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Abstract

We consider fractals generated from d-dimensional generalizations of Pascal’s
Triangle using modular arithmetic. We calculate their dimensions and prove
formulas using Lucas’ Theorem. We also study the fractal dimensions involv-

ing powers of primes by using the Box Counting Method.

*8-bit Link is the property of Nintendo, but keep it a secret to everybody.
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1. INTRODUCTION

1.1. Overview.

Definition 1.1.1. A fractal is a set of points in R with self-similarity, meaning that its

parts consist of smaller copies of itself at every scale.

Fractals are well-known for appearing in nature. FExamples of natural fractals include
snowflakes, coastlines, and even cauliflower. Fractals have applications in Physics to describe
the patterns produced by chaos [1|. In Applications of the Sierpinski Triangle to Musical
Composition [4], Samuel C. Dent uses fractal-generating algorithms and a configuration of
note names to compose music.

Many fractals have non-integer dimensions, which distinguishes them from more familiar
shapes like two-dimensional squares or three-dimensional cubes. For example, a Sierpinski
Triangle embedded in R? has a fractal dimension of about 1.58. Additionally, some fractals
have integers as their dimensions. One example is the Sierpinski Tetrahedron in R?® with a
fractal dimension equal to 2.

We generate fractal sets by considering the entries in Pascal’s Triangle and similar subsets
of Fuclidean space, then reducing them with modular arithmetic. In this paper, the scaling
factor p is always a prime integer. One part of this paper focuses on proving theorems about
fractal dimensions by applying Lucas’ Theorem. Another part considers Pascal’s Triangle
mod p”, which shows self-similar patterns, but requires a more advanced method for finding

fractal dimensions.

1.2. Pascal’s Triangle and Generalizations. Before discussing fractals, we explain Pas-
cal’s Triangle and its generalizations. Let d € N be the lowest dimension necessary to fully
embed a given object in R?. For example, a triangle is embedded in at least two-dimensional
space, and a cube is in at least three-dimensional space. In each of these Fuclidean spaces,

we make a generalization of Pascal’s Triangle.
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10 Entries in Pascal’s Line

Considering a one-dimensional version of Pascal’s Triangle, Pascal’s Line is a sequence of
numbers that starts with 1 and every entry to the right (or any arbitrary direction) is the

sum of the previous 1, resulting in an infinite sequence of 1s.
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6 Rows of Pascal’s Triangle

For d = 2, Pascal’s Triangle is a lattice of numbers embedded in a quarter-plane that
we represent as points. It starts with 1 at the top and very other entry is the sum of the
two closest entries in the previous layer. In this picture, the numbers are located above and
to the left. The entries can also be written as binomial coefficients (see Section 3.1). In
subsequent generalizations, we omit the dots. Additionally, we do not distinguish between
the lattice of numbers and the subset in R? that they generate.

For d = 3, we create two distinct 3-dimensional versions of Pascal’s Triangle.

111 121 1331 14 6 41
11 242 3993 416 24 16 4
121 3993 624 36 246
1331 416 24 16 4

1 4 6 4 1

5 Layers of Pascal’s Square Pyramid

Definition 1.2.1. Pascal’s Square Pyramid is a lattice of numbers that we represent as
points in a sixth of R® with a square grid of integers at every layer. Starting with 1 at the

top, every other entry is the sum of the four closest numbers from the previous layer.



For example, 1 + 3 + 3 4+ 9 in the fourth layer add up to the 16 in the fifth layer. The

entries in the Pyramid are also products of binomial coefficients (see Section 3.2).

111 121 1331 1 4 6 41
1 2 2 3 6 3 4 12 12 4
1 3 3 6 12 6
1 4 4

1

5 Layers of Pascal’s Tetrahedron

Definition 1.2.2. Pascal’s Tetrahedron is a lattice of numbers in R with a triangular
grid of integers at every layer. Starting with 1 at the top, every other entry is the sum of

the three closest numbers in the previous layer.

For example, 3 + 3 4 6 in the fourth layer add up to the 12 in the fifth layer. The entries
in the Tetrahedron are also the multinomial coefficients (see Section 3.3).
This paper considers two “families” of objects. Both families start with Pascal’s Line and

Triangle, and the families become distinct when d > 3.

Definition 1.2.3. A Pyramidion is a geometric shape created by connecting a point (called

the apex) to a hypercube (a generalized cube).

This generalizes a Square Pyramid to any number of dimensions. The name “Pyramidion”

comes from the capstones in Egyptian architecture [7].
Definition 1.2.4. A Simplex is an d-dimensional generalization of o Tetrahedron.

1.3. Hausdorff Dimension. When we reduce the entries of Pascal’s Triangle with modular
arithmetic, many different patterns emerge. When the modulus is a prime or a power of
a prime, these patterns form self-similar structures, which generate fractals as they fill in
the quarter-plane. Self-similarity means that when we zoom in or out, we see copies of the
original set at different scales. We want to define what it means for these fractals to have
a dimension. One common way to define the fractal dimension is through the Hausdorff

dimension.



Definition 1.3.1. The Hausdorff dimension D is a generalized notion of dimension
which considers scaling and self-similarity. The formula (9] used is

log(C)

SP — C or alternatively, D = log(S)

= logg(C).

This formula only requires the scaling factor and the number of self-similar objects to find

the dimension for many fractals and even familiar objects.

Example 1.3.2. If we take a square and double the side lengths, the result is a square with
4 times the area of the original. Therefore, the Hausdor[f dimension D = log,(4) = 2, which

agrees with a square being two dimensional.

When the formula is applied to a fractal, we only have to consider the number of self-similar

shapes and the scaling factor.

1.4. Binomials and Multinomials.

Definition 1.4.1. If we want to choose m objects from a set of n objects, the number of

ways to do this is called o Binomial Coefficient and its value is given by

(o) = o =

Note: If n < m, then (:1) is equal to zero.

Definition 1.4.2. In general, if we want to put n objects into m separate containers, then
the number of ways to organize these objects is called o Multinomial Coefficient and its

value is given by

n B n!
ki, ko, ....km/)  Eilkol.. k!
where > k; = n.

i=1
The multinomial coefficients are more generalized than the binomial coefficients. While the
binomial coefficients only have two categories, the multinomial coefficients allow m categories.
In Section 3, we prove that the entries of Pascal’s Triangle and its generalizations are equal

to these coeflicients.



1.5. Sierpinski Triangle.
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Sierpinski Triangle after 7 Iterations

The Sierpinski Triangle is a fractal often generated by cutting triangles out of a whole
triangle and repeating this process iteratively. This fractal also resembles a pattern generated
by the entries in Pascal’s Triangle after reducing them mod 2. In this process, the zero entries
are left blank while the remaining entries are filled in. Since Pascal’s Triangle has no end
point, this process constructs a Sierpinski Triangle in a quarter-plane instead of cutting pieces
out of a whole triangle. In order to find the Hausdorff dimension, we can see that it has a
scaling factor of 2, and the number of similar objects is 3. This means that the Hausdorff
dimension is log, 3 &~ 1.58. In Iterated Function Systems and Fractals Chaos, fractals, and
noise 5], Lasota, A. and Mackey, M. C. say that the Sierpinski Triangle can be seen by the
human eye. However, in 100 years with the Sierpinski Triangle [3|, Rafael Prieto Curiel says
that the Sierpinski Triangle is “invisible to the human eye, and impossible to display using
the pixels of a computer screen, but certainly not beyond the scope of our imagination!” It
seems that a hypothetical Sierpinski Triangle existing in the real world is not visible to the
human eye. For comparison, a spider web that is very far away still has some area, but the

Sierpinski Triangle has zero area.



1.6. Box Counting Method.
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27 Boxes in 8 Rows of Pascal’s Triangle mod 2

Definition 1.6.1. The Box Counting Method is a technique for finding the dimension

of a fractal by covering it with a grid and counting boxes that overlap with the fractal.

For more accuracy, the boxes can be made smaller. Alternatively, the boxes can stay the
same and the image of the fractal can be extended to infinity. This method is effective on
fractals in Pascal’s Triangle because the entries occupy discrete spaces. The Box Counting
Method is also more useful than the Hausdorft dimension because it can apply to Pascal’s
Triangle mod p"™ where p™ is a power of a prime number.

When applying this method to fractals in Pascal’s Triangle, we use the formula

~ log(Boxes containing the fractal)

~ log(Number of rows considered) -

This formula also needs to end at the “bottom” of a triangle for the best results. This means
that the number of boxes is equal to the number of nonzero entries, and the number of rows
is always a power of p, which is also the scaling factor. For example, if we apply the Box
Counting Method to 2" rows of Pascal’s Triangle mod 2, the dimensions generated are log, 3,
log, 9, logg 27, ... etc. each with the same dimension.

log(3")  nlog(3) log(3) _
log(27)  nlog(2) log(2) = L

which is the same dimension as the Sierpinski Triangle.



2. FrRACTAL DIMENSIONS FOR PRIME MODULI

2.1. Dimensions in Pascal’s Pyramidion.

16 Layers of Pascal’s Square Pyramid mod 2

Starting with Pascal’s Pyramidion mod 2, we examine the dimensions of the fractals and

make a general formula. In the following table, lowercase d represents the dimension of R?

in which the object is embedded, and capital D is the dimension of the fractal generated by

the nonzero numbers after reducing them mod 2.

Object d D

Line 1 |logy(2) =logy(1+1)
Triangle 2 | logy(3) = logy(1 + 2)
Square Pyramid | 3 | log,(5) = log,(1 + 4)
Cube Pyramid |4 |logy(9) = log,(1 + 8)

Fractal Dimensions for d-dimensional Pyramidions mod 2

Corollary 2.1.1. The dimension of the fractal in Pascal’s Pyramidion mod 2 is

D = log,(1 + 2974,

This corollary is one case of the following, more general theorem.



27 Layers of Pascal’s Square Pyramid mod 3

When examining other prime moduli, we get the following tables.

Mod | Line: d =1 Triangle: d = 2
2 |log,(1+1) log,(1 4 2)
3 |logs(1+1+1) logs(1+ 2+ 3)

5 |logs(1°+2°+ 3% +4° 4 5°) | logs(1' + 2" + 3" 4 4" + 5Y)
Mod | Square Pyramid: d = 3 Cube Pyramid: d = 4

2 | logy(1+4) log, (1 + 8)

3 |logs(1+4+9) logs (1 + 8 + 27)

5 |logs(12+ 22+ 3%+ 42 + 52) | logg (13 + 2% + 3% + 4% + 5%)

In each of these cases, the total is a sum corresponding to the modulus. For example, the

table has a sum of two numbers for mod 2 and five numbers for mod 5. By rewriting them
in this way, we can see that they are sums of powers of integers. This leads to a formula for

the dimension of the fractal in Pascal’s Pyramidion in any R? and any prime modulus p.

Theorem 2.1.2. For any d € N and any prime modulus p. The dimension of the fractal in

Pascal’s Pyramidion mod p s
P
D =log, <Z id_1> .
i=1

The proof of this theorem is in Section 4.3. The corollary above is a case where p = 2.

Next, we examine fractal dimensions in Pascal’s Simplex.



2.2. Dimensions in

When examining prime moduli in Pascal’s Simplex, we get the following tables.

Pascal’s Simplex.

o L
r =

SEHE
. =

16 Layers of Pascal’s Tetrahedron mod 2

b |

n
77 77 17 %17 17 11
b | b | L | L |

b |

27 Layers of Pascal’s Tetrahedron mod 3

Mod | Line: d =1 Triangle: d = 2

2 |logy(1+1) log,(1 4 2)

3 |logs(1+1+1) logs(1 + 2+ 3)

5 [logs(1+14+1+1+1) |[logs(l+2+3+4+5)
Mod | Tetrahedron: d = 3 Hypertetrahedron: d = 4

2 | logy(1+3) log,(1 4 4)

3 | logs(1+3+6) logs(1 + 4+ 10)

5 |logs(1+346+ 10+ 15) |logs(1 +4 + 10+ 20 + 35)




Noticing that these numbers are sums of sums of 1s, we obtain the entries of Pascal’s Tri-
angle. By rewriting these entries as binomial coefficients, the dimension of Pascal’s Simplex

mod p, can be calculated from the formula in the following theorem.

Theorem 2.2.1. For any d € N and any prime modulus p. The dimension of the fractal in

Pascal’s Simplex mod p is

p—1+d p—1+4+d
Dlogp< b1 >logp< J >

The proof is in Section 4.4.
Remark: In Determining the Dimension of Fractals Generated by Pascal’s Triangle 8|,
Ashley Melia Reiter found and proved the exact same formula using a similar method. There

is also a minor typo on the fourth page of her paper. In the proof of Theorem 1-Multinomial
k

Divisibility Theorem, it says d; + <Z aé), but it should say d; instead of d;.

=1
2.3. Limits of Formulas. For our formulas for dimension, we let d be a fixed positive
integer and find the limits as p — oo. Even though p needs to be a prime number, it is
possible to let p go to infinity because there are infinitely many prime numbers. One general
pattern is that the fractal dimension seems to be slowly approaching the dimension of the
space as the modulus increases. This led to the question: if we let p go to infinity with some
fixed d € N, do the nonzero entries “fill” the space and form a subset of R? with a dimension

equal to d?

Lemma 2.3.1. Let D be the fractal dimension of the Pyramidion mod p in R?. Then
lim D =d.

pP—0

P
Proof. From earlier, the formula for the Pyramidions is D = log, <Z id_1> . The general
=1

formula for the sums of powers of integers, with ¢ € N, is given by Faulhaber’s Formula [10].

> k= ci I > <C;1> R

k=1 m=0

where B, represents the mth Bernoulli number. Putting these together, we get

10



=9

Qul—

=FN =1 /o
D =log, < <m> Bmpd_m> = —log,(d) + log, < <m> Bmpd_m> .
0 m=0

When we let p go to infinity,

d—1
lim D = lim <— log, (d) + log, < <d>Bmpd—m>> .

m=0

3
Il

Since d is fixed, lim log,(d) = 0. Factoring p? out of the sum yields
p—00

d—1
d
lim D = li 0+1 2. B.p™™ ] |.
i p:falo(“gp(fﬂ > (3n) Bor ))

m=0

Using the product rule for logs and computing the limits, we obtain

d—1
. . d m
ph_)rroloD — ph_)rrol<> <d -log,(p) + log, < E <m> B )) =d+0=d

m=0
The last step follows from
=1 /g
ph—>Holo Z <m> Bnp ™™ = By=1, and lim logp(Bo) = 0.

pP—o0
m=0

O

Lemma 2.3.2. Let D be the fractal dimension of the Simplex mod p in d-dimensional space.

Then lim D = d.

pP—0

Proof. Using the definition of Binomial Coefficients,

D = log, (p ;i? d) = log, <%> ~ log, (p(f” D+ z?---(p —1+ d))

= log,(p) +log,(p + 1) +1log,(p +2) + ... +log,(p — 1 + d) — log,(d!).

Therefore, lm D=14+14+14+..+1-0=d. U]

pP—0

11



2.4. Remark on Wolfram’s paper. In Geometry of Binomial Coefficients |11], Stephen
Wolfram analyzes Pascal’s Triangle. In the final paragraph, he talks about generalizing
Pascal’s Triangle to spaces with more dimensions. In the first sentence, he says “One may also
consider the generalization of Pascal’s triangle to a three-dimensional pyramid of trinomial
coefficients.” Wolfram is clearly talking about Pascal’s Tetrahedron where the numbers are
the trinomial coefficients. However, in the next sentence, he says “Successive rows in the
triangle are generalized to planes in the pyramid, with each plane carrying a square grid of
integers. The apex of the pyramid is formed from a single 1. In each successive plane, the
integer at each grid point is the sum of the integers at the four neighboring grid points in the
preceding plane.” He goes into details about the construction of Pascal’s Square Pyramid
which is different from Pascal’s Tetrahedron and does not contain trinomial coefficients.
Later, he even states that “With k& = 2, the fractal dimension of the pattern is log, 5.”
There is no doubt that he is talking about a square pyramid here because the dimension
of the pattern in the square pyramid is log, 5 while the dimension of the pattern in the
tetrahedron is log, 4 = 2. In the final sentence, he says “In general, the pattern obtained
from the d-dimensional generalization of Pascal’s triangle, reduced modulo two, has fractal
dimension log,(2d + 1).” First, this does not match the previous sentence because log, 5 #
log,(2-3+1) = log, 7. Second, the actual formula is D = log, (1 +2971), as proven in Section
4.5,

12



3. COMBINATORICS

3.1. Pascal’s Triangle and Identity.

GNGRE
)
)
)
)
)a

6 Rows of Pascal’s Triangle as Binomial Coefficients

We let n represent the diagonal row number and let m represent the vertical column
number, with both starting at 0. When choosing m objects from n objects, the number of
ways to do this is equal to the number of ways to choose m — 1 objects from n — 1 objects
plus the number of ways to choose m objects from n — 1 objects. The reason for this is
because we can look at any object in the n objects and decide if it is chosen or not chosen.
If it is chosen then there are m — 1 objects to choose from the remaining n — 1 objects. If
it is not chosen then there are m objects to choose from n — 1 objects. Therefore the total
number of ways to choose m objects from n objects is the sum of these two numbers of ways

to choose objects. This is also known as Pascal’s Identity.

()= (a2 ()

— + .

m i — 1 m

Here is another proof using the definition of binomial coefficients.
n—1 L n—1\ —1)! (n—1)!
m—1 m ) (m—Dn—-1-m+1)! min—-1-m)

13



3.2. Binomial Coefficients in Pascal’s Pyramidion.
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3 Layers of Pascal’s Square Pyramid
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3 Layers of Pascal’s Square Pyramid as Binomial Coefficients

() )

Here, we let n represent the layer in the square pyramid. In the square grid of integers in
the nth layer, we let a represent the row and b represent the column, but due to symmetry,
they are interchangeable. With these labels applied, any entry in the pyramid can be calcu-
lated by (Z) (Z) To prove that these numbers are always equal to the corresponding entries
in the pyramid, we need to show that these numbers share the two defining characteristics
of Pascal’s Square Pyramid. The first characteristic is that it starts with 1 at the top. The
second is that each number is equal to the sum of the four numbers above it. These are the
defining characteristics of Pascal’s Square Pyramid, hence showing that they also apply to

products of binomial coefficients proves that the two pyramids are equal.

Theorem 3.2.1. In Pascal’s Square Pyramid, the entry in layer n, row a, and column b is

()G

Proof. We need to check two conditions. First, that the number at the top is 1, and second,

equal to

that every other number is the sum of the four numbers above it. The first number in the
pyramid is equal to (8) (8) = 1

Next, any arbitrary number in layer n, row a, column b is equal to the four numbers above
it. These four numbers are all in layer n — 1 and they are located in the rows ¢ — 1 and a,

and the columns b — 1 and b.

14



The sum of the previous four entries is
n—1\/n—1 n n—1\/n—1 n n—1\/n—1 4 n—1\/n—1
a—1/\b-1 a b—1 a—1 b a b )’
We can rewrite this as a product of sums
n—1 7 n—1 n—1 L n—1
a—1 a b—1 b '

Then, using Pascal’s Identity on these two sums, we get the final result
n\ (n
a)\b)’

Next, we examine the general cases with d dimensions.

Theorem 3.2.2. In a d-dimensional Pyramidion, the entry in layer n with coordinates

() ()

Proof. First, the number at the top is (8) (8) (8) = 1. Next, any arbitrary entry is the sum

(a1, ag,...,aq_1), is equal to

of the 2771 entries in the previous layer. Like before, these entries are located at a; — 1 and

ap, up to ag_1 — 1 and ag_1.

2d— 1

The sum of entries equals the product of sums

i) ()

Using Pascal’s Identity on each of these sums, we get the product

() ()

Next, we examine Pascal’s Simplex.

15



3.3. Multinomials in Pascal’s Simplex.

—_
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4 Layers of Pascal’s Tetrahedron

\J, 1, ’ ,1, 2, s 1,1, ,2, 3, B 2,1, 1,2, ,3,
B ,1 1, ,1 ,1,1 2, ,1 1,1,1 ,2,1
(),(),2 1,(),2 (),1,2

4 Layers of Pascal’s Tetrahedron as Multinomial Coefficients

We let n represent the layer in the tetrahedron. In the triangular grid of integers in the
nth layer, we no longer have rows and columns to measure locations. Instead, we let a
represent the top left point, with the value of a decreasing as the distance from this point
increases. We let b represent the top right point and have the value of b decrease as we
move away from the top right. (This corresponds to columns, but only because of the angle
of the figure above.) We let ¢ represent the bottom left corner of the triangle and the
value of ¢ decreases as we move upward. (This corresponds to rows because of the angles.)
Additionally, since a+ b+ ¢ = n, we can use two values to find the third value. Also, due to
symmetry, the three letters are interchangeable. With these labels applied, any entry in the
tetrahedron can be calculated by (CLZC). To prove that these numbers are always equal to
the corresponding entries in the tetrahedron, we need to show that these numbers share the
two defining characteristics of Pascal’s Tetrahedron. The first characteristic is that it starts
with 1 at the top. The second is that each number is equal to the sum of the three numbers
above it arranged in an inverted triangle. These are the defining characteristics of Pascal’s
Tetrahedron, hence proving that they also apply to multinomial coefficients shows that the

two tetrahedrons are equal.

16



Theorem 3.3.1. In Pascal’s Tetrahedron, the entry in layer n, with triangular coordinates

n
a,b,c)’

Proof. We need to check two conditions. First, that the number at the top is 1, and second,

(a,b,c), is equal to

that every other entry is the sum of the three numbers above it. The first number in the
pyramid is equal to (0,8,0) =1,

Next, any arbitrary entry in layer n, triangular coordinates a, b, and ¢ should be equal to
the sum of the three numbers above it. These numbers are all in layer n — 1 and each entry

has 1 subtracted from one of the coordinates.

The sum of the three previous entries is

n—1 . n—1 . n—1
a,b,c—1 a,b—1,c a—1,b,c)’

Rewriting them as fractions, we obtain

(n—1)! (n—1)! (n—1)!
A= " dh=1d | a— Db’

Multiplying to get al!blc! as a common denominator, we obtain

cn—1! bln—1! aln-—1)!
aoid T A T

Since a + b + ¢ = n, the expression simplifies to

(a+b+an—11 ( n >

alblc! albled \a,b,c

O

Theorem 3.3.2. In Pascal’s d-dimensional simplex, the entry in layer n with coordinates

< ) >
ar, 4z, ..., aq

Proof. First, the number at the top is (o 09”0) = 1. Next, any arbitrary entry should be

(ay,ag, ..., aq) 18 equal to

equal to the sum of the d entries in the previous layer. These entries are located in layer

n — 1, and each is one coordinate away from the chosen entry.

17



The sum of the previous entries is

n—1 n—1 n—1
+ + e .
ar — 1,as,...,aq ar,as—1,...,aq A1, G2y ey g — 1

Rewriting as fractions yields

(n—1)! (n—1)! (n—1)!
(ap — Dlagl..ag!  a1l(az — Dladd 7 arlagl..(ag — 1)

Multiplying to create a common denominator, we obtain

ar(n— 1)1 ax(n—1)! ag(n — 1)!
alasl...ag!  allasl..agd T ailas!..ag!

Since ay + as + ... + ag = n, the expression simplifies to

(ay +ay+ ... +ag)(n — 1)! n! B < n >
» id .

alas!...ag! alas!...ag! a1, A, ...

O

This shows that the generalizations of Pascal’s triangle have binomials and multinomials

as their entries. In the next section, we apply Lucas’ Theorem to prove several results.
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4. Lucas’ THEOREM AND RESULTING PROOFS

4.1. Lucas’ Theorem and Corollaries. Lucas’ Theorem is a fact about binomial coefli-
cients that involves the base p expansion of n and m. It shows that the binomial coefficient

of n and m is congruent to the product of binomial coefficients n; and m; mod p.

Theorem 4.1.1 (Lucas’ Theorem [6]). Let p be a prime, and let
n=mng+nip -+ nop® + -+ ngp,

m:mo+m1p+m2p2+---+mkpk,

where 0 < n; <p and 0 < my; <p. Then

()= o)) ()= (o) o

Corollary 4.1.2. Using the notation in Lucas’ Theorem,

<n> = 0 mod p if and only if m; > n; for some i € {0, 1, ..., k}.
m

Proof. (<) If there exists an i € {0, 1,...,k} where m; > n;, then (:1) = 0. When this is
multiplied by the other binomial coefficients in Lucas” Theorem, the product becomes zero
and (:1) =0 mod p.

(=) If we suppose that for every 7, m; < n;, then

WY n;!

Since every n; < p and p is prime, p 1 n;! for any n;. Therefore p does not divide their

product and p ¢ ( ) Equivalently, ( ) Z 0 mod p. ]

n n
m m

Corollary 4.1.3 (Anton’s Lemma, [2]). If n,m < p*, then for all x,y >0,

)= () )
L) = mod p.
m+y-p mj)\y

Proof. We suppose that n,m < p* and z,y > 0. Since n and m are both less than p*, we

1

know that n and m have the base p representations n = ng + nip + nop? + ... + ne_1p*! and
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m = mg + map + mop? + ... +my_1p*'. Therefore we can add z - p* to n and y - p* to m

and use Lucas’ Theorem to find that
(o) = (o) ) Gt G ) G = () )
e = = mod p.
m+y-p Mo mq mso Mp—1 Y m Y

Next, we use these corollaries to prove many facts about Pascal’s Triangle and its general-

O

izations. The first corollary can be used to prove the existence of zeros in these objects and

Anton’s Lemma can be used to prove that entries are nonvanishing when reduced modulo p.

4.2. Fractals in Pascal’s Triangle.

Theorem 4.2.1. For any prime modulus p, the dimension of the fractal in Pascal’s Triangle

Do, (2221,

1

mod p 18

Proof. We want to show that the fractal given in p™*!' rows of Pascal’s Triangle mod p

p(p+1)

»— copies of the fractal given in p™ rows, with inverted triangles of zeros

contains exactly
between them. We begin by indexing Pascal’s triangle with rows and columns using r for
the row number and ¢ for the column number such that any element in Pascal’s Triangle is
given by (7). If we consider a triangle existing in p" rows (going from 0 to p” — 1) with the

restrictions that 0 < r < p” and 0 < ¢ < r, then Anton’s Lemma implies

<r> B <T+x-p”>

= mod p

c ct+y-p*

forall 0 <z < pand 0 <y <. This means that the top triangle with rows r and columns
c is equivalent to the triangles located in rows r + x - p” and columns ¢ + y - p”. Each pair

! rows, hence the total number of triangles is

of x and y correspond to one triangle in p"*

equal to the number of pairs of x and y. When & = 0, y is restricted by x, implying that

y = 0 which represents the top triangle. When x = 1, then y can be 0 or 1, resulting in two

triangles after the first. As x increases, the total becomes a sum of increasing integers, also

known as the triangular numbers. With x starting at 0 and ending at p — 1, we get a sum of
plp+1)

integers from 1 to p. The result is exactly =5 copies of the top triangle given in p" rows.
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Next, we need to show that the entries in between the triangles are made up entirely of

rdaxp®

zeros. The inverted triangles of zeros correspond to the entries located at (C it

) where

r < c < p”. When applying Anton’s Lemma, we get

(1) ()0 ()0 mer

because ¢ > r in these entries.

With the number of copies and the scaling factor known, we can apply the formula for the

1
Hausdorff dimension to find that D = log, < %) . U

4.3. Fractals in Pascal’s Pyramidion.

Theorem 4.3.1. For any d € N and any prime modulus p, the dimension of the fractal in

Pascal’s Pyramidion mod p s
P
D =log, <Z id_1> .
i=1

Proof. From 3.2, the entry in layer n with coordinates aq, as, ..., aq_1, is equal to

() (e)-()

Each entry is nonzero if and only if each coefficient is nonzero mod p.

We need to show that the shape in p*t! layers contains exactly 1 + 2471 391 . 4 pd!
copies of the shape in p* layers. Here, the word “copy” does not mean that the entries are
exactly the same, only that they form the same shape of nonzero entries. One copy exists
because p*t! layers contain the first p* layers. Since the first p® layers are numbered from 0
to p* — 1, we know that the layer number n is restricted to 0 < n < p*. Each of the other
indexing numbers are limited by n, hence 0 < a; < n with ¢ ranging from 0 to d — 1. Next,

Anton’s Lemma implies that for all 0 < z; < pand 0 < y; < x4,

() =) G)
w i S mod p.
a; +Yi-p a; ) \Yi
This means that each pair of x and y correspond to one copy of the shape in p* layers.

When x and y are both equal to zero, we get the first shape. When x is equal to 1, then y

can be either 0 or 1, giving us 2 options for each 7. Since 1 < ¢ < d— 1, the number of copies
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between p* rows and 2 - p* rows is exactly 297!

. Next, when z is equal to 2, the number of
copies corresponds to 397! since there are three options for y. Similarly, for every x < p,
there is a corresponding number of options for y in each coordinate, resulting in another

P
copy. The sum of these nonzero copies is > 7471,

We also know that the spaces in betweezrzllthese copies contain zeros. Since the outermost
surface of the Pyramidion is Pascal’s Triangle, the zero entries from Pascal’s Triangle make
the entire product of binomials equal to zero. The zeros in Pascal’s Triangle mod p poke
colloquial holes that go all the way through the fractal.

With the number of copies and the scaling factor, we apply the formula to find the Haus-

P
dorft dimension D = log, <Z id_1> : O]
=1

The following corollary relates to the remarks about Wolfram’s paper in Section 2.4.

Corollary 4.3.2. The formula for the dimension of d-dimensional Pyramidions mod 2 is

D = log, (1 + 2¢-1).
4.4. Fractals in Pascal’s Simplex.

Theorem 4.4.1. For any d € N and any prime modulus p, the dimension of the fractal in

p+d—1 p—1+4+d
Dlogp< b1 >logp< J >

Proof. From 3.3, the entry in layer n with coordinates a, as, ..., ag is equal to

< ) >
a1, Ao, ..., 4q

We need to show that the shape given in p*'! layers contains exactly (

Pascal’s Simpex is

p+d—1

pe1 ) copies of the

shape in p* layers. Here, “copy” means that the nonzero entries form the same shape, not
that the entries are equivalent mod p. The first p* layers are numbered from 0 to p* — 1,
with 0 < n < p*. All of the other coordinates are limited by n, with a; + az + ... + ag = n
and 0 < a;. This restriction implies that, when considering the next set of layers, we must
add z - p* to both sides of the equation. Therefore a; +as + ... + aqg +z-p* = n + - p* with

0 < x < p. Fach x corresponds to a set of layers containing some number of copies.
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We begin by examining values for x, which leads to an induction. When x = 0, we get the

original copy given in p* layers. There is only one choice here, equal to (g). When x = 1,

the layer numbers go up from n to n + p*. Since the layer number is also equal to the sum

of the a;, we need to add p* to one of the a;, and there are (Cll) options. Adding the x = 0

case with the x = 1 case, we get (f.)l) + (Cll) = (dJ{l) When & = 2, we have the next set of

layers with 2p* added to the sum of the a;. When distributing this, we have the option to
add the 2p* to each a;, giving us d choices. We also have the option to give only one of the

two p* to one a; and adding the other p* to a different a;. This gives us (g) options. Putting

d) _ <d+1

5 5 ) options when x = 2. Adding the x = 2 case to the

these together gives us (Cll) + (

previous cases gives us (dJ{l) + (d;rl) = (d;“2). When x = 3, we have three p* to distribute

across the a;. The number of ways to do this is the sum of the number of ways to add all

three to one, adding one to one and two to another, and all three separate. With the first

d
1

d

2) options, multiplied by 2, since we can

case, we have ( ) options. In the second, we have (

d
3

The total for these is (Cll) + (g) + (g) + (g) This adds up to (d;rl) + (d;rl) = (d?). Adding

give either the p* or the 2p* to each of the ones we pick. In the third, we have ( ) options.

the total from here to the cumulative total gives us (d;“Q) + (d?) = (d;“?’).

Next, we use induction on x to find the cumulative total at the end. We suppose that

d+x—1

the cumulative total is currently ( i ) For any value of x, the number of p*s we need to

distribute is equal to x, and we have d places to put them. This is a case of distributing

x identical objects among d groups. This has a total of (dgﬁl) = (d+§_1). If we add this

number to the cumulative total, we get (d;fﬁl) + (dJri_l) — (d:m).

In general, the total sum is equal to (d:z) with x increasing with each set of layers. Since
x is limited by x < p, the total for all of these copies is (d;“le).

In the gaps between these copies, the p*s are broken into smaller pieces distributed among
the a;. The resulting entries are then reduced to zero mod p.

Using the number of copies and the scaling factor, we compute the dimension of the fractal.

pt+d—1 p—1+4+d
Dlogp< b1 >logp< J >
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5. POWERS OF PRIMES

Pascal’s Triangle mod 4

Pascal’s Triangle mod 4 creates a pattern which resembles the Sierpinski Triangle, but with
another Sierpinski Triangle inside of it. It clearly has some sort of self-similarity, and a scaling
factor of 2, but the number of self-similar objects needed to find the Hausdorff dimension is
not as straightforward. By adjusting the formula to account for fractals containing fractals,

we conjecture that a possible interpretation of the dimension of Pascal’s Triangle mod 4 is

log(3) | 1 log(3)

b= log(2) 16 ' log(2)

In order to calculate the dimension accurately, we use the Box Counting Method. By
counting the pixels, a pattern emerges and we can get a formula for how many boxes exist in
some p" layers. These formulas, written as corollaries, lead to general formulas allowing any
prime p with a fixed power n. We prove these general formulas using a form of induction
where we show that plugging n + 1 into the formula and continuing the observed pattern

give the same result. Because this section focuses on Pascal’s Triangle, we say “mod p™” as

an abbreviation of Pascal’s Triangle mod p”.
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5.1. Powers of Primes in Pascal’s Triangle.

Mod 2 Triangle

When using the Box Counting Method on Pascal’s Triangle mod 2, we find that each triangle
has 2" rows and 3" pixels. As n increases, each iteration is equal to three times the previous

triangle.

n | Pixels | Formula || n | Pixels | Formula
0 1 30 41 81 34
1 3 3 5| 243 35
2 9 3 6| 729 36
3| 27 2 7| 2187 37

We get the same result from multiplying by 3, and from plugging n + 1 into 3. This means
that each iteration is a power of 3. With this formula and the Box Counting Method, the

fractal dimension of mod 2 is equal to

log(3") nlog(3) log(3)

log(27)  nlog(2) log(2)’
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Mod 4 Triangle

The pattern in mod 4 continues with 3 times the previous iteration, plus a smaller mod
2 triangle added into the gap between them. Wanting a more accurate measurement of the
dimension, we know that the image becomes a better approximation of the fractal if we let
n go to infinity. Before we do this, however, we need to find a formula that gives the number

of pixels in 2" rows.

n | Pixels | Formula || n | Pixels | Formula
2| 10 [32+1-3°|5] 351 |3°+4.3
31 33 [3+2-31] 6| 1134 |3°+5-31
4 7

108 | 3*+43-32 3645 | 37 +6 - 3°

Corollary 5.1.1. The formula for the number of pizels in a mod 4 triangle at 2" rows is

3"+ (n—1)-3"2 for alln > 1.

This corollary and the ones in the following pages are specific cases of the general theorem

in Section 5.2.
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Mod 8 Triangle

In the mod 8 case, the overall pattern to find the next iteration is three times the current
shape, plus a mod 4 triangle in the middle, plus three mod 2 triangles in the gaps around

the mod 4 triangle.

Pixels Formula Pixels Formula

36 |&F+8.8 0.8 1512 | 3+9-34+6-.32

127 | 3*+5-3241.31 5130 |37+ 11-3°4+10-3°

Otk | w | 3

w0 | || 3

441 |35 +7-3%+3.32 17253 | 3% +13-354+15-34

Corollary 5.1.2. The formula for the number of pixels in a mod 8 triangle at 2" rows is

(n—2)(n—23)

5 - (o — &) - P2 >

3" for all n > 2.
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Mod 16 Triangle

In the mod 16 case, the overall pattern for the next iteration is equal to three times the

current iteration, plus one mod 8 triangle, three mod 4 triangles, and nine mod 2 triangles.

n | Pixels Formula n | Pixels Formula

4 136 3146-32+1-3°+0 7| 6438 | 3" +15-3°+22-3% + 4. 3!
5| 501 33+9-3+5-314+0 8| 22608 | 3% +18-3%+35-3% 4+ 10 - 32
6| 1810 |3°+12-3*+12-3241-3°| 9| 78543 | 3% +21-3" +51-3°+20-3°

Corollary 5.1.3. The formula for the number of pixels in a mod 16 triangle at 2" rows is

(n—3)(3n —10) - (n—>5)(n—4)(n—3)
2 6

3"+ (3n—6)-3"% + -gp

for alln > 3.
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Mod 32 Triangle

The mod 32 case continues the pattern of adding previous powers of 2. Each iteration is

3 times the previous, plus one mod 16, three mod 8’s, nine mod 4’s, and twenty seven mod 2’s.

n | Pixels Formula

5| 528 3*+10-3°4+5-31+0+0

6 | 1999 3 +14-3+15-32+1-3°+0
7| 7419 37+ 18-35431-3% +7-3 10
8 | 27091 | 38 +22.3%5+453-3*+22-32+1-3°
9197593 | 3°+26-3"4+81-3°+50-3*+5-3

10 | 347544 | 319 4+ 30-3% +115-3°495.3* 4 15 32

This table also forms a base case for a proof by induction.
Theorem 5.1.4. The formula for the number of pizels in a mod 32 triangle at 2™ rows is

3"+ (4n — 10) - 3”2 + (3n® — 23n + 45) - 34

Jr(n —5)(n—4)(4n—21) gn6 | (n—"T)(n—6)(n—>5)(n—4)

. an—_8
§ 24 .

for alln > 4.
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Proof. For the base case, see the table above. Next, assume that the formula for the number

of pixels in 2" rows is

3"+ (4n — 10) - 3”2 + (3n? — 23n + 45) - 3"*

n=5)Yn—H(4n-21) .  (nm—="7){n—6)(n—>5)(n—4)
6 S 24

+ X 3n—8.

We should get the same result from plugging n + 1 into this formula, and from following the

pattern of multiplying by 3 and and adding the other mod’s. We get

3" 4 (4n —6) - 3"+ (3n? — 1Tn + 25) - 3"°

(n—4)(n — 3)(4n — 17) gy (n—6)(n—5)(n—4)(n — 3)

n—7
8 24 L

Next, we continue the pattern to see if they are equal. The pattern for mod 32 is 3 times

the previous, plus one mod 16, three mod 8’s, nine mod 4’s, and twenty seven mod 2’s.

3 (3" + (4n —10) - 3"7% + (3n® — 23n + 45) - 3"

n=>5)(n—4)(4n-21) _, + nm—=T(n—6)(n—->5)(n—4) _, .«
. 35 i 3 )

+

—4)(3n—13 —6)(n—>5)(n—14
—4H(n->5
+3 (3“—2 Fn—7. gty )2(” ). 3"—6>
+32 <3n—3 + (n _ 4) . 371—5) + 33 <3n—4> .
When simplified, this expression is equal to
3" 4 (4n —6) - 3"+ (3n? — 1Tn + 25) - 3"°
(n=4)n-3)(4n—-17) 5, =60 -5r-4Yn-3) .. -
6 24 '
Since the two are equal, the formula is proven by induction. (]
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The next table shows the numbers from the powers of 2.

n o123 4 ) 6 7 8 Y 10
Mod2 [1|3] 9 |27 ] 81 |243] 729 | 2187 | 6561 | 19683 | 59049
Mod 4 |1]3]10 |33 | 108|351 | 1134 | 3645 | 11664 | 37179 | 118098
Mod 8 | 1|3 ]10 |36 | 127|441 | 1512|5130 | 17253 | 57591 | 190998
Mod 16 | 1 | 3| 10|36 | 136 | 501 | 1810 | 6438 | 22608 | 78543 | 270378
Mod 32| 1|3 |10|36 | 136 | 528 | 1999 | 7419 | 27091 | 97593 | 347544

Note that every entry in the table starts with 3 times the left number. As we move down,
the entries are also the sum of the numbers in an up and left diagonal with the property of
one times one number, three times the next, nine times the next, and so on with increasing
powers of 3. These powers of 3 correspond to the numbers of copies added with each iteration.
Every iteration of a power of 2 triples the previous amount, then adds one triangle from the
previous power of 2, three triangles from the next, and so on. For example, looking at the

column where n = 6, we get the following results.

n = 6 | Formula

729 | 3243

- 351 + 81

-441 + 108 + 3 - 27

-S0L+ 12¢ +3-498 19 -9

W | W | W W

928 +136 +3-364+9-10427-3

Additionally, every entry to the left of the down and right diagonal starting at mod 2
where n = 2 is a triangular number. This is because the space is limited when constructing
these fractal triangles using a finite number of pixels.

Next, we examine powers of 3.
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Mod 3 Triangle

For each of the powers of 3, the scaling factor is 3 with every iteration of the triangle
containing 3" rows. In the mod 3 case, every iteration contains 6™ pixels and the overall

pattern is that the next iteration is equal to six times the previous.

n | Pixels | Formula || n | Pixels | Formula
0 1 6° 41 1296 64
1 6 6! 5| TT76 6°
2| 36 62 6 | 46656 6°
31 216 6 71279936 67

The general formula for the number of pixels in 3" rows is 6”. When we plug in n+1 and
continue the pattern by multiplying by six, we get the same result. Additionally, 6 is equal
to the third triangular number @ With the formula and the Box Counting Method, we

find that the fractal dimension of mod 3 is equal to

log(6™)  nlog(6) log(6)

log(37)  nlog(3) log(3)
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Mod 9 Triangle

In the mod 9 case, the pattern is that three smaller mod 3 triangles are added into each
of the gaps for every iteration. One observation is that the additional triangles correspond
exactly to the number and orientation of the gaps in the previous triangle. If we folded the
image above diagonally to connect the top left corner to the bottom right corner, then the
gaps in between the six triangles and the three additional blue triangles overlap. Looking
back at the mod 2 case, the same is true. Based on this observation, we predict that the

powers of 5 follow this trend and have 10 extra triangles added into each of the 10 gaps.

Pixels Formula Pixels Formula

45 | 6241-3%-6° 15552 | 65+ 4-32.6°

324 |6°+2-3%.6! 104976 | 6° + 5- 32 - 64

— w [N} =
-~ e ot =

2268 | 6* +3-3%.62 699840 | 67 +6- 3% - 6°

Corollary 5.1.5. The formula for the number of pixels in a mod 9 triangle at 3™ rows is

6"+ (n—1)-3%-6""2 foralln > 1.
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Mod 27 Triangle

In the mod 27 case, the pattern is that the mod 3 triangles have changed to mod 9 tri-
angles since there are smaller mod 3 triangles added into each of their gaps. The remaining

gaps are then filled with additional mod 3 triangles.

Pixels Formula Pixels Formula

378 6°+3-32-61+0 169128 | 6°+9-32-6" +6- 3% 6

1224720 | 67 +11-3%-6° +10-3* - 6°

w0 | || 3

n

3

41 2997 |6 +5-32-62+1-3"-6°
)

22842 | 654+ 7-32-6%+3-3.6! 8713008 | 6% +13-3%-6%+15-31-64

Corollary 5.1.6. The formula for the number of pixels in a mod 27 triangle at 3" rows is

(n—3)(n-—2)
2

6"+ (2n —3)-3%-6"72 + 346" for alln > 2.
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In the mod 81 case, there are additional triangles added into every gap resulting in a sum
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Mod 81 Triangle

of mod 27 triangles, mod 9 triangles, and mod 3 triangles.

n| Pixels Formula

4| 3321 6'+6-32-6°+1-3"-6°40

5| 27702 6°+9-32-6°+5-3"-6" 40

6| 222345 | 6°+12-32-6%*+12-3%.6%241-35.6"
7| 1732104 | 6" +15-3%2-65422-3*.6% +4.3°. 6!
8 | 13174488 | 6% +18-3%.65 4+ 35-3*.6* +10- 3% . 62
9 | 98257536 | 67 + 21 -3%-67 +51-3*-6° +20-9%.6°

Corollary 5.1.7. The formula for the number of pixels in a mod 81 triangle at 3™ rows is

6" + (3n —6)-32-6"72 +

Jor all n. > 3.

(n —3)(3n — 10)

2

35

. 34 X 6’rL—4 SE

(n—=5)(n =4 (n -

6



The following table collects numbers from the powers of 3.

n=0|n=1|n=2|n=3|n=4|n= n=6| n="7 n—==8
Mod 3 1 6 36 216 | 1296 | 7776 | 46656 | 279936 | 1679616
Mod 9 1 6 45 324 | 2268 | 15552 | 104976 | 699840 | 4618944
Mod 27 1 6 45 378 | 2997 | 22842 | 169128 | 1224720 | 8713008
Mod 81 1 6 45 378 | 3321 | 27702 | 222345 | 1732104 | 13174488

Observe that every entry in the table starts with 6 times the left number, then adds the
rest of the numbers in an up and left diagonal. The entries from this diagonal are multiplied
by nine times one number, nine times six times the next, nine times thirty six times the
next, and so on with increasing powers of 6. However, the nine stays constant for each
For example, looking at the column where n = 6, we get the following

multiplication.

results.

n — 6 | Formula

46656 | 6- 7776

104976 | 6 - 15552 + 9 - 1296

169128 | 6 - 22842 +9 - 2268 +9 - 6 - 216

222345 | 6-27702+9-2997+9-6-324+9 - 62 - 36

Additionally, every entry to the left of the down and right diagonal starting at mod 3
where n = 2 is a triangular number. This is because of the limited space for fitting pixels
into a triangle.

Next, we examine powers of 5.
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Mod 5 Triangle

For every power of 5, the scaling factor is 5. In the mod 5 case, each iteration of the
pattern takes the current number of pixels and multiplies it by 15. This is equal to the
number of smaller triangles making up each triangle and it is also 15 =1+4+2+4+ 3 +4 + 5.
From the earlier powers of primes, 3 = 1 4 2 was important in the formulas for mod 2, and
6 = 1+ 2+ 3 was important for mod 3. Additionally, for powers of 3, the number 3 appeared
in the formulas relating to the number of gaps. Since the powers of 2 only have one gap,
the powers of 1 also appear, but without affecting the formulas. There is one pixel in the
beginning and 15 after the first iteration of the pattern. Since the pattern generates 15 of
each previous iteration, the total is always equal to 15”. Using this formula and the Box

Counting Method, we find that its fractal dimension is equal to

log(15")  nlog(15) log(15)
log(5%)  nlog(5)  log(5)
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Mod 25 Triangle

In the mod 25 case, the pattern still has 15 times the number of pixels in the previous
iteration, but then it adds 10 = 1 + 2 + 3 + 4 new mod 5 triangles into each of the ten
gaps. The positions of these new triangles also mirror the shape of the gaps in between the

triangles in the previous iteration.

Pixels Formula Pixels Formula

325 | 1524 1-10%- 15" 2109375 | 15° +4-10%- 15

6375 | 15% +2-10%- 15 36703125 | 15° 4+ 5-102- 151

H w [N} 3
~I D (@51 b

118125 | 15* + 3 - 10% - 152 626484375 | 157 + 6 - 10* - 15°

Corollary 5.1.8. The formula for the number of pixels in a mod 25 triangle at 5 rows is

15" + (n— 1) - 10% - 15"72 for all n > 1.
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Mod 125 Triangle

In the mod 125 case, each iteration is made up of 15 times the previous iteration, however
it changes the 102 mod 5 triangles into mod 25 triangles and adds 1500 — 10% - 15 smaller
mod 5 triangles. The positions of these new triangles also mirror the shape of the gaps in

between the triangles in the previous iteration.

Pixels Formula Pixels Formula

7875 15% +3-10%15! 70453125 15° +9-10%15% + 6 - 101152

173125 | 15* 4 5-10%15% + 10*15° 134671875 | 157 + 11 - 10%15° + 10 - 10*153

O o | w | 3
o | | |3

3571875 | 15° + 7-10%15% + 3- 10*15 24964453125 | 15% + 13- 10215° + 15 - 10*15¢

Corollary 5.1.9. The formula for the number of pixels in a mod 125 triangle at 5™ rows is

(n—3)(n-—2)
2

15" + (2n — 3) - 10*- 1572 + -10* - 15" for all n > 2.
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Mod 625 Triangle

In the mod 625 case, the pattern takes 15 times the previous iteration and changes the
100 = 10? mod 25 triangles into mod 125 triangles, turns the 1500 = 10?15 mod 5 triangles
into mod 25 triangles, and adds 22500 — 102-15% mod 5 triangles. The positions of these new

triangles also mirror the shape of the gaps in between the triangles in the previous iteration.

Pixels Formula
195625 154 +6-10%- 152+ 1-10*. 159
4546875 15°+9.10%2- 15 +5-10*- 15

100140625 1584+ 12-10%=15*4+12- 10% - 15%+1 - 105 - 15°

2112421875 | 157 +15-10%-15° +22-10*- 153 + 4. 10% - 15!

43034765625 | 15% +18-10%-15° 4 35 - 10* - 157 + 10 - 10° - 152

NeJ oo ~J o ot M= 3

852029296875 | 157 + 21 -102 - 157 + 51 - 10* - 15° + 20 - 10° - 153

Corollary 5.1.10. The number of pizels in a mod 625 triangle at 5™ rows is

157 1 (3n — 6)10215"2 1 <(” - 3)(23” - 10)) 10415 ¢ <(” —3)n = Hn - 5)> 1061576

for alln > 3.
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The following table contains numbers of pixels from the powers of 5.

n=0ln=1|\n=2|n= n=4| n=>5 n==06 n="1
Mod 5 1 15 225 | 3375 | 50625 | 759375 | 11390625 | 170859375
Mod 25 1 15 325 | 6375 | 118125 | 2109375 | 36703125 | 626484375
Mod 125 1 15 325 | 7875 | 173125 | 3571875 | 70453125 | 1343671875
Mod 625 1 15 325 | 7875 | 195625 | 4546875 | 100140625 | 2112421875

Observe that every entry in the table starts with 15 times the left number, then adds the
rest of the numbers in an up and left diagonal. The entries from this diagonal are multiplied
by 100 times one number, 100 times 15 times the next, 100 times 15? times the next, and

so on with increasing powers of 15. However, the 100 stays constant for each multiplication.

For example, looking at the column where n = 6, we get the following results.

n—=o6

Formula

11390625

15 - 759375

36703125

15 - 2109375 + 100 - 50625

70453125

15- 3571875+ 100 - 118125 + 100 - 15 - 3375

100140625

15 - 4546875 + 100 - 173125 + 100 - 15 - 6375 + 100 - 152 - 225

Additionally, every entry to the left of the down and right diagonal starting at mod 5

where n = 2 is a triangular number. This is because of the limited space for fitting pixels

into a triangle.

Next, we examine general patterns in the formulas.
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5.2. Patterns in Formulas. From Section 4.2, we know that the mod p triangle always
has @ = T copies of itself. Since these copies are arranged in a triangle, the number of
gaps between them is the previous triangular number equal to @ = S. In each of the
following theorems, the proof is by induction, where the base case is formed from the tables

in the earlier parts of this section.

Mod Formula

4 3"+ (n— 1) - 32

9 | 6+ (n—1)-32.6"2

25 | 15" + (n — 1) - 102 - 1572

When considering the mod p? triangle, there are additional mod p triangles added into the

(-1

gaps. There are 22— gaps and each one contains @ additional triangles corresponding

to the number of gaps in the smaller copy. This results in S? copies of the mod p triangles.
Theorem 5.2.1. The formula for the number of pizels in a mod p* triangle at p* rows is
T4 (n—1)-8%. 1772

Proof. We check to see if we get the same result from plugging in n+ 1, and from continuing

the pattern. Plugging in n + 1, we get
Tt 4. S2. 7L
Continuing the pattern, we get
TT" +(n—1)-8*- 1"+ S*(1" Y =71"" yn.5%. T
The two results are equal, which proves the formula by induction. (]

Corollary 5.2.2. The fractal dimension of a mod p? triangle is the same as mod p.

Proof. The fractal dimension of Pascal’s Triangle mod p? is

I log(T™ + (n — 1) - S%-T"?) lim nlog(T) +log(1+ (n—1)-S*-T72) log(T)
11m — — .
n—soco log(p™) n—c0 nlog(p) log(p)

O

42



Mod Formula

8 3" 4 (2n —3) - 372  [n2And)  gn—d

37 | B (Zn—8)=3R. o2y BUR) o gurd

925 | 157 4+ (2n — 3) - 102 . 1572 4 (2=2(=3) 14 [5n—d
2

When considering the mod p? triangle, the additional S? mod p triangles become mod p?

triangles, and the remaining gaps have S? - T mod p triangles added.

Theorem 5.2.3. The formula for the number of pizels in a mod p® triangle at p* rows is

(n—3)(n-—2)

X S4 X Tn—4.
2

T" 4 (2n —3)- S* -T2 ¢

Proof. We check to see if we get the same result from plugging in n+ 1, and from continuing
the pattern. Plugging in n + 1, we get

(n—2)(n—
2

1
Tn+1 + (QTL - 1) X S2 X Tn—l + ) X S4 X Tn—S.

When we continue the pattern, we get

(n—3)(n-—2)

T(T™+(2n—3)-S2 T2+ SET LS (T (n—2)- S T3 4 S2 T (1772,

When simplified, this matches the formula with n + 1, as required to prove the formula. [

Corollary 5.2.4. The fractal dimension of a mod p® triangle is the same as mod p.

Proof. The fractal dimension of a mod p* triangle is

(n—3)n-—2)

log(T™ + (2n — 3) - S? - T2 | -StTh
lim 2
n—% log(p")
nlog(T) +log(1+ (2n —3) - S? -T2 + (n=3n-2) 8% T4 log(T)
= lim 2 _ 95 )
o0 nlog(p) log(p)
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Mod Formula

n n— n—3)(3n—10) n— (n—>5)(n—4)(n—3) n—

16 3% + (3n — 6) - 372 4 (2=00=10) gt | (=Bnd)n) . gn—6
n n-2 | (n=3)(3n-10) n—4 | (n=5)(n—4)(n=3) n—
81 6"+ (3n—6)- 32 6"2 + = -3t 6 - - 3060

125 | 15" 4 (3n — 6) - 102 - 1572 4 2=30n=10) g gty (2=B)leednmd) 6 . 15n6

For the mod p* triangles, we have more triangles added to the gaps.
g

Theorem 5.2.5. The formula for the number of pizels in a mod p* triangle at p* rows is

n — 3)(3n — 10) (n—="5)(n—4)(n—3)

T“+(3n—6)-52-T”—2+( 5 SRR AL 2 AR
Proof. Plugging in n + 1 gives us

T 4 (3n—3)- S2. 7" (n— 2);3” -7 LG43y (n—4)(n g 3)(n —2) g6, =5
Continuing the pattern, we get

Tt (3n— 6) - g2ty (n — 3)(2371 — 10) L Gh. sy (n—5)(n g 4)(n — 3) .65

18I (20 —5) - 52Ty T 4)2(” = gt
+S2T(T™ 2 (n—3)- ST + S2.T2(1T"%).

Simplifying this gives us the result from n + 1, which completes the induction. U]

Corollary 5.2.6. The fractal dimension of a mod p* triangle is the same as mod p.

Proof. The fractal dimension of a mod p* triangle is

10g(Tn -+ (3?1 o 6)S2Tn_2 B (n—3)(§>n—10) S4Tn—4 e (n=5)(n—4)(n—3) S6Tn—6)

lim €
n—00 log(p™)
" nlog(T) + log(1 + (3n — 6)S*T—2 + WSMT_4 + MS‘ST”)
= l1m
n—+09 nlog(p)
_ log(T)
log(p)
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5.3. Mod 6 and Conclusions.

Mod 6 “Triangle”

The pattern of the nonzero entries in Pascal’s Triangle mod 6 is actually the pattern from
mod 2 overlapping with the pattern from mod 3, which follows from the Chinese Remainder
Theorem. Since a power of 2 (other than 2° = 1) is never equal to a power of 3 according
the Fundamental Theorem of Arithmetic, these patterns never overlap onto the same row
and create a triangular object. This is because the fractals in Pascal’s Triangle mod 2 “end”
at powers of 2 to make self-similar objects, and for mod 3, the fractals “end” at powers
of 3. This means there is no original “self” to which the pattern can be similar. In the
same manner, all other moduli other than prime powers do not form self-similar patterns.
Without self-similarity, these patterns do not meet the definition of a fractal.

In conclusion, Pascal’s Pyramidions and Simplexes have formulas that calculate fractal
dimensions corresponding to any dimension d € N and any prime number p. Additionally, the
powers of primes up to p* form fractals in Pascal’s Triangle with the same fractal dimension
as the primes. From this observation, we conjecture that the fractal dimension of the fractal
generated by Pascal’s Triangle mod p” is equal to the fractal dimension of Pascal’s Triangle
mod p. One topic for future research is to prove this conjecture for any n. Another topic is

to study the powers of primes in the generalizations of Pascal’s Triangle.
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