Bm represents the mth Bernoulli number. Putting these together, we get
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D =  ‘° S ^ d S  ( , t ) Bmpd-'1  =  -  +  ‘“ S- ( E  ( m) BmPd-m)  ■

When we let p go to infinity,

D =  -  ‘“ S 'd  + H -  ( E  ( ,^ )  BmPd-^  )  ■

Since d is fixed, lim logp(d) =  0. Factoring pd out of the sum yieldsp̂ <x> P

lim D =  lim 0 +  log- pd • d\ Bmp-m .
P̂ y  m=o v m j

Using the product rule for logs and computing the limits, we obtain

lim D =  lim d • logp(p )+ lo g p d Bmp-m =  d +  0 =  d.
p \m=o \m

The last step follows from

d~\ / d \
lim Bmp-m =  Bo =  1, and lim logp(Bo) =  0.p̂ <x> m p̂ <x> ym=0

□

Lem m a 2.3.2. Let D be the fractal dimension of the Simplex mod p in d-dimensional space. 

Then lim D =  d.p̂ <x>

Proof. Using the definition of Binomial Coefficients,

fp  — 1 +  d\ f ( p — 1 +  d)!\ ! f p(p + 1)(p +  2)...(p -  1 +  d) \
D =  logU  p -  1 J = lo g 4  (p -  1 ) ! d U = l ° gP d!

=  logp(p) +  logp(p + 1) +  logp(p + 2) + . . .  +  logp(p -  1 +  d) — logp(d!).

Therefore, lim D =  1 +  1 +  1 +  ... +  1 — 0 =  d. □p̂ <x>
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2.4. Rem ark on W olfram ’s paper. In Geometry of Binomial Coefficients [11], Stephen 

Wolfram analyzes Pascal’s Triangle. In the final paragraph, he talks about generalizing 

Pascal’s Triangle to spaces with more dimensions. In the first sentence, he says “One may also 

consider the generalization of Pascal’s triangle to a three-dimensional pyramid of trinomial 

coefficients.” Wolfram is clearly talking about Pascal’s Tetrahedron where the numbers are 

the trinomial coefficients. However, in the next sentence, he says “Successive rows in the 

triangle are generalized to planes in the pyramid, with each plane carrying a square grid of 

integers. The apex of the pyramid is formed from a single 1. In each successive plane, the 

integer at each grid point is the sum of the integers at the four neighboring grid points in the 

preceding plane.” He goes into details about the construction of Pascal’s Square Pyramid 

which is different from Pascal’s Tetrahedron and does not contain trinomial coefficients. 

Later, he even states that “With k =  2, the fractal dimension of the pattern is log2 5.” 

There is no doubt that he is talking about a square pyramid here because the dimension 

of the pattern in the square pyramid is log2 5 while the dimension of the pattern in the 

tetrahedron is log2 4 =  2. In the final sentence, he says “In general, the pattern obtained 

from the d-dimensional generalization of Pascal’s triangle, reduced modulo two, has fractal 

dimension log2(2d +  1).” First, this does not match the previous sentence because log2 5 =  

log2(2 • 3 +  1) =  log2 7. Second, the actual formula is D =  log2(1 +  2d-1), as proven in Section 

4.3.
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3. C o m b i n a t o r i c s  

3.1. Pascal’ s Triangle and Identity.

( 0 )  ( ! )  ( 2 )  ( 3 )  ( 4 )  ( 5 )
( 0 )  ( 1 )  ( 3 )  ( 4 )  ( 5 )
( 0 )  ( 1 )  ( 4 )  ( 5 )
( 3 )  ( 4 )  ( 5 )
( 4 )  ( 5 )
( 0 )

6 Rows of Pascal’s Triangle as Binomial Coefficients

We let n represent the diagonal row number and let m represent the vertical column 

number, with both starting at 0. When choosing m objects from n objects, the number of 

ways to do this is equal to the number of ways to choose m — 1 objects from n — 1 objects 

plus the number of ways to choose m objects from n — 1 objects. The reason for this is 

because we can look at any object in the n objects and decide if it is chosen or not chosen. 

If it is chosen then there are m — 1 objects to choose from the remaining n — 1 objects. If 

it is not chosen then there are m objects to choose from n — 1 objects. Therefore the total 

number of ways to choose m objects from n objects is the sum of these two numbers of ways 

to choose objects. This is also known as Pascal’s Identity.

n n — 1 n — 1
m m — 1 m

Here is another proof using the definition of binomial coefficients.

(  n — 1 \ +  (n  — 1\ (n — 1)! +  (n — 1)!
m — 1 m (m — 1)!(n — 1 — m +  1)! m!(n — 1 — m)!

=  (n — 1)! ________1________ |_________1_______
|_(m — 1)!(n — m)! m!(n — m — 1)!

m n — m
=  (n — 1)! +m!(n — m)! m!(n — m)!

n! n
m!(n — m)! m

13



3.2. B in o m ia l  C o e f f ic ie n ts  in  P a s c a l ’s P y r a m i d io n .

1 1 1  1 2  1
1 1  2 4  2

1 2 1
3  L a y e r s  o f  P a s c a l ’s S q u a r e  P y r a m i d

( X )  ( X )  ( X )  ( X )  ( X )  ( X )

( X )  ( ! ) ( ! )  ( X )  ( X )  ( X )

( X )  ( X )  ( X )

3  L a y e r s  o f  P a s c a l ’s S q u a r e  P y r a m i d  a s  B i n o m ia l  C o e f f i c ie n t s

H ere, we le t n  rep resen t th e  layer in  th e  square  py ram id . In  th e  square  g rid  of in tegers in  

th e  n th  layer, we le t a  rep resen t th e  row  a n d  b rep resen t th e  colum n, b u t due to  sym m etry , 

th ey  are in terchangeab le . W ith  these  labels applied , any e n try  in  th e  p y ram id  can  be calcu

la te d  by (™) (n ) . To prove th a t  these  num bers are  alw ays equal to  th e  co rrespond ing  en tries 

in  th e  py ram id , we need  to  show th a t  these  num bers share  th e  tw o defining charac te ris tics  

of P a sc a l’s Square P y ram id . T he  first ch a rac te ris tic  is th a t  it s ta r ts  w ith  1 a t th e  top . T he 

second is th a t  each nu m b er is equal to  th e  sum  of th e  four num bers above it. T hese  are  th e  

defining charac te ris tic s  of P a sc a l’s S quare  P y ram id , hence show ing th a t  th ey  also app ly  to  

p ro d u c ts  of b inom ial coefficients proves th a t  th e  tw o py ram ids are  equal.

T h e o r e m  3 .2 .1 . In  P a s c a l’s Square P yram id , the en try  in  layer n , row a, and  colum n b is 

equal to

(n/a) (n/b)

Proof. W e need  to  check tw o conditions. F irs t, th a t  th e  nu m b er a t th e  to p  is 1, a n d  second, 

th a t  every o th e r  nu m b er is th e  sum  of th e  four num bers above it. T he  first nu m b er in  th e  

p y ram id  is equal to  (0) (0) =  1.

N ext, any a rb itra ry  nu m b er in  layer n , row  a, co lum n b is equal to  th e  four num bers above 

it. T hese four num bers are  all in  layer n  — 1 an d  th ey  are  lo ca ted  in  th e  rows a  — 1 an d  a, 

an d  th e  colum ns b — 1 a n d  b.

14



The sum of the previous four entries is

n — 1 
a — 1

n — 1 n — 1 
b — 1 +  a

n — 1 n — 1 
b — 1 +  a — 1

n 1 n 1 
b ) +  a

n — 1 
b

We can rewrite this as a product of sums

n — 1 n — 1 
a 1 a

n — 1 n — 1 
b -  b

Then, using Pascal’s Identity on these two sums, we get the final result

n n
a b

Next, we examine the general cases with d dimensions.

Theorem  3.2.2. In a d-dimensional Pyramidion, the entry in layer n with coordinates 

(a i,a2, ..., ad-1), is equal to
n n  
ai a2

n
ad_1

Proof. First, the number at the top is Q  (0)... (°) =  1. Next, any arbitrary entry is the sum 

of the 2d-1 entries in the previous layer. Like before, these entries are located at a1 — 1 and 

a1, up to ad-1 — 1 and ad-1.

The sum of 2d-1 entries equals the product of sums

n  1 C : ; ) + f ; 1) ] -

Using Pascal’s Identity on each of these sums, we get the product

n n n
\a1 a2J ..\ad_J '

Next, we examine Pascal’s Simplex.
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3.3. M ultinom ials in Pascal’s Simplex.

1 1 1 1 2 1 1 CO 3 1
1 2 2 CO 6

CO

1 CO CO

1
4 Layers of Pascal’s Tetrahedron

( 0 V0,0,0. 1 1 1 ( 2 1 2 2 ( 3 1 3 3 3,1 ,0,0) 0 1 0 V2 ,0,0) 1,1,0 0,2,0 V3,0,0/ 2,1,0 1,2,0 0,3,0

1 1 ( 2 1 ( 2 1 ( 3 1 ( 3 1 ( 3 10 0 1 V1 ,0,1) 0,1,1 2,0,1 1,1,1 0,2,1

( 2 1 ( 3 1 ( 3 10,0,2 1,0,2 0,1,2

(0.0.3)
4 Layers of Pascal’s Tetrahedron as Multinomial Coefficients

We let n represent the layer in the tetrahedron. In the triangular grid of integers in the 

nth layer, we no longer have rows and columns to measure locations. Instead, we let a 

represent the top left point, with the value of a decreasing as the distance from this point 

increases. We let b represent the top right point and have the value of b decrease as we 

move away from the top right. (This corresponds to columns, but only because of the angle 

of the figure above.) We let c represent the bottom left corner of the triangle and the 

value of c decreases as we move upward. (This corresponds to rows because of the angles.) 

Additionally, since a +  b +  c =  n, we can use two values to find the third value. Also, due to 

symmetry, the three letters are interchangeable. With these labels applied, any entry in the 

tetrahedron can be calculated by ( ^ c ) . To prove that these numbers are always equal to 

the corresponding entries in the tetrahedron, we need to show that these numbers share the 

two defining characteristics of Pascal’s Tetrahedron. The first characteristic is that it starts 

with 1 at the top. The second is that each number is equal to the sum of the three numbers 

above it arranged in an inverted triangle. These are the defining characteristics of Pascal’s 

Tetrahedron, hence proving that they also apply to multinomial coefficients shows that the 

two tetrahedrons are equal.
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Theorem  3.3.1. In Pascal’s Tetrahedron, the entry in layer n, with triangular coordinates 

(a, b, c), is equal to

(  n V
a, b, c

Proof. We need to check two conditions. First, that the number at the top is 1, and second, 

that every other entry is the sum of the three numbers above it. The first number in the 

pyramid is equal to (0° 0) =  1.

Next, any arbitrary entry in layer n, triangular coordinates a, b, and c should be equal to 

the sum of the three numbers above it. These numbers are all in layer n — 1 and each entry 

has 1 subtracted from one of the coordinates.

The sum of the three previous entries is

(  n — 1 \ (  n — 1 \ (  n — 1 \
a,b,c — 1 a,b — 1,c a — 1,b, c

Rewriting them as fractions, we obtain

(n — 1)! (n — 1)! (n — 1)!
a!b!(c — 1)! +  a!(b — 1)!c! +  (a — 1)!b!c!'

Multiplying to get a! b! c! as a common denominator, we obtain

c(n — 1)! b(n — 1)! a(n — 1)!
a!b!c! +  a!b!c! +  a!b!c!

Since a +  b +  c =  n , the expression simplifies to

(a +  b +  c)(n — 1)! n! n
a!b!c! a!b!c! a,b,c

Theorem  3.3.2. In Pascal’s d-dimensional simplex, the entry in layer n with coordinates 

(a\,a2, '", ad) is equal to

(  n ) .
\ai,a2, "',adJ

Proof. First, the number at the top is (0 00 ^  =  1. Next, any arbitrary entry should be 

equal to the sum of the d entries in the previous layer. These entries are located in layer 

n — 1, and each is one coordinate away from the chosen entry.

17



The sum of the previous entries is

(  r 1 ) + (  n v  ) + ■ ■ ■ + (  n - 1  , )■ai -  1,a,2,...,ad ai,a2 -  1,...,ad ai,a2,...,aA -  1/

Rewriting as fractions yields

(n -  1)! + (n -  1)! +  + (n -  1)!
(ai -  1)!a2!...ad! ai!(a2 -  1)!...ad! ai!a2!...(ad -  1)!’

Multiplying to create a common denominator, we obtain

ai(n -  1)! +  a2(n -  1)! +  +  ad(n -  1)!
ai!a2!...ad! ai!a2!...ad! ai!a2!...ad!

Since a1 +  a2 +  ... +  ad =  n, the expression simplifies to

(ai +  a2 +  ... +  ad)(n -  1)! =  n! = /  n \
ai!a2!...ad! ai!a2!...ad! ai,a2,...,ad

This shows that the generalizations of Pascal’s triangle have binomials and multinomials 

as their entries. In the next section, we apply Lucas’ Theorem to prove several results.
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4. L u c a s ’ T h e o r e m  a n d  R e s u l t i n g  P r o o f s

4.1. Lucas’ T heorem  and Corollaries. Lucas’ Theorem is a fact about binomial coeffi

cients that involves the base p expansion of n and m. It shows that the binomial coefficient 

of n and m is congruent to the product of binomial coefficients ni and mi mod p.

Theorem  4.1.1 (Lucas’ Theorem [6]). Let p be a prime, and let

2 kn =  no +  npp +  n2p +----- +  nkp ,

2 km =  m0 +  mip +  m2p +  ••• +  mkp , 

where 0 < ni < p and 0 < mi < p. Then

(  n 1 =  (  n0 ) (  ni ) (  ̂  )  . . . (  nk )  mod p.
\m mo mi m2 mkj

C orollary 4.1.2. Using the notation in Lucas’ Theorem,

n =  0 mod p if and only if mi > ni for some i G {0 ,1 ,..., k}. 
m

Proof. ( ^ )  If there exists an i G {0 ,1 ,..., k} where mi > ni, then (^0 =  0. When this is 

multiplied by the other binomial coefficients in Lucas’ Theorem, the product becomes zero 

and (n) =  0 mod p.

( ^ )  If we suppose that for every i, mi < ni , then

fn A  =  nj!
\ m j mi!(ni -  mi)!'

Since every ni < p and p is prime, p \ ni! for any ni. Therefore p does not divide their 

product and p \ (n ). Equivalently, (n) =  0 mod p. □

C orollary 4.1.3 (Anton’s Lemma [2]). If n,m < pk, then for all x ,y  > 0,

n +  x • pk n x
k =  mod p.m +  y • pk m y

Proof. We suppose that n,m < pk and x ,y  > 0. Since n and m are both less than pk, we 

know that n and m have the base p representations n =  n0 +  nip +  n2p2 +  ... +  nk-1pk-i and
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m =  m0 +  m1p +  m2p2 +  ... +  mk-1pk 1 . Therefore we can add x • pk to n and y • pk to m 

and use Lucas’ Theorem to find that

f  n +  x • pk no ni n2 n—  x n x
\m +  y • pk)  =  \mo mi m2)  .. \ m k -i y )  =  \m y )  mo p

Next, we use these corollaries to prove many facts about Pascal’s Triangle and its general

izations. The first corollary can be used to prove the existence of zeros in these objects and 

Anton’s Lemma can be used to prove that entries are nonvanishing when reduced modulo p.

4.2. Fractals in Pascal’s Triangle.

Theorem  4.2.1. For any prime modulus p, the dimension of the fractal in Pascal’s Triangle 

mod p is

d  =  log, ( p(p2̂ ) .

Proof. We want to show that the fractal given in pn+1 rows of Pascal’s Triangle mod p 

contains exactly p(p++1) copies of the fractal given in pn rows, with inverted triangles of zeros 

between them. We begin by indexing Pascal’s triangle with rows and columns using r for 

the row number and c for the column number such that any element in Pascal’s Triangle is 

given by (^). If we consider a triangle existing in pn rows (going from 0 to pn — 1) with the 

restrictions that 0 < r < pn and 0 < c < r, then Anton’s Lemma implies

r r +  x • pn
=  . n mod p\c c +  y • pnJ

for all 0 < x < p and 0 < y < x. This means that the top triangle with rows r and columns 

c is equivalent to the triangles located in rows r +  x • pn and columns c +  y • pn. Each pair 

of x and y correspond to one triangle in pn+ 1 rows, hence the total number of triangles is 

equal to the number of pairs of x and y. When x =  0, y is restricted by x, implying that 

y =  0 which represents the top triangle. When x = 1 , then y can be 0 or 1, resulting in two 

triangles after the first. As x increases, the total becomes a sum of increasing integers, also 

known as the triangular numbers. With x starting at 0 and ending at p — 1, we get a sum of 

integers from 1 to p. The result is exactly p(p2+1) copies of the top triangle given in pn rows.
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Next, we need to show that the entries in between the triangles are made up entirely of 

zeros. The inverted triangles of zeros correspond to the entries located at (f+yPn) where 

r < c < pn. When applying Anton’s Lemma, we get

a  + ,  • ^  ^  M f x 1 ^  0 , f x 1 ^  0 mod p
Vc +  y ■ pn c y v j

because c > r in these entries.

With the number of copies and the scaling factor known, we can apply the formula for the
p(p + 1 )Hausdorff dimension to find that D =  logp ^ • D

4.3. Fractals in Pascal’s Pyram idion.

Theorem  4.3.1. For any d E N and any prime modulus p, the dimension of the fractal in 

Pascal’s Pyramidion mod p is

D =  !ogp ( £ ^  •

Proof. From 3.2, the entry in layer n with coordinates a\, a2, ..., ad-1, is equal to

n n n
\ai a2 ad-i)

Each entry is nonzero if and only if each coefficient is nonzero mod p.

We need to show that the shape in pk+1 layers contains exactly 1 +  2d-i +  3d-i +  ••• +  pd-i 

copies of the shape in pk layers. Here, the word “copy” does not mean that the entries are 

exactly the same, only that they form the same shape of nonzero entries. One copy exists 

because pk+1 layers contain the first pk layers. Since the first pn layers are numbered from 0 

to pk — 1, we know that the layer number n is restricted to 0 < n < pk. Each of the other 

indexing numbers are limited by n, hence 0 < ai < n with i ranging from 0 to d — 1. Next, 

Anton’s Lemma implies that for all 0 < xi < p and 0 < yi < xi,

fn  +  Xi ■ pk n XiU + » ■  pk) =  U  UJ mod p-

This means that each pair of x and y correspond to one copy of the shape in pk layers. 

When x and y are both equal to zero, we get the first shape. When x is equal to 1, then y 

can be either 0 or 1, giving us 2 options for each i. Since 1 < i < d — 1, the number of copies
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between pk rows and 2 • pk rows is exactly 2d-1. Next, when x is equal to 2, the number of 

copies corresponds to 3d-1 since there are three options for y. Similarly, for every x < p, 

there is a corresponding number of options for y in each coordinate, resulting in another
p

copy. The sum of these nonzero copies is ^  id-1.
i=1

We also know that the spaces in between these copies contain zeros. Since the outermost 

surface of the Pyramidion is Pascal’s Triangle, the zero entries from Pascal’s Triangle make 

the entire product of binomials equal to zero. The zeros in Pascal’s Triangle mod p poke 

colloquial holes that go all the way through the fractal.

With the number of copies and the scaling factor, we apply the formula to find the Haus- 

dorff dimension D =  logp ^ ̂  id-1^ . □

The following corollary relates to the remarks about Wolfram’s paper in Section 2.4.

C orollary 4.3.2. The formula for the dimension of d-dimensional Pyramidions mod 2 is 

D =  log2(1 +  2d-1).

4.4. Fractals in Pascal’s Simplex.

Theorem  4.4.1. For any d E N and any prime modulus p, the dimension of the fractal in 

Pascal’s Simpex is

d = * . ( p ;  _  r p q p -  d 4)

Proof. From 3.3, the entry in layer n with coordinates a1, a2, ..., ad is equal to

(  n t\a1,a2, ...,adj

We need to show that the shape given in pk+1 layers contains exactly if>+df~vl) copies of the 

shape in pk layers. Here, “copy” means that the nonzero entries form the same shape, not 

that the entries are equivalent mod p. The first pk layers are numbered from 0 to pk — 1, 

with 0 < n < pk. All of the other coordinates are limited by n, with a1 +  a2 +  ... +  ad =  n 

and 0 < ai. This restriction implies that, when considering the next set of layers, we must 

add x • pk to both sides of the equation. Therefore a1 +  a2 +  ... +  ad +  x • pk =  n +  x • pk with 

0 < x < p. Each x corresponds to a set of layers containing some number of copies.
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We begin by examining values for x, which leads to an induction. When x =  0, we get the 

original copy given in pk layers. There is only one choice here, equal to . When x = 1 ,  

the layer numbers go up from n to n +  pk. Since the layer number is also equal to the sum 

of the ai, we need to add pk to one of the a,i, and there are (1) options. Adding the x =  0 

case with the x = 1  case, we get (0) +  (d) =  When x =  2, we have the next set of

layers with 2pk added to the sum of the ai . When distributing this, we have the option to 

add the 2pk to each ai, giving us d choices. We also have the option to give only one of the 

two pk to one ai and adding the other pk to a different aj. This gives us (2) options. Putting 

these together gives us (1) +  (2) =  (^p1) options when x =  2. Adding the x =  2 case to the 

previous cases gives us ^ p 1) +  (pp1) =  (d+2) . When x =  3, we have three pk to distribute 

across the ai. The number of ways to do this is the sum of the number of ways to add all 

three to one, adding one to one and two to another, and all three separate. With the first 

case, we have (d) options. In the second, we have (2) options, multiplied by 2, since we can 

give either the pk or the 2pk to each of the ones we pick. In the third, we have (d) options. 

The total for these is (1) +  (d) +  (2) +  (3). This adds up to (d+1) +  (d+1) =  (d+'2) . Adding 

the total from here to the cumulative total gives us (d+2) +  (d+2) =  (d+3) .

Next, we use induction on x to find the cumulative total at the end. We suppose that 

the cumulative total is currently p̂X- 1 ) . For any value of x, the number of pks we need to 

distribute is equal to x , and we have d places to put them. This is a case of distributing 

x identical objects among d groups. This has a total of {X+X- 1 ) =  X+X-1) . If we add this 

number to the cumulative total, we get X t - -1) +  (d+X~1) =  (d+x).

In general, the total sum is equal to XPX with x increasing with each set of layers. Since 

x is limited by x < p, the total for all of these copies is X+--1 ) .

In the gaps between these copies, the pks are broken into smaller pieces distributed among 

the ai. The resulting entries are then reduced to zero mod p .

Using the number of copies and the scaling factor, we compute the dimension of the fractal.

D ( ’ + '  7 1) ( p - 1 + t
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5. P owers of P rimes

Pascal’s Triangle mod 4

Pascal’s Triangle mod 4 creates a pattern which resembles the Sierpinski Triangle, but with 

another Sierpinski Triangle inside of it. It clearly has some sort of self-similarity, and a scaling 

factor of 2, but the number of self-similar objects needed to find the Hausdorff dimension is 

not as straightforward. By adjusting the formula to account for fractals containing fractals, 

we conjecture that a possible interpretation of the dimension of Pascal's Triangle mod 4 is

D =  l°g(3) +  l°g(3)
log(2) 16 " log(2)•

In order to calculate the dimension accurately, we use the Box Counting Method. By 

counting the pixels, a pattern emerges and we can get a formula for how many boxes exist in 

some pn layers. These formulas, written as corollaries, lead to general formulas allowing any 

prime p with a fixed power n. We prove these general formulas using a form of induction 

where we show that plugging n + 1  into the formula and continuing the observed pattern 

give the same result. Because this section focuses on Pascal’s Triangle, we say “mod pn” as 

an abbreviation of Pascal’s Triangle mod pn.
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5.1. Powers o f  Prim es in Pascal’ s Triangle.

Mod 2 Triangle

When using the Box Counting Method on Pascal’s Triangle mod 2, we find that each triangle 

has 2n rows and 3n pixels. As n increases, each iteration is equal to three times the previous 

triangle.

n Pixels Formula n Pixels Formula

0 1 30 4 81 34

1 3 31 5 243 35

2 9 32 6 729 36

3 27 33 7 2187 37

We get the same result from multiplying by 3, and from plugging n + 1  into 3n. This means 

that each iteration is a power of 3. With this formula and the Box Counting Method, the 

fractal dimension of mod 2 is equal to

log(3n) n log(3) log(3)
log(2n) nlog(2) log(2) ’

25



Mod 4 Triangle

The pattern in mod 4 continues with 3 times the previous iteration, plus a smaller mod 

2 triangle added into the gap between them. Wanting a more accurate measurement of the 

dimension, we know that the image becomes a better approximation of the fractal if we let 

n go to infinity. Before we do this, however, we need to find a formula that gives the number 

of pixels in 2n rows.

n Pixels Formula n Pixels Formula

2 10 C
O to + 1—

1

C
O o 5 351 35 +  4 • 33

3 33 33 +  2 • 31 6 1134 36 +  5 • 34

4 108 C
O + C
O

C
O to 7 3645 37 +  6 • 35

C orollary 5.1.1. The formula for the number of pixels in a mod 4 triangle at 2n rows is 

3n +  (n — 1) • 3n_2 for all n > 1.

This corollary and the ones in the following pages are specific cases of the general theorem 

in Section 5.2.
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Mod 8 Triangle

In the mod 8 case, the overall pattern to find the next iteration is three times the current 

shape, plus a mod 4 triangle in the middle, plus three mod 2 triangles in the gaps around 

the mod 4 triangle.

n Pixels Formula n Pixels Formula

3 36 C
O GO + C
O

C
O + o C
O o 6 1512 36 +  9 • 34 +  6 • 32

4 127 34 +  5 • 32 +  1 • 31 7 5130 37 +  11 • 35 +  10 • 33

5 441 35 +  7 • 33 +  3 • 32 8 17253 38 +  13 • 36 +  15 • 34

C orollary 5.1.2. The formula for the number of pixels in a mod 8 triangle at 2n rows is

3n +  (2n -  3) • 3n-2 +  ^ — 2)2n— ^  • 3n-4 for all n > 2.
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Mod 16 Triangle

In the mod 16 case, the overall pattern for the next iteration is equal to three times the 

current iteration, plus one mod 8 triangle, three mod 4 triangles, and nine mod 2 triangles.

n Pixels Formula n Pixels Formula

4 136 C
O + O
}

C
O to + 1—

1

C
O o + o 7 6438 37 +  15 • 35 +  22 • 33 +  4 • 31

5 501 35 +  9 • 33 +  5 • 31 +  0 8 22608 38 +  18 • 36 +  35 • 34 +  10 • 32

6 1810 36 +  12 • 34 +  12 • 32 +  1 • 30 9 78543 39 +  21 • 37 +  51 • 35 +  20 • 33

Corollary 5.1.3. The formula for the number of pixels in a mod 16 triangle at 2n rows is

3n +  (3n -  6) . 3n-2 +  (n -  3)(3n -  10) • 3n-4 +  (»  -  5)(n -  4)(n -  3) . 3n_,
2 6

for all n > 3.
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Mod 32 Triangle

The mod 32 case continues the pattern of adding previous powers of 2. Each iteration is 

3 times the previous, plus one mod 16, three mod 8’s, nine mod 4’s, and twenty seven mod 2’s.

n Pixels Formula

5 528 35 +  10 • 33 +  5 • 31 +  0 +  0

6 1999 36 +  14 • 34 +  15 • 32 +  1 • 30 +  0

7 7419 37 +  18 • 35 +  31 • 33 +  7 • 31 +  0

8 27091 38 +  22 • 36 +  53 • 34 +  22 • 32 +  1 • 30

9 97593 39 +  26 • 37 +  81 • 35 +  50 • 33 +  5 • 3

10 347544 310 +  30 • 38 +  115 • 36 +  95 • 34 +  15 • 32

This table also forms a base case for a proof by induction.

Theorem  5.1.4. The formula for the number of pixels in a mod 32 triangle at 2n rows is

3n +  (4n -  10) • 3n-2 +  (3n2 -  23n +  45) • 3n-4

+ (n -  5)(n -  4)(4n -  21) on—6 , (n -  7)(n -  6)(n -  5)(n -  4) 3n-8
+  6 • 3 +  24 •3

for all n > 4.
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Proof. For the base case, see the table above. Next, assume that the formula for the number 

of pixels in 2n rows is

3n +  (4n -  10) • 3n-2 +  (3n2 -  23n +  45) • 3n-4

. (n -  5)(n -  4)(4n -  21) 3n-6 . (n -  7)(n -  6)(n -  5)(n -  4) 3n-8
6  ̂ 24  ̂ '

We should get the same result from plugging n +  1 into this formula, and from following the 

pattern of multiplying by 3 and and adding the other mod’s. We get

3n+1 +  (4n -  6) • 3n-1 +  (3n2 -  17n +  25) • 3n-3

. (n -  4)(n -  3)(4n -  17) 3n -5 . (n -  6)(n -  5)(n -  4)(n -  3) 3n -7
+  6 ^3 +  24  ̂ 3 •

Next, we continue the pattern to see if they are equal. The pattern for mod 32 is 3 times 

the previous, plus one mod 16, three mod 8’s, nine mod 4’s, and twenty seven mod 2’s.

3 • (3n +  (4n -  10) • 3n-2 +  (3n2 -  23n +  45) • 3n-4

. (n -  5)(n -  4)(4n -  21) 3n -6 . (n -  7)(n -  6)(n -  5)(n -  4) on-8\
+  6  ̂ 3 +  24  ̂ 3 )

+3” - i  +  (3n -  9) • a” “ 3 +  (n -  4)(3n ~ 13) • 3” “ 5 + (n ~ 6)(n ~ 5)(n ~ 4) • 3” “ 7
2 6

. 3  ( V -2 +  (2n -  7) • 3n-4 +  (n -  4)2(n -  5) • 3n-6^

+32 (3n-3 +  (n -  4) • 3n-5) +  33 (3n-4) •

When simplified, this expression is equal to

3n+1 +  (4n -  6) • 3n-1 +  (3n2 -  17n +  25) • 3n-3

. (n -  4)(n -  3)(4n -  17) 3n -5 . (n -  6)(n -  5)(n -  4)(n -  3) 3n -7
+  6 ^3 .  24  ̂ 3 •

Since the two are equal, the formula is proven by induction.
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The next table shows the numbers from the powers of 2.

n 0 1 2 3 4 5 6 7 8 9 10

Mod 2 1 3 9 27 81 243 729 2187 6561 19683 59049

Mod 4 1 3 10 33 108 351 1134 3645 11664 37179 118098

Mod 8 1 3 10 36 127 441 1512 5130 17253 57591 190998

Mod 16 1 3 10 36 136 501 1810 6438 22608 78543 270378

Mod 32 1 3 10 36 136 528 1999 7419 27091 97593 347544

Note that every entry in the table starts with 3 times the left number. As we move down, 

the entries are also the sum of the numbers in an up and left diagonal with the property of 

one times one number, three times the next, nine times the next, and so on with increasing 

powers of 3. These powers of 3 correspond to the numbers of copies added with each iteration. 

Every iteration of a power of 2 triples the previous amount, then adds one triangle from the 

previous power of 2, three triangles from the next, and so on. For example, looking at the 

column where n =  6, we get the following results.

n =  6 Formula

729 3 • 243

1134 3 • 351 +  81

1512 3 • 441 +  108 +  3 • 27

1810 3 • 501 +  127 +  3 • 33 +  9 • 9

1999 3 • 528 +  136 +  3 • 36 +  9 • 10 +  27 • 3

Additionally, every entry to the left of the down and right diagonal starting at mod 2 

where n =  2 is a triangular number. This is because the space is limited when constructing 

these fractal triangles using a finite number of pixels.

Next, we examine powers of 3.
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Mod 3 Triangle

For each of the powers of 3, the scaling factor is 3 with every iteration of the triangle 

containing 3n rows. In the mod 3 case, every iteration contains 6n pixels and the overall 

pattern is that the next iteration is equal to six times the previous.

n Pixels Formula n Pixels Formula

0 1 60 4 1296 64

1 6 61 5 7776 65

2 36 62 6 46656 66

3 216 63 7 279936 67

The general formula for the number of pixels in 3n rows is 6n. When we plug in n + 1  and 

continue the pattern by multiplying by six, we get the same result. Additionally, 6 is equal 

to the third triangular number 3(32+1). With the formula and the Box Counting Method, we 

find that the fractal dimension of mod 3 is equal to

log(6n) n log(6) log(6)
log(3n) nlog(3) log(3) ’
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Mod 9 Triangle

In the mod 9 case, the pattern is that three smaller mod 3 triangles are added into each 

of the gaps for every iteration. One observation is that the additional triangles correspond 

exactly to the number and orientation of the gaps in the previous triangle. If we folded the 

image above diagonally to connect the top left corner to the bottom right corner, then the 

gaps in between the six triangles and the three additional blue triangles overlap. Looking 

back at the mod 2 case, the same is true. Based on this observation, we predict that the 

powers of 5 follow this trend and have 10 extra triangles added into each of the 10 gaps.

n Pixels Formula n Pixels Formula

2 45 62 +  1 • 32 • 60 5 15552 65 +  4 • 32 • 63

3 324 63 +  2 • 32 • 61 6 104976 66 +  5 • 32 • 64

4 2268 64 +  3 • 32 • 62 7 699840 67 +  6 • 32 • 65

C orollary 5.1.5. The formula for the number of pixels in a mod 9 triangle at 3n rows is

6n +  (n — 1) • 32 • 6n_2 for all n > 1.
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Mod 27 Triangle

In the mod 27 case, the pattern is that the mod 3 triangles have changed to mod 9 tri

angles since there are smaller mod 3 triangles added into each of their gaps. The remaining 

gaps are then filled with additional mod 3 triangles.

n Pixels Formula n Pixels Formula

3 378 63 +  3 • 32 • 61 +  0 6 169128 66 +  9 • 32 • 64 +  6 • 34 • 62

4 2997 64 +  5 • 32 • 62 +  1 • 34 • 60 7 1224720 67 +  11 • 32 • 65 +  10 • 34 • 63

5 22842 65 +  7 • 32 • 63 +  3 • 34 • 61 8 8713008 68 +  13 • 32 • 66 +  15 • 34 • 64

C orollary 5.1.6. The formula for the number of pixels in a mod 27 triangle at 3n rows is

6n +  (2n -  3) • 32 • 6n_2 +  ^ ^ — 2) . 34 • 6n“ 4 for all n > 2.
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Mod 81 Triangle

In the mod 81 case, there are additional triangles added into every gap resulting in a sum 

of mod 27 triangles, mod 9 triangles, and mod 3 triangles.

n Pixels Formula

4 3321 64 +  6 • 32 • 62 +  1 • 34 • 60 +  0

5 27702 65 +  9 • 32 • 63 +  5 • 34 • 61 +  0

6 222345 66 +  12 • 32 • 64 +  12 • 34 • 62 +  1 • 36 • 60

7 1732104 67 +  15 • 32 • 65 +  22 • 34 • 63 +  4 • 36 • 61

8 13174488 68 +  18 • 32 • 66 +  35 • 34 • 64 +  10 • 36 • 62

9 98257536 69 +  21 • 32 • 67 +  51 • 34 • 65 +  20 • 93 • 63

35

C orollary 5.1.7. The formula for the number of pixels in a mod 81 triangle at 3n rows is

6" + (3n -  6) • 32 • S’- 2 + (n ~ 3)(3n -  10) . ■ 6 " -  + (n -  5)(n -  4)(n -  3) . 3« ■ 6 " -
2 6

for all n > 3.



The following table collects numbers from the powers of 3.

n =  0 n = 1 n =  2 n =  3 n =  4 n =  5 n =  6 n =  7 n =  8

Mod 3 1 6 36 216 1296 7776 46656 279936 1679616

Mod 9 1 6 45 324 2268 15552 104976 699840 4618944

Mod 27 1 6 45 378 2997 22842 169128 1224720 8713008

Mod 81 1 6 45 378 3321 27702 222345 1732104 13174488

Observe that every entry in the table starts with 6 times the left number, then adds the 

rest of the numbers in an up and left diagonal. The entries from this diagonal are multiplied 

by nine times one number, nine times six times the next, nine times thirty six times the 

next, and so on with increasing powers of 6. However, the nine stays constant for each 

multiplication. For example, looking at the column where n =  6, we get the following 

results.

n =  6 Formula

46656 6 • 7776

104976 6•15552 +  9 • 1296

169128 6 • 22842 +  9 • 2268 +  9 • 6 • 216

222345 6 • 27702 +  9 • 2997 +  9 • 6 • 324 +  9 • 62 • 36

Additionally, every entry to the left of the down and right diagonal starting at mod 3 

where n =  2 is a triangular number. This is because of the limited space for fitting pixels 

into a triangle.

Next, we examine powers of 5.
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Mod 5 Triangle

For every power of 5, the scaling factor is 5. In the mod 5 case, each iteration of the 

pattern takes the current number of pixels and multiplies it by 15. This is equal to the 

number of smaller triangles making up each triangle and it is also 1 5 =  1 +  2 +  3 +  4 +  5. 

From the earlier powers of primes, 3 =  1 +  2 was important in the formulas for mod 2, and 

6 =  1 +  2 +  3 was important for mod 3. Additionally, for powers of 3, the number 3 appeared 

in the formulas relating to the number of gaps. Since the powers of 2 only have one gap, 

the powers of 1 also appear, but without affecting the formulas. There is one pixel in the 

beginning and 15 after the first iteration of the pattern. Since the pattern generates 15 of 

each previous iteration, the total is always equal to 15™. Using this formula and the Box 

Counting Method, we find that its fractal dimension is equal to

log(15™) n log(15) log(15)
log(5™) n log(5) log(5)
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Mod 25 Triangle

In the mod 25 case, the pattern still has 15 times the number of pixels in the previous 

iteration, but then it adds 10 =  1 +  2 +  3 +  4 new mod 5 triangles into each of the ten 

gaps. The positions of these new triangles also mirror the shape of the gaps in between the 

triangles in the previous iteration.

n Pixels Formula n Pixels Formula

2 325 152 +  1 • 102 • 150 5 2109375 155 +  4 • 102 • 153

3 6375 153 +  2 • 102 • 151 6 36703125 156 +  5 • 102 • 154

4 118125 154 +  3 • 102 • 152 7 626484375 157 +  6 • 102 • 155

C orollary 5.1.8. The formula for the number of pixels in a mod 25 triangle at 5n rows is

15n +  (n — 1) • 102 • 15n_2 for all n > 1.
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Mod 125 Triangle

In the mod 125 case, each iteration is made up of 15 times the previous iteration, however 

it changes the 102 mod 5 triangles into mod 25 triangles and adds 1500 =  102 • 15 smaller 

mod 5 triangles. The positions of these new triangles also mirror the shape of the gaps in 

between the triangles in the previous iteration.

n Pixels Formula n Pixels Formula

3 7875 153 +  3 • 102151 6 70453125 156 +  9 • 102154 +  6 • 104152

4 173125 154 +  5 • 102152 +  104150 7 134671875 157 +  11 • 102155 +  10 • 104153

5 3571875 155 +  7 • 102153 +  3 • 10415 8 24964453125 158 +  13 • 102156 +  15 • 104154

C orollary 5.1.9. The formula for the number of pixels in a mod 125 triangle at 5n rows is

15n +  (2n -  3) • 102 • 15n_2 +  —— ^ — 2) • 104 • 15n“ 4 for all n > 2.

39



Mod 625 Triangle

In the mod 625 case, the pattern takes 15 times the previous iteration and changes the 

100 =  102 mod 25 triangles into mod 125 triangles, turns the 1500 =  102 • 15 mod 5 triangles 

into mod 25 triangles, and adds 22500 =  102 • 152 mod 5 triangles. The positions of these new 

triangles also mirror the shape of the gaps in between the triangles in the previous iteration.

n Pixels Formula

4 195625 154 +  6 • 102 • 152 +  1 • 104 • 150

5 4546875 155 +  9 • 102 • 153 +  5 • 104 • 15

6 100140625 156 +  12 • 102 • 154 +  12 • 104 • 152 +  1 • 106 • 150

7 2112421875 157 +  15 • 102 • 155 +  22 • 104 • 153 +  4 • 106 • 151

8 43034765625 158 +  18 • 102 • 156 +  35 • 104 • 154 +  10 • 106 • 152

9 852029296875 159 +  21 • 102 • 157 +  51 • 104 • 155 +  20 • 106 • 153

C orollary 5.1.10. The number of pixels in a mod 625 triangle at 5n rows is

15" + (3n -  6)10215-2 +  t (n ~  3)<23n -  10) \ 10415-4 + ( (n ~ 3)(n -  4)(n ~  5 ))  10 '15 -*

for all n > 3.
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The following table contains numbers of pixels from the powers of 5.

n =  0 n = 1 n =  2 n =  3 n =  4 n =  5 n =  6 n =  7

Mod 5 1 15 225 3375 50625 759375 11390625 170859375

Mod 25 1 15 325 6375 118125 2109375 36703125 626484375

Mod 125 1 15 325 7875 173125 3571875 70453125 1343671875

Mod 625 1 15 325 7875 195625 4546875 100140625 2112421875

Observe that every entry in the table starts with 15 times the left number, then adds the 

rest of the numbers in an up and left diagonal. The entries from this diagonal are multiplied 

by 100 times one number, 100 times 15 times the next, 100 times 152 times the next, and 

so on with increasing powers of 15. However, the 100 stays constant for each multiplication. 

For example, looking at the column where n =  6, we get the following results.

n =  6 Formula

11390625 15 • 759375

36703125 15 • 2109375 +  100 • 50625

70453125 15 • 3571875 +  100 • 118125 +  100 • 15 • 3375

100140625 15 • 4546875 +  100 • 173125 +  100 • 15 • 6375 +  100 • 152 • 225

Additionally, every entry to the left of the down and right diagonal starting at mod 5 

where n =  2 is a triangular number. This is because of the limited space for fitting pixels 

into a triangle.

Next, we examine general patterns in the formulas.
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5.2. Patterns in Formulas. From Section 4.2, we know that the mod p triangle always 

has p(p++1) =  T copies of itself. Since these copies are arranged in a triangle, the number of 

gaps between them is the previous triangular number equal to p(p2~1) =  S. In each of the 

following theorems, the proof is by induction, where the base case is formed from the tables 

in the earlier parts of this section.

Mod Formula

4 C
O s + 's
' 1 i—
1 

C
O s 1 to

9 6n +  (n -  1) • 32 • 6n-2

25 15n +  (n -  1) • 102 • 15n-2

When considering the mod p2 triangle, there are additional mod p triangles added into the 

gaps. There are p(p-1 gaps and each one contains p(p-1 additional triangles corresponding 

to the number of gaps in the smaller copy. This results in S2 copies of the mod p triangles.

Theorem  5.2.1. The formula for the number of pixels in a mod p2 triangle at pn rows is

Tn +  (n -  1) • S2 • Tn-2.

Proof. We check to see if we get the same result from plugging in n +  1, and from continuing 

the pattern. Plugging in n +  1, we get

Tn+1 +  n • S2 • Tn-1.

Continuing the pattern, we get

T(Tn +  (n -  1) • S2 • Tn-2) +  S2(Tn-1) =  Tn+1 +  n • S2 • Tn-1.

The two results are equal, which proves the formula by induction. □

C orollary 5.2.2. The fractal dimension of a mod p2 triangle is the same as mod p.

Proof. The fractal dimension of Pascal’s Triangle mod p2 is

v log(Tn +  (n -  1) • S2 • Tn-2) n log(T) +  log(1 +  (n -  1) • S2 • T -2) log(T)
lim =  lim =  .

n^x log(pn) n^x n log(p) log(p)

□
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Mod Formula

8 3n +  (2n 3) • 3n-2 +  (n- 2)2(n- 3) • 3n-4

27 6n +  (2n 3) • 32 • 6n-2 +  (n-2hn-3) • 34 • 6n-4

25 15n +  (2n 3) • 102 • 15n-2 +  (n-2hn-3) • 104 • 15n-4

When considering the mod p3 triangle, the additional S2 mod p triangles become mod p2 

triangles, and the remaining gaps have S2 • T mod p triangles added.

Theorem  5.2.3. The formula for the number of pixels in a mod p3 triangle at pn rows is

Tn +  (2n -  3) • S2 • Tn-2 +  (n -  3)̂ n ~ 2) • S4 • Tn-4.

Proof. We check to see if we get the same result from plugging in n +  1, and from continuing 

the pattern. Plugging in n +  1, we get

Tn+1 +  (2n -  1) • S2 • Tn-1 +  (n -  2)2(n -  ^  • S4 • Tn-3.

When we continue the pattern, we get

T(Tn+  (2 n -3 )S 2•Tn-2+ (n -  3)2(n -  2) S 4T n-4)+S2(Tn-1 +  (n -2 )-S 2•Tn-3)+ S 2T •(Tn-2). 

When simplified, this matches the formula with n + 1 , as required to prove the formula. □

C orollary 5.2.4. The fractal dimension of a mod p3 triangle is the same as mod p.

Proof. The fractal dimension of a mod p3 triangle is

log(Tn +  (2n -  3) • S2 • Tn-2 +  (n -  3)(n -  2) • s 4 • Tn-4)
lim -  2

n^x log(pn)

n log(T) +  log(1 +  (2n -  3) • S2 • T -2 +  (n -  3)2(n -  2) • S4 • T -4) log (r )

n^x n log(p) log(p)

□
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M od Form ula

1g gra +  (3n   6) • 3n-2 +  (n~3)(3n~10) _ gra—4 +  {n—5){n—4){n—3) _ g n -6

81 6n +  (3n   6) ■ 32 ■ 6'n—2 +  (n—3)(3n—10) . 3 4 , 6n—4 +  (n—5)(n—4)(n—3) ■ 36 ■ 6'n—6

125 15n +  (3n _  6) ■ 102 ■ 15n—2 +  (n—3)(3n—10) . 104 . i5 n—4 +  (n—5)(n—4)(n—3) . g06 . i5 n—6

For th e  m od  p 4 triang les, we have m ore triang les  ad d ed  to  th e  gaps.

T h e o r e m  5 .2 .5 . The fo rm u la  fo r  the num ber of pixels in  a m od p 4 triang le  a t pn rows is

T n  +  (3n  _  6) ■ S2 ■ T n —2 +  (n  _  3 )(3n  _  10) _ g 4 , ^ n —4 +  (n  _  5 )(n  _  4 )(n  _  3)  ̂ g 6 _ rpn—6
2 6

Proof. P lugg ing  in  n  + 1  gives us

T n+1 +  (3n  _  3)  ̂ S 2  ̂T n—1 +  (n  _  2 )(3n  _  7)  ̂ S 4  ̂ ^ —3 +  (n  _  4 )(n  _  3 )(n  _  2)  ̂ g 6  ̂ ^ 5
2 6

C o n tin u in g  th e  p a tte rn , we get

T n+1 +  (3n  _  6)  ̂ S 2  ̂ T n— 1 +  (n  _  3 )(3n  _  10)  ̂ S 4  ̂ T n—3 +  (n  _  5 )(n  _  4 )(n  _  3) ̂ g 6  ̂ jrn —5
2 6

+ S 2(T n—1 +  (2n _  5) ■ S 2 ■ T n—3 +  (n  _  ^  _  3) ■ S 4 ■ T n—5)

+ S 2 ■ T (T n—2 +  (n  _  3) ■ S 2 ■ T n—4) +  S 2 ■ T 2(T n—3).

S im plifying th is  gives us th e  resu lt from  n  + 1 ,  w hich com pletes th e  induction . □

C o r o l la r y  5 .2 .6 . The f ra c ta l d im ension  of a m od p 4 triang le  is the sam e as m od p.

Proof. T h e  fra c ta l d im ension  of a  m od  p 4 trian g le  is

log (T n +  (3n  _  6 )S 2T n—2 +  (n—3)(3n—10) s 4T n—4 +  (n—5)(n—4)(n—3) S 6T n—6)
lim  -------------------------------------------------, — r-------------------------6-----------------------n ^ ^  log(pn )

. n  lo g (T ) +  log(1 +  (3n _  6 )S 2T —2 +  (n—3)(̂ —1°) g 4T —4 +  (n—5)(n—4)(n—3) g 6T —6)

=  >co n  log (p)

=  log(T ) 

log (p )

□
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5.3. M od  6 and Conclusions.

Mod 6 “Triangle”

The pattern of the nonzero entries in Pascal’s Triangle mod 6 is actually the pattern from 

mod 2 overlapping with the pattern from mod 3, which follows from the Chinese Remainder 

Theorem. Since a power of 2 (other than 20 =  1) is never equal to a power of 3 according 

the Fundamental Theorem of Arithmetic, these patterns never overlap onto the same row 

and create a triangular object. This is because the fractals in Pascal’s Triangle mod 2 “end” 

at powers of 2 to make self-similar objects, and for mod 3, the fractals “end” at powers 

of 3. This means there is no original “self” to which the pattern can be similar. In the 

same manner, all other moduli other than prime powers do not form self-similar patterns. 

Without self-similarity, these patterns do not meet the definition of a fractal.

In conclusion, Pascal’s Pyramidions and Simplexes have formulas that calculate fractal 

dimensions corresponding to any dimension d E N and any prime number p. Additionally, the 

powers of primes up to p4 form fractals in Pascal’s Triangle with the same fractal dimension 

as the primes. From this observation, we conjecture that the fractal dimension of the fractal 

generated by Pascal’s Triangle mod pn is equal to the fractal dimension of Pascal’s Triangle 

mod p. One topic for future research is to prove this conjecture for any n. Another topic is 

to study the powers of primes in the generalizations of Pascal’s Triangle.
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Mod 4 Pyramid

Mod 4 Tetrahedron
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