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Abstract

Markov Chains are a category of stochastic processes with an associated dependence 

structure. Their inception resulted from A. A. Markov’s desire to disprove a rival’s as­

sertion concerning the application of the Law of Large Numbers (LLN) to dependent 

variables. Markov’s use of a classic Russian novel to illustrate a dependent relation­

ship between vowels and consonants serves as motivation for investigating the extent 

to which the properties of these processes can be applied to other means of communi­

cation. This work summarizes a history of the Law of Large Numbers and the Markovian 

properties associated with three different aspects of communication.
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Histo rica l  Co ntext

1.1 Introduction

In the fall of 2017 we began our investigation into the application of Markovian 

properties to language. Our original intent was to model the path of a conversation 

between two or more people as it transitioned from its beginning, through various top­

ics, to its ultimate conclusion. We collected our data by passive observation. We sat in 

a room that was populated by our coworkers and diagramed the path that their con­

versations traveled. We made no attempt to participate in or eavesdrop on any con­

versation. In fact, we excluded any conversation in which we participated and we di­

agramed only those conversations that were of sufficient volume to be considered for 

public consumption. As we sorted through our data, we found that though we were able
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1.1. INTRODUCTION

to construct a Markov chain, it was chaotic at best because the state-space (the individ­

ual topics of conversation) contained more topics than could be logically considered. 

As we consolidated and refined our data a pattern began to emerge.

We would normally expect the conversations that take place in a professional 

environment to be of a professional or otherwise productive nature. As we consoli­

dated the various topics that populated our state-space, we found the opposite to be 

true. The majority of the conversations in our initial data set typically transitioned into 

an area that we labeled as unproductive and we hoped to develop some conjecture that 

would explain this pattern. Unfortunately, our only contribution in this area would be 

identifying the utility of using Markov chains to map the conversation culture of a given 

environment. If we wished to develop a deeper insight we needed a better understand­

ing of Markovian properties. Consequently, we felt that this was best accomplished by 

learning the history of Markov chains and their inception. This turned our research in 

a slightly different direction and ultimately modified our objectives. We became less 

concerned with the utility of mapping a conversation culture and more focused on a 

simple question: Is language Markovian?

To help us answer our new question we chose to investigate language at three 

different levels. First, we considered it at a basic level of vowels and consonants. We 

then examined language at a slightly broader level of the individual letters of a given
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CHAPTER 1. HISTORICAL CONTEXT

body of work. Finally, we expanded upon our initial investigation into what we call the 

conversation chain. Our presentation is structured as follows.

In chapter 1, we give a brief history of the development of The Law of Large 

Numbers and the feud that was the driving force in the development of Markov chains. 

In chapter 2, we review the structure of Markov chains and the properties which are 

most applicable to answering our research question. In chapter 3, we present our re­

search into the three levels of language and the applicability of Markovian properties to 

them. In chapter 4, we present our conclusions, and discuss further research that could 

be achieved based on the work presented here.

1.2 The Law of Large Numbers

Stochastic processes are collections of random variables indexed by a set (such as 

the natural numbers) that evolve with time. Markov chains are a category of these pro­

cesses with a dependence structure as a distinguishing characteristic. This dependence 

structure is induced by the property that the probability of a chain advancing from one 

value to a future value (known as states) is dependent only upon the chain’s current 

value or state. Though today we find Markov chains used in areas such as agriculture,
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1.2. THE LAW OF LARGE NUMBERS

economics, engineering, and marketing, their inception resulted from Andrei Markov’s 

desire to disprove a rival’s assertion concerning the application of the Law of Large 

Numbers (LLN) to random variables.

The random variables used in stochastic processes differ from algebraic vari­

ables. Regardless of the number of times one attempts to solve for an algebraic vari­

able, the result remains necessarily unchanged; whereas a random variable can assume 

a number of distinct values in each successive trial. These cases were initially explored 

in the context of predicting favorable outcomes in games of chance. Consequently spe­

cific attention was given to a priori computations which were purely deductive in na­

ture. For example, given an urn containing p number of red balls and q  number of

p
black balls, the chance of drawing a red ball from the urn, computed , was re-

(p + q )

garded as a straight forward computation. However, if the numbers p and q  were not 

known and the only available information was “the observations made”, then the prob­

lem became quite interesting. This problem remained largely unexplored until Jacob 

Bernoulli addressed this question in 1713 [12].
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CHAPTER 1. HISTORICAL CONTEXT

In Ars Conjectandi, published eight 

years after his death, Bernoulli proposed 

that the probability of a desired outcome 

could be determined a posteriori, mean­

ing that it could be expected that an event 

will or will not occur as many times in the 

future as it has been observed to occur 

in the past under similar circumstances 

[12]. For example, given an urn containing 3,000 white pebbles and 2,000 black peb­

bles, by removing and recording the color of one pebble (with replacement) at a time, 

with a large enough number of draws one could approximate the ratio of white pebbles 

to black pebbles to be 3:2. Succinctly stated: as the number of trials increases, the closer 

a proportion will tend towards its theoretical or expected ratio. Hence, the convergence 

of independent random variables could help approximate such a proportion empiri­

cally. Further development of this result continued enroute to Markov’s involvement 

almost 200 years later. We continue with a brief summary of its journey from western 

Europe into nineteenth century Russia as the contributions of prominent mathemati­

cians extended Bernoulli’s Theorem making it a cornerstone of probability theory and 

the development of the Markov chain’s machinery.

Figure 1.1: Jacob Bernoulli (1654-1705)
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The example of choosing pebbles from an urn provides an observer with only 

two options. The observer could draw a white pebble or a black pebble in each succes­

sive trial. These trials, later named Bernoulli Trials, were the impetus behind Bernoulli’s 

Theorem. By defining a favorable result in a trial as a “fertile case”, Bernoulli proposed 

the following:

Let: x be the number of observed fertile cases out of N  observations.

Let: p be the unknown proportion of fertile cases.

Then, for any small positive e, and any large c, N  maybe specified so that

( X \ 1
P -  p > e <

N H (c + 1)
X

This signifies that the probability that the difference between n  and p is more than

e is quite small (less that 1 ) if N  is large enough. The second implication of this
(c +1)

inequality is that by specifying the probability, one could then bound the number of 

observations required for the fertile cases to fall within the specified probability [12].

In 1733 French mathematician Abraham De Moivre made a major step towards 

refinement of Bernoulli’s Theorem with the publication of the normal approximation 

to the binomial distribution. First, De Moivre slightly modified Bernoulli’s approach of 

specifying the probability and determining the required N . Instead, he proposed that 

given some N, one should determine the probability [12]. Secondly, to this point in the 

life of Bernoulli’s Theorem, counting the number of fertile cases when N  is very large

1.2. THE LAW OF LARGE NUMBERS
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CHAPTER 1. HISTORICAL CONTEXT

proved problematic. In his paper, De Moivre specifically noted that adding terms of 

the binomial with very high powers of n was so difficult that few mathematicians be­

yond Jacob and Nicholas Bernoulli had ever attempted it [12]. De Moivre’s contribution 

was to approximate the sums of individual Bernoulli Trials (the collection of which be­

come the binomial distribution) when N  is very large (as well as approximate) and the 

probability of a fertile case in a single trial is the symmetric case of p = 2 [11]. In other 

words, this result provided a method of estimating the number of fertile cases in a series 

of Bernoulli Trials when the probability of fertile and unfertile cases is equal. In 1812 

Pierre Simon Laplace refined De Moivre’s result to include those cases where p = 1. The 

combined De Moivre-Laplace theorem would eventually be known as the Central Limit 

Theorem so named by George Polya in 1920 [3].

In 1837, French mathematician Simeon Denis Poisson’s treatise Recherches sur 

la probability used the approximation of sums to generalize Bernoulli’s Theorem. Pois­

son’s theorem was different from Bernoulli’s in that the probability of a fertile event is 

not assumed to be the same for each trial. Poisson’s approach allowed for each trial 

to have its own particular probability. With this pronouncement, Poisson modified 

Bernoulli’s Theorem by changing the requirement of a common constant probability 

to the arithmetic mean of the probabilities [9]. Poisson referred to his 1837 contribu­

tion as "Loi des grands nombres" or Law of Large Numbers. Perhaps most relevant to
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1.2. THE LAW OF LARGE NUMBERS

our research is the roll that Poissons contribution played in the Law of Large Numbers 

journey from Europe into Russia. Specifically, Poisson died in 1840 without providing 

a rigorous proof of his theorem. The first of two such proofs came five years later from

P.L. Chebyshev in Russia [ 11][ ].

Chebyshev’s 1845 master’s thesis 

proposed an analytic approach to prov­

ing Poisson's Law of Large Numbers 

(LLN) though it went unnoticed at the 

time and would not be published until af­

ter his death. In 1866 however, he deliv­

ered a more simplistic proof known as the 

Chebyshev Inequality that yielded a more 

general theorem than Poisson’s LLN [9] 

and covered the case previously treated 

by Bernoulli [2].
Figure 1.2: P.L. Chebyshev (1821-1894)
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CHAPTER 1. HISTORICAL CONTEXT

1.3 The Fued

In 1902, the Moscow Mathematical 

“School” was steeped in Judeo-Christian 

ideology. A fundamental tenet of this ide­

ology was the concept of free will or the 

belief that every person was responsible 

for their own actions under the guidance 

of divine providence. Pavel Nekrasov, a 

leading figure in the Moscow School, held 

true to this doctrine in his paper enti­

tled The Philosophy and Logic o f  Science 

o f  Mass Phenomena in Human Activity 

(1902) in which he asserted that “independence is a necessary condition for the Law 

of Large Numbers.” [1] Nekrasov argued that free will could not be reduced to a sta­

tistical formula and hence the behavior of human beings could not be predicted. In 

this era, because mathematicians from the Moscow School were loyal supporters of the 

Russian Orthodox faith, the ideological lens through which they viewed their work di­

minished their achievements in the eyes of mathematicians from outside their sphere 

of influence [10]. This case was no exception.

Figure 1.3: Pavel Nekrasov (1853-1924)
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1.3. THEFUED

Standing in stark contrast to the Moscow 

School was the secular St. Petersburg Mathemat­

ical School influenced heavily by P. L. Chebyshev 

who had died in 1894. By 1902 Andrei Markov, 

who was a student and close friend of Chebyshev, 

had risen to a position of prominence in the St. 

Petersburg school. Markov also had a direct con­

tribution to the LLN with his inequality (Markov 

Inequality) that provided a concise proof of the 

Chebyshev Inequality. Pavel Nekrasov’s assertion motivated him to spend several years 

working to disprove what he called “an abuse of mathematics” [9]. In 1907, he be­

gan publishing his research that not only disproved Nekrasov’s claim but proffered the 

concept of chain dependence as well [1]. Of particular importance to our research is 

Markov’s 1913 illustration of chain dependence, based upon his 1907 and 1911 papers, 

in a lecture to the Royal Academy of Science in St. Petersburg, Russia [8]. For this 

presentation, Markov extracted the first 20,000 letters from a famous Russian novel, 

Eugine Onegin, which he separated into either vowels or consonants. Using this cor­

pus, he then identified a dependent relationship between pairs of letters based on the 

presence and frequency of four factors- vowels following vowels, consonants following

Figure 1.4: A.A. Markov (1856-1922)
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CHAPTER 1. HISTORICAL CONTEXT

vowels, consonants following consonants, and vowels following consonants. His result 

here reinforced his 1907 conclusion that “independence of quantities does not consti­

tute a necessary condition for the existence of the law of large numbers” [10] and thus 

extended Bernoulli’s result to dependent random variables. Since language, whether 

spoken or written, is exclusively the product of human thought and action one can 

conclude that language constitutes human behavior. In disproving Nekrasov’s claim 

that human behavior could not be predicted, Markov showed that the relationship be­

tween vowels and consonants within his 20,000-letter corpus formed a structure that 

converged to values that could be predicted and therefore the LLN could apply to de­

pendent variables. This is important to our research because we will use the notion 

of convergence to evaluate our question of whether or not language is Markovian. A 

more contemporary version of Markov’s Eugine Onegin illustration will be presented 

here in due course. It should also be noted that Markov’s efforts constituted an early 

and momentous effort to define language in terms of mathematics [7].

14



chapter 2

Markov Chains

2.1 The Markov Property

As stated, A Markov Chain is a system of random variables indexed by some finite 

or countable classifying set such as the natural numbers. These indexed random vari­

ables create a discrete-time state-space, ' ,  defined by the probabilities associated with 

transitioning from one state to a another under the restriction that the probability, P , 

of transitioning to a future state, xn+1, is dependent only upon the chain’s current state, 

xn. Accordingly, the Markov Property is defined as follows:

P (Xn+1 = xn+1 |X0 = x0,.. . ,  Xn = xn) = P (Xn+1 = xn+l\Xn = xn) [6]
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CHAPTER 2. MARKOV CHAINS

Using the Markov Property, we more precisely define the Markov chains used in this 

work as a system (Xn) that satisfies the following:

i. X1, X2,..., Xn,... are independent random variables.

ii. (Xn) satisfies the Markov Property

iii. Transition probabilities are stationary (i.e. probabilities are not impacted by n)

The simplest case of a Markov chain is a two-state chain illustrated below:

Figure 2.1: Two-state Markov chain
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2.1. THE MARKOV PROPERTY

From this example we can see that:

i. The probability of moving from state 0 to state 1 is p , written P (0,1): then,

ii. P (1,0) = q

iii. P (0,0) = 1 -  p (the complement of p )

iv. P (1,1) = 1 -  q  (the complement of q)

• p, q ,1 -  p,1 -  q  are transition probabilities

• Items i-iv are one-step transition functions which are more generally defined 

as:

P (x,y) = P[X  1 = y |X0 = x), x ,y  e ' ;  where

1. P (x, y) > 0

2. X  P(x , y) = 1
y

Using these definitions, we can define chains of larger states, for example:

17



CHAPTER 2. MARKOV CHAINS

Figure 2.2: Three-state Markov chain

By extending the two-state example, a three-state Markov chain could be defined as:

P (0,0) = 4 P (0,1) = 1 P (0,2) = 2

P (1,0) = 0 P (1,1) = 0 P (1,2) = 1

P (2,0) = 0 P (2,1) = 3 P (2,2) = 3

A more useful tool for delineating the transition probabilities of a Markov chain is the 

transition matrix, P . It contains non-negative elements, with each row summing to 1, 

that denote the probability of transitioning from one state to another.

18



2.2. DEFINITIONS AND EXAMPLES

2.2 Definitions and Examples

The individual states in a Markov chain can be classified into three classes- recur­

rent, transient, and absorbing . Let Xn , n > 0, be a Markov chain within a given state- 

space with the transition function P . The let p x y  = Px (Ty < 1 ) where p x y  denotes the 

probability that a Markov chain starting at state x will be in state y  at some positive time 

or step. Define p y y  to be the probability that a Markov chain starting at some point y 

will ever return to y . Then:

• a state is recurrent if p y y  = 1

• a state is transient if p y y  < 1

• an absorbing state is a recurrent state where Py (Ty = 1) )  p (y,y ) = 1.

Hence, once a chain arrives at an absorbing state, the chain remains in that state. 

Another important classification relevant to our presentation is reducibility.

19



CHAPTER 2. MARKOV CHAINS

• A Markov chain is irreducible if each state in the chain has a path to "communi­

cate" with every other state. In other words, A Markov chain is irreducible if you 

can travel from one state to any other state with positive probability. We say that 

these states are within the same communication class. An irreducible chain has 

only one communication class.

• A reducible Markov chain is any chain that is not irreducible. A reducible chain 

can have more than one communication class.

Having presented the basic structure of Markov chains, we now consider a few exam­

ples of the numerous chains in use today. These examples are not all inclusive and are 

presented merely to better the reader’s understanding of the uses and structure of the 

different systems.

1. Random Walk [6]

Consider a state-space such that ' 1, ' 2,... are independent integer-valued random 

variables. Let X0 also be an integer-valued random variable that is independent of all 

' i within the state-space and let Xn = X0 + ' 1 + ••• + ' n. Then Xn is called a random  

walk. Suppose that a "particle" travels a path along the integers according to this 

type of Markov chain. When the particle is in state x , regardless of how it got there, 

it transitions to state y  with probability f  (y -  x).

20



2.2. DEFINITIONS AND EXAMPLES

2. Ehrenfest Chain [6]

This example is used to describe the exchange of heat or gas molecules between two 

isolated bodies, proposed in 1906 by Dutch physicist Paul Ehrenfest. Suppose we 

have two boxes, labeled 1 and 2, and some balls labeled 1 ,2 ,3 ,...,d . Initially some 

of these balls will be in box 1 with the remainder in box 2. An integer is randomly 

selected (1 ,2 ,3 ,...,d ) and the associated ball is removed from the box in which it 

currently resides and placed into the opposite box. This procedure is repeated in­

definitely with each trial being independent. Let Xn denote the number of balls in 

box 1 after the n th trial. Then Xn is a Markov chain on the space {1 ,2 ,3 ,..., d }. If there 

are x balls in box 1 at time n, then with probability d the ball drawn on the n + 1 trial 

will be from box 1 and transferred to box 2. In this case there will be x -  1 balls in box 

1 after the (n + 1) trial. Similarly, with probability d-x  the ball drawn on the (n + 1) 

trial will be drawn from box 2 and transferred to box 1, hence there will be x + 1 balls 

in box 1 after the (n + 1) trial. The transition function can be expressed as:

21



CHAPTER 2. MARKOV CHAINS

Gambler’s Ruin Chain [6]

Suppose a gambler begins with an initial amount of money, in dollars, and begins to 

make a series of one-dollar bets. Assume that the probability of winning a bet is p , and 

the probability of losing a bet is q  or (1 -  p ). Assume also that if the gambler’s money 

ever reaches zero that he is "ruined" and the amount of money he has remains at zero. 

Let Xn denote the amount of money the gambler has at time n . Then this is a Markov 

chain on the space {0,1,2,...} in which zero is an absorbing state, and for x > 1

22



Main Results

3.1 Case I: Convergence of the VC Chain

A Contemporary Illustration of Chain Dependence at the Level of 

Vowels and Consonants

Our revised research question was -  Is language Markovian? Markov’s Eugene One­

gin illustration of chain dependence provided us with the starting point. Based on 

Markov’s early work, it is established that a dependent relationship between vowels 

and consonants in the written language does exist. Markov’s method for providing a 

counter-example to Nekrasov’s claim employed the statistical methods of the era. He 

utilized arithmetic means, variation, and the coefficient of dispersion [8] to show that 

the behavior of the dependence structure between vowels and consonants could be

23



predicted. Rather than reproduce his example here, we chose a more contemporary 

(and smaller) sample to develop and evaluate our own corpus. Additionally, we em­

ployed a more modern method, convergence of the transition matrix, to determine 

whether the convergence of the chain dependence of vowels and consonants in our 

corpus could be predicted. To do this, we extracted the first paragraph of Dr. Ivona 

Grzegorczyk’s textbook Mathematics and Fine Arts [4] and removed all special charac­

ters and punctuation so that only letters and required spaces remained. From it we 

identified the following information relevant to our task.

Total Characters: 955 Vowels: 306 Consonants: 494 Spaces: 155

To the reader - Art is a rare and wonderful creation of the soul, which expresses 
our personal statements, our likes and dislikes, feelings, thoughts, and love. This 
book is written to engage readers of any age and interest in the art of repeating 
patterns and to inspire them to use their own creativity and the newly acquired 
knowledge of geometric transformations in designing their pictures. It is sup­
posed to broaden the usual way of thinking about artistic creations by introduc­
ing some mathematical background and complexity into the designing process. I 
am always amazed that each student’s design emerges through personal expres­
sion of himself as he selects colors, patterns and the symmetries he follows. There 
is no mathematical formula for beauty, and there cannot be. But some interesting 
mathematical rules may create wonderful patterns! My fondest wish for all read­
ers of this book is that you have great fun, and may you have many new artistic 
inspirations.

Figure 3.1: The first paragraph of Dr. Ivona Grzegorczyk’s Mathematics and Fine Arts

[4]

CHAPTER 3. MAIN RESULTS
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3.1. CASE I: CONVERGENCE OF THE VC CHAIN

The following relationships were also observed:

• a vowel following a vowel (VV): 47

• a consonant following a vowel (VC): 259

• a vowel following a consonant (CV): 257

• a consonant following a consonant (CC): 237*

* Since there were 800 letters in this corpus, there were only 799 pairs of letters in this 

corpus. To match the number of pairs of letters with the total number of individual 

letters, we joined the last letter in the corpus "s" with the first letter in the corpus "t" 

which added one count of a consonant followed by a consonant (CC) to the total pairs 

of letters. This brought to total count of pairs of letters to 800 as well.

By counting the total number of letters and letter pairs in the corpus, using the 

properties of classical probability, we could determine the expected proportion of letter 

pairs. Specifically:

306
• Total number of vowels: 306 = )  ----  = )  P(vowel) = 0.3825

800 --------

494
• Total number of consonants: 494 = )  ----  = )  P(consonant) = 0.6175

800 --------

With these proportions we should expect the total number of letter pairs in our corpus 

to be as follows:

25



total pairs

•VV = (0.3825 X 0.3825) x (800) °  117.045

• VC = (0.3825 X 0.6175) x (800) °  188.955

• CV = (0.6175 x 0.3825) x (800) °  188.955

• CC = (0.6175 x 0.6175) x (800) °  305.045

However, as previously stated, these counts were not close to the actual number of letter 

pairs in our corpus:

• VV= 47

• VC= 259

• CV= 257

• CC= 237

By comparing the transition matrix of the classical expectation with the transition ma­

trix of the empirical data we have the following:

Classical Matrix (Theoretical)

V C  117.045 188.955 1

117.045 188.955 „ 306 306

--------- 306---- ----- 306----  188.955 305.045
„ 188.955 305.045C ----------  ----------  V 494 494 /

494______ 494

CHAPTER 3. MAIN RESULTS
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3.1. CASE I: CONVERGENCE OF THE VC CHAIN

Empirical Matrix (Observed)

V C

V
47

306
259
306

C
257
494

237
494

0 47 259 1
306 306

257 237
V 494 494

Notice the denominators in the vowel and consonant rows of each matrix above. As 

outlined in chapter 2, these matrices define the probability of transitioning from one 

state to another. For example, and without loss of generality, consider the case of tran­

sitioning from a vowel to a vowel. Since there are 306 vowels in our corpus, there are 

only 306 possible vowel states, hence the chain cannot transition from a vowel to an­

other vowel unless it currently resides in one of the 306 vowel states. Notice also that 

these chains are irreducible which allows each state to communicate with every other 

state in the chain.

As we would expect, the proportions in the classical matrix are those of the propor­

tions of vowels and consonants in the corpus itself, and this can be seen by converting 

the fractions in each matrix box to a decimal.

0 117.045 188.955  ̂ ( \
306 306 °.3825 °.6175

P = =

188-955 305-045 0.3825 0.6175
V 494 494 / V '

27



CHAPTER 3. MAIN RESULTS

In order to evaluate P for convergence, we introduce the following definitions and prop­

erties:

(I) ° 0(x) = P (X0 = x) is called the initial distribution where;

(i) °0(x) > 0 

(i) I x  °0(x) = 1

(II) The jo in t distribution of the system can be expressed in terms of the initial distri­

bution and the one-step transition function, hence:

P(X0 = x0, X1 = x]_) = P(X0 = x0) P(X1 = x\ | X0 = x0)

= ° 0(x0) P (x0,x 1) then,

P (X2 = x2 | X0 = x0, X1 = x1) = P (X2 = x2 | X1 = x1) = P (X1 = x2 | X0 = x1)

= P (x1, x2)

It follows that this property can be extended to show that:

P (X0 = x0,...,X „  = xn) = ° 0(x0) P (x0,x 1)...P (x„_1,x n)

The above properties provide us with the method for evaluating each individual one- 

step transition function as the chain advances from the initial distribution through the 

chain to its ultimate convergence. We illustrate this process in the following way. If we 

define an initial distribution, ° 0(x), as a row vector that indicates a starting point of the
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3.1. CASE I: CONVERGENCE OF THE VC CHAIN

chain (vowel or consonant within the corpus) we then multiply this row vector by the 

classical transition matrix to determine the associated transition probabilities at that 

point in the chain. For example, and without loss of generality:

Let n0(x) = [°0 (vowel), ° 0(consonant)] = [1 0] define the initial state of the chain as a 

vowel. Then by multiplying the the given row vector by the classical transition matrix 

we have:

0.3825 0.6175
[ 10]  x = [0.3825 0.6175]

0.3825 0.6175
V /

This indicates that the probability of transitioning from a vowel to a vowel is 0.3825 and 

the probability of transitioning from a vowel to a consonant is 0.6175. This then pro­

vides us with a new distribution from which we can progress through the system.

We then multiple the transition matrix by the resulting row vector (new distribution) 

which represents a second step in the chain to obtain:

0 1
0.3825 0.6175

[0.3825 0.6175] x = [0.3825 0.6175]
0.3825 0.6175

V /
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for illustration purposes, if we substitute ° 0(x) = [0 1] into the classical matrix we would 

also obtain [0.3825 0.6175].

What this signifies is that as the classical chain progresses, the transition probabil­

ities in the matrix immediately converge to the initial vowel/consonant proportions, 

also called stationary distribution of the corpus,

0.3825 0.6175

0.3825 0.6175
V /

Therefore, regardless of our state in the classical chain (letter in the corpus) the 

probability of advancing to a vowel or consonant is equal to the stationary distribution 

of vowels and consonants in the corpus. But what about the empirical transition matrix 

which does not match the classical transition matrix? Using the same procedures as 

above we have:

r 47 259  ̂ 0 1
306 306 ° .1536 °.8464

257 237 0.5202 0.4798
V 494 494 / V '

Let ° 0(x) = [10] define the initial state of the chain as a vowel.

Let ° 0(x) = [0 1] define the initial state of the chain as a consonant.

Using the fractional form of the empirical matrix to reduce rounding errors:
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Initial state: Vowel

' 47 259 '
306 306

n = 1: [10] x °  [0.1536 0.8464]
257 237

k 494 494 ,

' 47 259 '
306 306

n = 2: [0.1536 0.8464] x °  [0.4639 0.5361]
257 237

k 494 494 ,

' 47 259 '
306 306

n = 3: [0.4639 0.5361] x « [0.3502 0.6498]
257 237

k 494 494 ,

' 47 259 '
306 306

n = 4 : [0.3502 0.6498] x « [0.3918 0.6082]
257 237

k 494 494 ;

' 47 259 '
306 306

n = 5: [0.3918 0.6082] x °  [0.3766 0.6234]
257 237

k 494 494 ;

' 47 259 '
306 306

n = 6 : [0.3766 0.6234] x « [0.3822 0.6178]
257 237

k 494 494 ;
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' 47 259 '
306 306

n = 7: [0.3822 0.6178] x °  [0.3801 0.6199]
257 237

k 494 494 >

' 47 259 '
306 306

n = 8 : [0.3801 0.6199] x °  [0.3809 0.6191]
257 237

k 494 494 ,

' 47 259 '
306 306

n = 9: [0.3809 0.6191] x °  [0.3806 0.6194]
257 237

k 494 494 ;

' 47 259 '
306 306

n = 10: [0.3806 0.6194] x °  [0.3807 0.6193]
257 237

k 494 494 ,

Initial state: Consonant

' 47 259 '
306 306

n = 1: [0 1] x °  [0.5202 0.4798]
257 237

k 494 494 ,

' 47 259 '
306 306

n = 2: [0.5202 0.4798] x °  [0.3295 0.6705]
257 237

k 494 494 ,
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' 47 259 '
306 306

n = 3: [0.3295 0.6705] x °  [0.3994 0.6006]
257 237

k 494 494 ,

' 47 259 '
306 306

n = 4: [0.3994 0.6006] x °  [0.3738 0.6262]
257 237

k 494 494 ,

' 47 259 '
306 306

n = 5: [0.3738 0.6262] x °  [0.3832 0.6168]
257 237

k 494 494 ,

' 47 259 '
306 306

n = 9: [0.3805 0.6195] x « [0.3807 0.6193]
257 237

k 494 494 ,

Hence, regardless of the starting point in the empirical chain, it will converge to the 

approximate stationary distribution of vowels and consonants in the corpus as well:

0.3807 0.6193 0.3825 0.6175

0.3807 0.6193 0.3825 0.6175
V J \

A more efficient method of determining the convergence of a transition matrix is the 

method of raising the matrix, P , to a given value of n. In the case of our empirical chain
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matrix, based on the previous result, we would raise P n to a value of n = 10, specifically:

r 47 259  ̂ '—  259 0.1536 0.8464
P1 306 306

257 237 0.5202 0.4798
494 494 / 1 ,

47 259—  299 0.4639 0.5361
2 306 306P2 = °

257 237 0.3295 0.6705
k 494 494 ,

47 259Z Z  259 0.3502 0.6498
3 306 306P3 = °

257 237 0.3994 0.6006
k 494 494 ,

0 47 259 1 (ZZ 259 0.3918 0.6082
P4 _ 306 306 ^

257 237 0.3738 0.6262
V 494 494 ' ,

0 1 0 1 0  147 259 0.3807 0.6193 0.3825 0.6175
P 10 _ 306 306 ^ ^

257 237 0.3807 0.6193 0.3825 0.6175
v 494 494 '  J  ̂ ;
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Regardless of which method we utilize, the result is the same. Since the chain defined 

by the empirical values of the vowel/consonant relationship is irreducible, it is "well- 

behaved" and therefore predictable as the number of trials or steps in the chain in­

crease.
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3.2 Case II: Convergence of the Letter Chain

In Case I we examined the applicability of Markov properties to a basic level of 

communication-the relationship of vowels and consonants within a corpus. In this 

case we will consider a slightly broader view of communication (in written form) and 

examine the dependence structure between the individual letters and spaces of the 

same corpus. Our objective here is to determine whether or not the transition ma­

trix will converge to predictable values. What is problematic is that once we evaluate 

the matrix structure, we must then consider the context of the chain and account for 

the fact that our "unknown quantity” is the content of the corpus itself, hence the term 

predictable values may not be clearly defined. For example, using empirical probabil­

ity, we wish to construct a Markov chain whose state-space is defined by the probability 

of advancing from one letter to another in such a manner that each current and succes­

sive step in the chain combine to reconstruct the actual text of the corpus. Our vehicle 

for this task is called the Drivel Generator developed my Brian Hayes [5]. This software 

randomly generates text utilizing the dependence structure and the associated proba­

bilities of our corpus.

We start by removing the context of the character chain and consider only the 

dependence structure of the letters and spaces in our corpus. Because we must con­

sider the spaces within the corpus, we added the 155 spaces to the 800 vowels and
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consonants and constructed a 26 X  26 matrix (the corpus does not contain the letter 

j) to determine the dependence structure between the individual characters as shown 

below. We used MATLAB and Microsoft Excel to compile and display our matrix.

SP A B c D E p G H 1 K L M N 0 P Q R S T U V W X Y Z

SP 0 0 .1 5 5 8 0 .0 5 1 9 0 .0 4 5 5 0 .0 2 6 0 .0 3 2 5 0 .0 4 5 5 0 .0 1 3 0 .0 2 6 0 .0 9 7 4 0 .0 0 6 5 0 .0 1 3 0 .0 4 5 5 0 .0 1 9 5 0 .0 6 4 9 0 .0 4 5 5 0 0 .0 3 9 0 ,0 5 1 9 0 .1 5 5 8 0 ,0 1 3 0 0 .0 3 9 0 0 .0 1 3 0

A 0 ,0 2 8 6 0 0 ,0 1 4 3 0 ,0 4 2 9 0 .0 5 7 1 0 0 0 .0 2 8 6 0 0 0 0 ,1 1 4 3 0 ,0 2 8 6 0 .2 0 0 0 0 .0 7 1 4 0 ,0 1 4 3 0 .2 8 5 7 0 .0 1 4 3 0 ,0 2 8 6 0 0 0 ,0 5 7 1 0 ,0 1 4 3

B 0 0 .1 2 5 0 0 0 0 .2 5 0 0 0 0 0 0 0 0 0 .3 7 5 0 0 0 .1 2 5 0 0 0 .1 2 5 0 0 0 0 0

C 0 ,1 4 2 9 0 ,1 9 0 5 0 0 0 0 .0 4 7 6 0 0 0 ,0 9 5 2 0 .0 4 7 6 0 ,0 4 7 6 0 0 0 0 ,0 9 5 2 0 0 .0 4 7 6 0 .1 9 0 5 0 0 .0 9 5 2 0 0 0 0 0 0

D 0 ,5 0 0 0 0 0 .3 9 2 9 0 0 .0 3 5 7 0 0 .0 3 5 7 0 0 0 0 0 0 0 0 0 0 0 ,0 3 5 7 0 0 0 0 0

E 0 .2 8 8 7 0 .0 7 2 2 0 0 .0 1 0 3 0 .0 4 1 2 0 .0 1 0 3 0 0 0 0 .0 2 0 6 0 0 .0 3 0 9 0 .0 6 1 9 0 .0 5 1 5 0 .0 1 0 3 0 .0 1 0 3 0 0 .1 5 4 6 0 .1 6 4 9 0 .0 2 0 6 0 0 0 .0 2 0 6 0 .0 3 0 9 0 0

F 0 ,4 4 4 4 0 0 0 0 0 .0 5 5 6 0 0 0 0 0 0 0 0 0 ,3 3 3 3 0 0 0 0 0 0 .1 6 6 7 0 0 0 0 0

6 0 .3 0 .0 5 0 0 0 0 .2 5 0 0 0 .1 0 0 0 0 0 .1 5 0 0 0 0 .1 0 .0 5 0 0 0 0 0 0 0

H 0 ,1 4 7 1 0 .1 1 7 6 0 0 0 0 .5 0 0 0 0 .1 4 7 1 0 0 0 0 0 ,0 2 9 4 0 0 0 .0 2 9 4 0 0 ,0 2 9 4 0 0 0 0 0 0

1 0 .0 1 7 2 0 0 0 .1 3 7 9 0 0 .0 1 7 2 0 0 .0 5 1 7 0 0 0 .0 3 4 5 0 0 .0 1 7 2 0 .2 7 5 9 0 .0 8 6 2 0 0 0 .0 8 6 2 0 .1 8 9 7 0 .0 6 9 0 0 .0 1 7 2 0 0 0 0

J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K 0 ,2 8 5 7 0 0 0 0 0 .2 8 5 7 0 0 .1 4 2 9 0 0 .1 4 2 9 0 0 0 ,1 4 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0

L 0 .3 8 4 6 0 .0 3 8 5 0 0 0 0 .1 5 3 8 0 .0 3 8 5 0 0 0 .1 1 5 4 0 0 .0 7 6 9 0 0 0 .1 1 5 4 0 0 0 0 0 0 0 0 .0 3 8 5 0 0 .0 3 8 5 0

M 0 ,0 8 3 3 0 ,4 5 8 3 0                                      0 0 .2 5 0 0 0 0 0 0 0 ,0 4 1 7 0 0 0 .0 4 1 7 0 0 0 .0 4 1 7 0 0 ,0 4 1 7 0 0 0 0 ,0 4 1 7 0

N 0 .1 6 0 7 0 .0 3 5 7 0 0 0 .2 5 0 .0 1 7 9 0 0 .1 4 2 9 0 0 .0 3 5 7 0 .0 1 7 9 0 0 0 .0 1 7 9 0 .0 3 5 7 0 0 0 0 .1 4 2 9 0 .1 0 7 1 0 0 0 0 0 .0 3 5 7 0

0 0 .1 1 8 6 0 .0 1 6 9 0 0 .0 1 6 9 0 .0 1 6 9 0 0 .1 1 8 6 0 0 0 0 .0 3 3 9 0 .0 3 3 9 0 .0 6 7 8 0 .1 6 9 5 0 .0 5 0 8 0 0 0 .1 0 1 7 0 .0 3 3 9 0 .0 1 6 9 0 .1 3 5 6 0 .0 1 6 9 0 .0 5 0 8 0 0 0

P 0 0 .2 0 0 0 0 .2 0 0 0 0 .2 0 0 .0 6 6 7 0 0 0 .0 6 6 7 0 .0 6 6 7 0 0 .2 0 0 0 0 0 0 0 0

Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

R 0 .1 4 2 9 0 .0 3 5 7 0 0 0 0 .3 3 9 3 0 .0 3 5 7 0 .0 1 7 9 0 0 .0 5 3 6 0 0 0 .0 3 5 7 0 .0 5 3 6 0 .1 0 7 1 0 0 0 0 .0 8 9 3 0 .0 7 1 4 0 .0 1 7 9 0 0 0 0 0

S 0 .5 0 0 0 0 0 .0 7 8 1 0 .0 1 5 6 0 0 .0 1 5 6 0 .0 6 2 5 0 0 .0 1 5 6 0 0 0 .0 7 8 1 0 .0 3 1 3 0 0 0 .0 4 6 9 0 ,1 0 9 4 0 ,0 3 1 3 0 0 0 0 .0 1 5 6 0

T 0 ,1 3 9 2 0 ,0 1 2 7 0 0 0 0 .1 0 1 3 0 0 0 ,2 7 8 5 0 ,1 7 7 2 0 0 0 0 0 .0 7 5 9 0 0 0 ,0 5 0 6 0 .0 5 0 6 0 ,0 5 0 6 0 ,0 2 5 3 0 0 0 0 .0 3 8 0

U 0 .0 8 7 0 .0 4 3 5 0 0 .0 4 3 5 0 .0 4 3 5 0 0 0 .0 8 7 0 0 .0 4 3 5 0 0 .2 1 7 4 0 0 .0 8 7 0 0 .0 4 3 5 0 0 .0 8 7 0 .0 8 7 0 .1 3 0 4 0 0 0 0 0 0

V 0 0 0 0 0 0 .6 0 0 0 0 .2 0 0 0 0 0 0 0 0 .2 0 0 0 0 0 0 0 0

w 0 ,0 8 3 3 0 ,1 6 6 7 0 0 0 0 0 0 0 .0 8 3 3 0 ,0 8 3 3 0 0 ,1 6 6 7 0 0 ,0 8 3 3 0 ,1 6 6 7 0 0 0 .0 8 3 3 0 ,0 8 3 3 0 0 0 0 0 0 0

X 0 0 0 0 0 0 0 0 0 0 .3 3 3 3 0 0 0 0 0 0 .6 6 6 7 0 0 0 0 0 0 0 0 0 0

Y 0 ,7 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 ,0 6 6 7 0 0 0 .1 3 3 3 0 0 0 ,0 6 6 7 0 0 0 0 0 0 0

Z 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.2: Letter matrix

37



CHAPTER 3. MAIN RESULTS

This chain once again is irreducible. As we raise the power of the transition ma­

trix, P n, to n = 11 we find (as expected) that the chain also converges to its stationary 

distribution as shown below.

SP A B C D E F G H 1 K L M N 0 P Q R S T U V W X Y Z

S P 0 .1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0 .1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 .0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 .0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

A 0 .1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0.1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 .0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 .0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

B 0 .1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0 .1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 .0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 .0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

C 0 .1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0.1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 .0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 .0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

D 0 .1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0 .1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 .0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 .0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

E 0 ,1 6 8 0 ,0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0.1 0 ,0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 ,0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 ,0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 ,0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

F 0 .1 6 8 0 ,0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0.1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 .0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 ,0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

G 0 .1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0.1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 .0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 ,0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 .0 0 4 1 0 ,0 1 2 7 0 .0 0 3 1 0 ,0 1 4 6 0 .0 0 1

H 0 .1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0 .1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 ,0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 ,0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

1 0 ,1 6 8 0 ,0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0.1 0 ,0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 ,0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 ,0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 ,0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

J 0 .1 6 8 0 ,0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0 .1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 .0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 ,0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 ,0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

K 0 ,1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 ,0 2 2 2 0 ,0 2 9 5 0.1 0 ,0 1 8 9 0 ,0 2 1 1 0 .0 3 3 5 0 ,0 6 1 2 0 ,0 0 7 3 0 .0 2 7 0 ,0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 ,0 1 8 1 0.0011 0 .0 5 8 6 0 ,0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 ,0 0 4 1 0 ,0 1 2 7 0 .0 0 3 1 0 ,0 1 4 6 0 .0 0 1

L 0 ,1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 ,0 2 2 2 0 ,0 2 9 5 0 .1 0 ,0 1 8 9 0 ,0 2 1 1 0 .0 3 3 5 0 ,0 6 1 2 0 ,0 0 7 3 0 .0 2 7 0 ,0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 ,0 1 8 1 0.0011 0 .0 5 8 6 0 ,0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 ,0 0 4 1 0 ,0 1 2 7 0 .0 0 3 1 0 ,0 1 4 6 0 .0 0 1

M 0 ,1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 ,0 2 2 2 0 ,0 2 9 5 0.1 0 ,0 1 8 9 0 ,0 2 1 1 0 .0 3 3 5 0 ,0 6 1 2 0 ,0 0 7 3 0 .0 2 7 0 ,0 2 6 1 0 ,0 5 9 9 0 .0 5 9 6 0 ,0 1 8 1 0.0011 0 .0 5 8 6 0 ,0 6 7 2 0 ,0 8 1 8 0 .0 2 4 0 ,0 0 4 1 0 ,0 1 2 7 0 ,0 0 3 1 0 ,0 1 4 6 0 .0 0 1

N 0 ,1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 ,0 2 2 2 0 ,0 2 9 5 0.1 0 ,0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 ,0 6 1 2 0 ,0 0 7 3 0 .0 2 7 0 ,0 2 6 1 0 ,0 5 9 9 0 .0 5 9 6 0 ,0 1 8 1 0.0011 0 .0 5 8 6 0 ,0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 ,0 0 4 1 0 ,0 1 2 7 0 .0 0 3 1 0 ,0 1 4 6 0 .0 0 1

0 0 ,1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 ,0 2 2 2 0 ,0 2 9 5 0.1 0 ,0 1 8 9 0 ,0 2 1 1 0 .0 3 3 5 0 ,0 6 1 2 0 ,0 0 7 3 0 .0 2 7 0 ,0 2 6 1 0 ,0 5 9 9 0 .0 5 9 6 0 ,0 1 8 1 0.0011 0 .0 5 8 6 0 ,0 6 7 2 0 ,0 8 1 8 0 .0 2 4 0 ,0 0 4 1 0 ,0 1 2 7 0 .0 0 3 1 0 ,0 1 4 6 0 .0 0 1

P 0 .1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0 .1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 .0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 .0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

Q 0 .1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0.1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 .0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 .0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

R 0 .1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0 .1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 .0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 .0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

S 0 .1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0.1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 .0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 .0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

T 0 .1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0 .1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 .0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 .0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

U 0 ,1 6 8 0 ,0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0.1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 ,0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 ,0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 ,0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

V 0 .1 6 8 0 ,0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0.1 0 ,0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 ,0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 ,0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

w 0 .1 6 8 0 ,0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0.1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 ,0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 ,0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 ,0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

X 0 .1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0 .1 0 .0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 ,0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 .0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 .0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1

Y 0 ,1 6 8 0 .0 6 9 9 0 .0 0 9 7 0 .0 2 2 2 0 .0 2 9 5 0.1 0 ,0 1 8 9 0 .0 2 1 1 0 .0 3 3 5 0 ,0 6 1 2 0 .0 0 7 3 0 .0 2 7 0 .0 2 6 1 0 ,0 5 9 9 0 .0 5 9 6 0 .0 1 8 1 0 .0 0 1 1 0 .0 5 8 6 0 .0 6 7 2 0 .0 8 1 8 0 .0 2 4 0 ,0 0 4 1 0 .0 1 2 7 0 .0 0 3 1 0 .0 1 4 6 0 .0 0 1
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Figure 3.3: Convergence of the Letter matrix
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As we stated, we considered the Character chain without regard to context. Con­

sequently what we have shown so far is that the structure of the Character chain con­

verges; but, what happens when we take a slightly broader look at this chain and con­

sider the context of each state? We know that the purpose of joining letters together is 

to form words, and that we form words in an order or pattern to convey a message. Our 

objective here was to use Brian Hayes’ Drivel Generator [5] to reproduce the words in 

the corpus in a manner that conveys the same message as the corpus.

The Drivel Generator uses an algorithm to build a transition matrix that defines se­

quences of k  letters and the probabilities of the various letters that can follow each 

k -character sequence of letters. We load our corpus into the Drivel Generator and 

record the results. For reference here is our corpus.

To the reader - Art is a rare and wonderful creation of the soul, which expresses 
our personal statements, our likes and dislikes, feelings, thoughts, and love. This 
book is written to engage readers of any age and interest in the art of repeating 
patterns and to inspire them to use their own creativity and the newly acquired 
knowledge of geometric transformations in designing their pictures. It is sup­
posed to broaden the usual way of thinking about artistic creations by introduc­
ing some mathematical background and complexity into the designing process. I 
am always amazed that each student’s design emerges through personal expres­
sion of himself as he selects colors, patterns and the symmetries he follows. There 
is no mathematical formula for beauty, and there cannot be. But some interesting 
mathematical rules may create wonderful patterns! My fondest wish for all read­
ers of this book is that you have great fun, and may you have many new artistic 
inspirations.

Note: fo r  proper processing we have removed all capitalization and punctuation.
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is thead ts nd expeny agexprthe s isf isontsthisou rertowsode bor theart abostised 
ead pis r ong iexper f t is tresout pin souse d asthe cthe br m ad bes eatym 
ts tirtealy pans heom tispad piempinsfeat y tsfunde icond rmerssf pisusofus 
anaghadepay thead athem bondeousestof bomeanalws tspanolwalll o w cred 
be an m be sonde che trt tarosu o atigstheruspe foa and beaderoud ind is ind 
ped is f e pr ris wore isf adeires a ig ws octstotad mestroureadud tinatomestym 
crestheansisl enous gsofo be atand l the nd te an as tere tssthemm s s t is- 
feargsinger deabronstis ion alec patrinst e ans inoul t te amal ig f ikn had i r inof 
nsthe odesthe ul grgr taul ag e fu rennonstteromedem chexprn k the he i f m oly 
br t m tt abe w avis tankea cr isexiorg abrme isf thertherty onseano tis d aly is oul 
indual pal al the al adure ighemeathinathisotisoul he stheanymer irmendexpio d 
n f ags s bre s pealfounted alys mm woowat ctheatinat wis fowave isleathesf onk 
pindemeaseathis e pinsf t cay in tio breal ind edu

Figure 3.4: First order Markov chain text reproduction (first attempt)

In the above example we noticed that there are very few "words" randomly generated 

from the chain created by our corpus. We tried a second time.

ct emato ms t femaze pe insicrgeanstul at ragrt e stthon m mel ous ty bealf 
tsy c tireand pitio t eiseereadexpiof on indexpexiowor wountin f am mpesom 
ereathaulony g watthe ather an wal cathe sf pigsireofus cal n at trg wof ande atred 
sthead d st he ader sty t be t atad tuly tin malios reac age fuigronstheal ol tstsf ol 
cagrg oul fono bris e orm of ofulymede theat pis ped pated pag mesof alym me 
rigs tissofosoave hend bofutssfe g atirem onats wanyme bred foutheisons aremal 
ouly n c be tisis ty boful eanthesoul piouly th cr forisstouly t ade adur wre t owa- 
mallwathinty ousserexpl wosthik iol bon wnd hirexistsin f preangnats s dethe- 
atheargremesis watis icrioul pes tul f pars osireatherol icredewo tthaveral isthisf 
iciredexicreasfwatexikn nsticrertusthexind amatr hind reamsonderoust oul pan- 
tatamay s wof at sug f ful perisis d ansomavensfomm ande toustision k tis ang the 
atheaty osf

Figure 3.5: First order Markov chain text reproduction (second attempt)
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3.2. CASE II: CONVERGENCE OF THE LETTER CHAIN

In the second attempt, we notice that not only are very few words being formed, but 

that the second attempt does not resemble the first attempt. Therefore, we will redefine 

the dependence structure of our corpus to create an n-order Markov chain which will 

consider the current state of the chain to be a combination of the n-previous states.

N-order Markov Property

P[Xn = x n \Xn-1 = xn-1, Xn-2 = x n-2, — ,Xn-m = xn-m) for n > m

Hence, in second-order Markov chain, the probability of advancing top a future state, 

Xn+1, is dependent only upon the current state, Xn = x n\Xn-1 = xn-1, Xn-2 = xn-2.

For example, suppose the character chain currently resides at the letter "r" in the word 

"wonderful" from our corpus. A second-order Markov chain would consider the prob­

ability of advancing to a future state given that the current state is "er". The third-order 

Markov chain would consider the probability of advancing to a future state given hat 

the current state is "der". This pattern can be extended to the case n -  m states. If we 

were to compute the transition matrix for n-order chains, the size of our matrix (26n) 

would be prohibitive. This problem is solved by the Drivel Generator . As we proceed 

we will present only one attempt for each order Markov chain because no two attempts 

will produce identical results.
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Figure 3.6: Second-order Markov chain text reproduction

We can see in figure 3.6 that words from the corpus are starting to form.

backgrough pers of thinking about sometric intere and though pers patterns in­
terns matic intere is a rare is no matical follows the repeat you have greatical 
which studen to engage readen that each state wondersonal which exprestings 
there is no mation of that each studen to that each expresses into theresses the 
reate wonders patten their own create wonderful patten to that you have the de­
signings that each expresting patten to the some matings the follows the and to 
their own create wonderful patterns and to this am alway creaden to broaden 
to engage reations am alway creatic interns am alway of and and mathematic 
transformula follows thoughts of as he reating mathe readerful patten the read­
erful patterns mations and and this by in that each expresses into the reatings 
their own creadents of the designing processions a rare and and to though pers 
patterns and love greaden to that each express interess introducing the use there 
and thround interest wish follows their own creaders of t

Figure 3.7: Third-order Markov chain text reproduction
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soul which expression of himself as he selects colors patterns and the newly ac­
quired knowledge of geometric transformations in designing their own creativ­
ity and the newly acquired knowledge of geometric transformations in designing 
their own creations in designing their own creation of the soul which expression 
of himself as he selects colors patterns my fondest wish for all readers of this 
book is that you have many new artistic creations in designing their own creativ­
ity and the newly acquired knowledge of geometric transformations in designing 
their own creation of the soul which expression of himself as he selects colors 
patterns my fondest wish for all readers of thinking about artistic creation of the 
soul which expresses our personal expression of himself as he selects colors pat­
terns and to inspirations

Figure 3.8: Fifth-order Markov chain text reproduction

ways amazed that each students designing their own creativity and complexity 
introducing some interest in the usual way of this book is that you have great 
fun and the designing their own creations in designing patterns and complexity 
introducing some interesting patterns and complexity introducing some math­
ematical background and interest in the readers of any age and to inspirations 
in designing their own creations by introducing some mathematical formula for 
beauty and wonderful patterns and complexity introducing some mathematical 
background and may create wonderful create wonderful patterns and to inspi­
rations in designing their own create wonderful creations in designing their own 
creations in designing patterns and the art is a rare and the readers of this book is 
that each students designing their own creations in designing their own creations 
in designing process i am always amazed that you have great fun and complexity 
introducing some interesting mathematical formula for bea

Figure 3.9: Seventh-order Markov chain text reproduction
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mathematical formula for beauty and the newly acquired knowledge of geomet­
ric transformations in designing their pictures it is supposed to broaden the 
usual way of thinking about artistic creation of the soul which expresses our 
personal expression of himself as he selects colors patterns and the newly ac­
quired knowledge of geometric transformations in designing their pictures it 
is supposed to broaden the usual way of thinking about artistic creation of the 
soul which expresses our personal expression of himself as he selects colors 
patterns and the symmetries he follows there is no mathematical background 
and complexity into the designing their pictures it is supposed to broaden the 
usual way of thinking about artistic creations byintroducing some mathemati­
cal background and complexity into the designing their pictures it is supposed 
to broaden the usual way of thinking

Figure 3.10: Ninth-order Markov chain text reproduction

We initially showed that the dependence structure of the Character chain converged 

to its stationary distribution at the 11th step in the chain. It should be noted that by the 

9th step in the chain, all but a few values in the fourth decimal position, had already 

converged to the stationary distribution. We can see from the Drivel Generator exam­

ples that as the order of the chain reaches nine, whole words and ideas form our corpus 

are beginning to appear. Entire sentences are being repeated with no logical order to 

them and no two attempts are alike at any n-order chain in this progression.
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3.3 Case III: Convergence of the Conversation Chain

In this case we consider our broadest view of communication and examine the de­

pendence structure between the various topics of a conversation. Our state-space con­

sists of observed and diagramed conversations between two or more people as they 

transition from beginning, through various topics, to their ultimate conclusion. Our 

intent here is to confirm that the convergence of the chain which models the path of 

observed conversations can be predicted. In our initial work, we diagramed each con­

versation from its beginning to its own conclusion or to a point that we considered the 

conversation to have concluded. In other words, if the conversation did not end on 

its own, we considered a conversation concluded if it did not transition out of the cur­

rent topic for several minutes. This standard was purely subjective on the part of the 

observer. In initially applying this standard, we constructed a reducible Markov chain 

that contained two communication classes and an absorbing state. As one might guess, 

the absorbing state was the conclusion of the conversation which we called the “good­

bye” state. In our second attempt, we collected new data which excluded the “goodbye” 

state in order to determine whether another state in the new chain would fill the void 

left by the exclusion of the “goodbye” state. Our intent here was to evaluate the poten­

tial of predicting whether or not a conversation would converge to a specific topic or 

category of topics. As stated earlier, the conversation chain was constructed by reor­
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ganizing more than a dozen topics into seven categories. The structure of our revised 

chain is presented below, followed by its associated matrix.

Figure 3.11: Initial conversation chain matrix

Figure 3.12: Initial conversation chain matrix (labeled)
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3.3. CASE III: CONVERGENCE OF THE CONVERSATION CHAIN

Our procedure for populating the 

Conversation Chain matrix began by us­

ing the flow chart pictured here to dia­

gram the various conversations that we 

observed. As this example shows, the 

conversation started with a greet(ing) that 

lasted approximately 5 seconds. The 

topic of the conversation then transi-

tioned to books and reading that lasted 

for approximately 1 minute and 14 sec­

onds before transitioning to basketball

and a ll sports. After 1 minute and 45 Figure 3.13: ConversationDataFlowChart

seconds, the conversation transitioned to

family, work and finally food  before coming to an end. The duration of the final three 

topics can be seen in the small rectangular boxes above each listed topic. After collect­

ing a sufficient amount of conversation data, we consolidated it into the seven general 

topics. To populate our matrix, we tallied the number of times a conversation entered 

one of our seven general topics. We then tallied to which of the seven topics the conver­

sation transitioned for each of those times. For example, and without loss of generality
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consider the first topic (Greeting) in the matrix below.

We can see from the denominator in the Greeting row that our diagramed conversa­

tions included a greeting as a topic on nine different occasions. If we follow the Greeting 

row to the right, we see that in no conversation did the topic transition from a greet­

ing to a greeting. Continuing across the row, by observing the numerators, we can see 

that of the nine times our conversations included a greeting that they then transitioned 

twice to Work, once to Gossip, once to General Topics, four times to Family, zero times to 

Sports, and once to Goodbye. The same relationship of the rows and columns through­

out the rest of the matrix creates a Markov Chain on the space defined by the seven 

conversation topics.
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P  (x, y ) =

2 1 1 4  1
0 -  -  -  -  0 -

9 9 9 9 9
4 2 2 1 1

0 — — — — 0 —
10 10 10 10 10
1 1 1 1 1 3

0 - - - - -  -
8 8 8 8 8 8
1 2 1 1 1

0 -  -  -  -  0 -
6 6 6 6 6
1 1 1 1 2  2

0 - - - - -  -
8 8 8 8 8 8
1 1 1 1

0 -  -  0 0 -  -
4 4 4 4

0 0 0 0 0 0 1

= )  P41(x, y) °

'

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

Convergence o f the initial conversation chain matrix 

(rounded to four significant figures)

The initial conversation chain converges at 41 iterations from any point in the chain. 

What differentiates the initial conversation chain from the previous cases is that it is re­

ducible with two communication classes. The first six states have a clear path to com­

municate with one another while the seventh and absorbing state has no path to any 

of the first six states. As defined earlier, once the chain enters the absorbing state the 

chain remains in that state. In layman’s terms, once the conversation has ended, the 

chain has stopped moving (as one would naturally expect). What is noteworthy is that 

the dependence structure converges without regard to the context of the state space- 

which distinguishes this case from case II.

49



CHAPTER 3. MAIN RESULTS

In our second conversation chain, we utilized the same procedures defined above 

however we removed the "goodbye" state to produce the following six-state matrix.

P (x, y) =

0 0 0 1 0 0

6 1
0 0 0 -  0 -

7 7

0 1 0 0 0 0

4 1 8  1 3
17 17 17 17 17

1 1
0 -  0 0 -  0

2 2
2 2 1

0 -  0 -  -  0
5 5 5

= )  P18(x, y ) °

' )

0 0.248 0.029 0.494 0.107 0.122

0 0.248 0.029 0.494 0.107 0.122

0 0.248 0.029 0.494 0.107 0.122

0 0.248 0.029 0.494 0.107 0.122

0 0.248 0.029 0.494 0.107 0.122

0 0.248 0.029 0.494 0.107 0.122
1 )

Without the absorbing state, we have constructed an irreducible, single communica­

tion class chain that quickly converges (rounded to 3 significant figures) to its station­

ary distribution. Though we failed to indentify another state that would fill the void left 

by the exclusion of the "goodbye" state. We did confirm that the dependence structure 

of our second conversation chain does converge to predictable values. With this con­

vergence we can say that, left uninterrupted, the conversation in this environment will 

trend towards the topics and probability associated with each column in the matrix.
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chapter 4

Conclusio ns

4.1 Findings

The history of the Law of Large Numbers provides us with an understanding of 

what it means to be “Markovian”. In disproving Nekrasov’s claim that independence 

is a necessary condition for the Law of Large Numbers, Markov showed that the most 

essential element of chain dependence is convergence. Without convergence, a given 

chain’s behavior cannot be predicted and therefore cannot be Markovian. Armed with 

this fact, we presented three cases of varying scope to determine whether or not lan­

guage is Markovian.

In Case I (Convergence of the VC Chain) we showed that the underlying structure 

of the VC chain quickly converges to its stationary distribution regardless of the chain’s
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initial distribution. Because the VC chain represents the most fundamental aspect of 

written language, the context of each state in the chain is not relevant to the chain’s 

utility. Though the VC chain obeys various Markov properties, its only relevant purpose 

is to verify (using modern methods) Markov’s counter-example to Nekrasov’s claim.

In Case II (Convergence of the Letter Chain) we considered the 26 individual char­

acters of our corpus. We first evaluated its underlying dependence structure (without 

regard to context) and showed convergence at the 11th iteration of the chain. But when 

we considered the context of each state in the chain, we were not able to conclude that 

the chain converged to predictable values. Therefore, though the underlying depen­

dence structure obeys various Markov properties, the Letter chain has limited utility at 

this point in our research.

In Case III (Convergence of the Conversation Chain) we evaluated two chains that 

were similar except for the presence of an absorbing state in the first chain. We once 

again showed that the underlying dependence structure of each chain converged to 

predictable values within a reasonable number of iterations. The Conversation chain 

differs from the Letter chain with regards to context because the Conversation chain 

has utility to its convergence. Specifically, using the Conversation chain model, one 

could map and therefore predict the conversation culture of a given environment.

Given the results of Cases I, II, III we conclude that language has an underlying de­
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pendence structure that can be modeled and shown to converge to predictable values. 

This confirms that language can be Markovian. When we consider the context however, 

we can conclude that the utility of the ‘Markovian-ness” of language can be limited by 

that context.

4.2 Further Research

In chapter one we provided a brief history of the Law of Large Numbers and the incep­

tion of Markov chains. Though we were guided by the question of the “Markoivan-ness” 

of language, we found that the fued between Nekrasov and Markov compelled us to 

ask a second question. What motivated Markov to expend so much energy disproving 

Nekrasov’s assertion? We developed a conjecture that Markov did so in defense of his 

friend, teacher and colleague P. L. Chebyshev. We were able to review several primary 

sources that alluded to Markov’s animosity towards Nekrasov. Accordingly, we would 

like to further examine the relationship between these two men to prove or disprove 

our conjecture. Specifically, was Markov’s relationship to Chebyshev a key motivating 

factor in his efforts?

In chapter three, we examined the dependence structure of the Letter chain. We 

found that though the underlying machinery of the chain did behave in a Markovian 

manner the context of the qualitative random variable has little utility. We showed that
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by changing the order of the dependence structure we could reproduce entire sentences 

from our corpus in a random order. We would like to continue evaluating this chain in 

a manner that would allow us to reproduce our entire corpus in its original form. Our 

current strategy is to expand the N -  order Markov property to a value that requires the 

chain to consider, by necessity, entire words as “current states” when determining the 

conditional probability of advancing through the various states of the chain.

In chapter three, we also presented our Conversation chain. We showed that the 

chain behaves in a Markovian manner in the underlying machinery as well as in the 

context of the chain. We believe that the concept of our Conversation chain can be 

extended to accurately predict the “conversation culture” of a given environment. Ac­

cordingly, we would like make improvements to the data collection process so that the 

chain is used to evaluate larger sample sizes. We believe that doing so will enhance the 

predictive nature of our chain.

Another refinement to our Conversation chain could be the effect of time on its con­

vergence. We showed that we could predict the outcome of a conversation by allowing 

it to advance through its state-space without interruption. We would like to examine 

how the length of time spent in each state impacts the chain’s progression and ultimate 

convergence.
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